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ABSTRACT
Tremendous effort has been exerted over the past few decades to construct multi-attribute decision functions with the capacity
to model heterogeneous interrelationships among attributes. In this paper, we report an empirical study aiming to test whether
or not considering interrelationships among attributes can benefit the representation of real preferences in multi-attribute rank-
ing tasks. The generalized extended Bonferroni mean (GEBM) has recently been advocated as a promising and efficient tool for
modeling heterogeneous interrelationships among attributes. We compare the GEBM with one of its most widely adopted com-
petitors, simple additive weighting (SAW), in terms of their fitting quality when applied to preference elicitation. The attribute
performances are manifested uniformly with the use of three widely-adopted utility measurements. Subsequently afterwards,
the maximum split approach to establish the constraint objective function in regression for both the GEBM and the SAW to
test whether or not all constraints resulting from the subject’s ranking can be fulfilled. On this bases, the number of fully or
partly fitted subjects, consistency for subjects according to the better fitting model, and reliability of attribute weights learned by
either the GEBM or the SAW are empirically examined in a bid to demonstrate the quantitative construction of fitting quality
measurement. With the established fitting quality measurement, the necessity of taking heterogeneous interrelationships among
attributes into account when constructing multi-attribute decision functions to represent real preferences can be analyzed. The
main conclusion from the empirical study suggests that the relative performance of the two aggregation paradigms examined
here depends on which fitting quality measurements are adopted. Researchers enthusiastic to discover the heterogeneous inter-
relationships among attributes when constructing multi-attribute decision functions might find the present results relevant when
modeling actual preferences, and consequently this work should serve as a useful reference for enterprises and service providers
seeking to strategically drive customer purchasing decisions.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Typical multi-attribute decision-making (MADM) structures often
involve the following three components: (1) evaluation of vari-
ous alternatives against certain attributes, (2) determination of the
attributes weights reflecting the preference of a decision maker, and
(3) aggregation of the attributes evaluations taking account of the
attributes weights [1]. A considerable number of MADM method-
ologies and theories have been developed and applied in a wide
range of fields, such as bid evaluation, enterprise strategy planning,
quality assessment, and product recommendation [2–7]. However,
in many decision-making scenarios, decision makers do not always
follow the above procedures in a stepwise manner, since they usu-
ally have some rough idea in the first place of the appropriate out-
puts for some prototype inputs [8,9]. The preference aggregation
outputs are usually in the form of numerical data or preferences
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(e.g., expressed as linear orderings). For example, a decision maker
can offer a ranking of cars A, B, and C simply by a rough evalu-
ation of these three alternatives under various attributes. The log-
ical aggregation adopted by decision makers hidden behind the
generation of alternative rankings implies a need for aggregation
functions, and this is of fundamental importance for the successful
implementation of MADM tasks.

Identification of aggregation functions for preference modeling and
elicitation of attributes weighting vectors have been hot research
topics for the past few decades [10–15]. Recent efforts in this area
have been devoted to the incorporation of the human cognitive pro-
cess by fitting different types of aggregation functions to empiri-
cal data collected from real-life scenarios. Reimann et al. [16] fitted
the ordered weighted averaging (OWA) and simple additive weight-
ing (SAW) models to empirical data. In general, the OWA model
gives a slightly poorer fit to empirical data. The use of empirical
studies has brought a novel perspective to the preference model-
ing field, allowing the examination of a huge amount of research
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data on the aggregation of attributes evaluations. Motivated by [16],
this paper initiates an additional effort to test another question:
“Can considering heterogeneous interrelationships among attributes
in multi-attribute decision functions provide a better representation
of real preferences?” In particular, heterogeneous interrelationships
among attributes in the context of MADM reveal a situation in
which both dependency and independency implicitly coexist in the
attribute structure and need to be simultaneously taken into con-
sideration, which are demonstrated in recent research efforts to be a
significant factor affecting the decision-making process [17,18]. In
real-life MADM problems, there usually exist complex interre-
lationships among the attributes under consideration, which are
reflected in the corresponding input arguments [8,16,19]. For
example, consider a car choice problem where four attributes,
namely, price (A1), physical characteristic (A2), service life (A3),
and brand trust (A4), are taken into account. In this case, we may
identify A2 and A3 as being interrelated, which can be reflected in
the inputs of each alternative. Decision makers commonly judge
and aggregate these attributes implicitly to form their preferences
with regard to alternatives and to produce the corresponding rank-
ing. The question here is whether or not the interrelationships
among attributes will be taken into account in the context of
ranking alternatives under given attributes. There has been no
previous research demonstrating empirically heterogeneous inter-
relationships among attributes in multi-attribute decision functions
in preference modeling.

The solution to this problem requires the use of several promi-
nent aggregation functions to model the interrelationships among
attributes in the construction of multi-attribute decision functions.
The Choquet integral (CI) proposed in [20] and the power aver-
age (PA) operator introduced in [21] are useful tools to model the
interdependence or correlation among input arguments. However,
both focus on capturing interrelationships among input arguments
depending on the fuzzy measure (FM) determination and the sup-
port function construction. The appropriate choice of FM and sup-
port function is still a matter of debate, and, in particular, the PA
operator can only be used for modeling homogeneous interrelation-
ships [19]. The generalized extended Bonferroni mean (GEBM),
which originates from the Bonferroni mean (BM), has been advo-
cated in the recent literature as a promising and efficient tool for
modeling heterogeneous interrelationships among attributes. To
simplify our empirical study, the GEBM and its competing SAW
model are selected when modeling such interrelationships in multi-
attribute decision functions to facilitate an explicit discussion of
their different aggregation paradigms.

The BM has been one of the most powerful aggregation func-
tions in the field of MADM since its introduction by Bonferroni
in [22] in 1950. Owing to the inherent structure of the BM, it can
model homogeneous correlations among attributes by connecting
each argument with other arguments [8]. On the basis of this prop-
erty, Dutta et al. [23] extended the BM to accommodate even more
complex correlations among attributes where some arguments are
related to only a nonempty subset of the remaining arguments,
while others have no relation to the remaining arguments; this is
termed the extended BM (EBM). As a structural generalization of
the EBM, the GEBM proposed by Chen et al. [24] allows hetero-
geneous interrelationships among aggregation inputs to be effec-
tively captured in a more flexible way in situations where both
dependent and independent attributes need to be simultaneously

taken into consideration. Compared with other aggregation func-
tions capable of modeling interrelationships among attributes, one
of the main advantages of the GEBM is that it can be identified as a
composite function consisting of averaging and conjunctive oper-
ators. The aggregation mechanism is reflected by the composite
function, which is convenient for decomposition and substitution
with restricted forms of aggregation functions. The specific require-
ments for various applications can be satisfied by defining appropri-
ate composite aggregation functions, which makes the GEBM one
of the most useful aggregation functions in the context of decision-
making. The GEBM has attracted a great deal of attention with
regard to its theoretical development since its introduction in [23],
no work has been done on its fitting to empirical data that represent
the real preferences of decision makers [1,25]. In addition, it has yet
to be applied to test whether considering interrelationships among
attributes can provide a better representation of real preferences.

To fill this research gap, this paper conducts a large-scale empir-
ical study to fit the GEBM and the SAW respectively to empiri-
cal data and to test whether considering interrelationship among
attributes can indeed provide a better representation of real prefer-
ences. There are three main components of this procedure: aggre-
gation functions, attributes evaluations and rankings provided by
survey respondents, and constraint functions in regression. In our
experiment, for comparison with the GEBM, we use SAW as a
benchmark preference-approximation model in which interrela-
tionships among attributes are not considered. More specifically, we
provide the performance parameters of products as model inputs
and ask the subjects for the rankings of alternative products as out-
puts. The rankings of alternatives include richer information com-
pared with that obtained from the choice and sorting tasks, and are
easier to obtain in real-word scenarios in comparison with accurate
aggregated scores. To derive feasible weighting parameters for each
model, a maximum split approach is used as the constraint function
in regression.

The remainder of the paper is structured as follows. A review of
the literature on identification of aggregation functions and elici-
tation of weighting vector is presented in Section 2. Section 3 pro-
vides several definitions of the BM, GBM, and GEBM, and the other
two main components used in the development of our proposed
approach. We describe our experimental design and data collection
in Section 4. In Section 5, a comparison of fitting quality for the
GEBM and SAW models is given. Section 6 concludes the paper.

2. LITERATURE REVIEW

The developments of this empirical study consist mainly of
(a) aggregation functions for attribute interrelationships elicitation,
(b) fitting aggregation functions to empirical data, and (c) detailed
analysis of empirical results. As such, the literature review is subdi-
vided as follows.

• Aggregation functions for attribute interrelationship
elicitation.

In term of the interactions among attributes in MADM, the
attribute interrelationships can be categorized into two groups: the
homogeneity and heterogeneity [8,26,27]. Homogeneous interrela-
tionship means that given a set of attributes X, each attribute inPdf_Folio:985
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X are related to all or part of the remaining attitudes with the
structural resemblance. Heterogeneous interrelationship among
attributes, however, highlights the situation in which a proportion
of all attributes are related in a flexible way to different kinds of
subsets of all attributes in X and the others are independent from
the rest.

Except for the BM and its generalizations, there exist a consider-
able amount of aggregation functions capable of modeling different
type of attribute interrelationships. Among the existing aggregation
functions, CI is commonly considered as one of the most power-
ful tools for aggregating interacting attributes as an adequate sub-
stitute to weighted arithmetic mean or OWA operator [28,29]. CI
introduces the renowned concept of FM to allow defining weights
of attributes not only on the single-attribute level, but also on each
subset of attributes in a nonadditive fashion. FM on each combina-
tion of attributes is measured by importance index and interaction
index of attributes, thus making it possible to model the interactions
among attributes [30]. To take into account the interrelationship
between the input arguments in an information fusion, Yager [21]
introduced the concept of the PA operator, as mentioned before. In
its inherent structure, the PA operator when applied to MADM sce-
nario assumes that the weight of an attribute depends on the inter-
relationship between this attribute and all the remaining attributes,
which is accomplished by calculating the support value from the
rest to each attribute, following the simple philosophy that the more
similar two attribute inputs are, the more they support each other
[26]. Heronian mean (HM) is characterized by the ability to capture
the relevance between arguments, which has also been regarded as
a useful tool to model attribute interrelationships. Compared with
the BM, HM assumes that the self-interaction should be incorpo-
rated in the aggregation of attributes, and it distinguishes the inter-
relationship between attributes xi and xj from the interrelationship
between xj and xi [31]. The Maclaurin symmetric mean (MSM)
operator proposed by Maclaurin [32] is an effective approach to
capturing the interrelationships among the multi-input arguments.
The MSM operator is monotonically decreasing with respect to the
values of an additionally introduced parameter, which may be inter-
preted to be a reflection of the risk preferences of the decision mak-
ers in practice [33]. A special degeneration of MSM is the Muirhead
mean (MM) operator where all permutations of attributes will be
considered, and the additionally introduced parameter is replaced
by the weighting vector, which can capture the overall interrelation-
ship of multi-input arguments [34].

• Fitting aggregation functions to empirical data.

There have been a number of papers related to fitting aggrega-
tion functions with empirical data. Beliakov [11] studied meth-
ods for fitting weighted arithmetic means, OWA functions, and
CIs, and showed that the linear programming formulation is valid
for such cases. Weighted quasi-arithmetic means and OWA func-
tions were identified and described, together with their correspond-
ing weighting vectors, in [13,14,35,36]. Kumar and Tripathi [37]
fitted two new aggregation functions called compensatory sum-
mation units (CSUs) and compensatory product units (CPUs).
Reimann et al. [16] fitted OWA and SAW models to empirical
data to test how well the OWA operator represents real prefer-
ences. A comprehensive overview of methods for capacity identifi-
cation in Choquet-integral-based multi-attribute utility theory was
conducted in [38], using the Kappalab R package. Beliakov [39]

proposed an approach for fitting triangular norms and conorms
to empirical data in which membership functions and aggregation
operators were constructed from the data, and they applied it to
fuzzy systems. Other aggregation functions fitted in fuzzy control
were studied in [40–42]. The fitting process is often related to infor-
mation from inputs and outputs. Various types of inputs and out-
puts have been introduced to fit aggregation functions. Typically,
inputs and outputs are real numbers, often from the range [0, 1],
although other choices are possible, such as discrete sets, inter-
vals, and linguistic labels. In [1,16,43], real numbers were used as
inputs and ranking preferences as outputs, and the fitting process
was conducted after the inputs had been normalized. Beliakov [11]
employed real numbers and the desired overall aggregation scores
of each alternative as inputs and outputs, respectively. Beliakov [11]
and Shepetukha and Olson [44] introduced a fitting method with
interval-valued inputs. The constraint function in regression is also
an important part of the fitting procedure. Here, we concentrate on
linear programming problems. Grabisch et al. [38] provided a com-
prehensive overview of constraint functions used for capacity iden-
tification in the CI. Beliakov [11] used the “least absolute deviation”
attributes proposed by Bloomfield and Steiger [45] as a constraint
objective function that minimizes the deviation between aggregated
score and desired score. A maximum entropy and minimum vari-
ance principle for capacities was introduced by [46–48]. Reimann
et al. [16] maximized the deviation of aggregation scores between
two different alternatives in different orders, while Ahn [10] used
the sum of deviations as an objective function. Geng et al. [49]
and Khot et al. [50] argued that approximation algorithms have
achieved success in empirical applications. Jiang et al. [48] proposed
a weight learning method for medical knowledge networks based
on a max-margin framework.

By fitting aggregation functions to empirical data, we can often
obtain the weighting vector of attributes, which is a core prod-
uct of the fitting process. In fact, instead of using a fitting
process, many studies have obtained the attribute weights by com-
parisons of attribute importance [51]. In the approach of Shep-
etukha and Olson [44], attribute weights were learned using the
ranking of attribute importance and the relative weights between
adjacent attributes. Solymosi and Dombi [52] compared attribute
importance by considering threshold values and introduced the
centroid of the feasible set of formulated linear inequalities as a
weighting vector for attributes. Mikhailov [53] decomposed the
fuzzy comparison judgments of attributes into a series of inter-
val judgments by using 𝛼-cuts and obtained a sequence of crisp
attribute priorities by applying the fuzzy preference programming
method. Instead of the weighting vector, fitting processes can be
used for multi-attribute utility measurement. Salminen et al. [54]
presented a test, based on pairwise preference information, to iden-
tify the class of functions (linear, quasi-concave, or neither) to
which a decision-maker’s (implicit) value function belongs. In the
approach of Aggarwal [1], the utility function was learned from a set
of preference pairs using a state-of-the-art support vector machine
(RankSVM) based on the learning-to-rank method. A summary of
research on fitting aggregation functions to empirical data is given
in Table 1.

• Analyses of empirical data.

Different proposals have adopted distinct approaches to obtain use-
ful insights from analyses of empirical data. Reimann et al. [16]
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Table 1 Research on fitting aggregation functions to empirical data.

Aggregation Functions Inputs Outputs Objective Functions Ref.
OWA, SAW Real numbers Ranking Maximum split [16]

Choquet integrals,
triangular norms and

conorms

Interval values Interval values Least absolute deviation [11]

AM/GM/QM/OWA/GBM
/Choquet integrals

Real numbers Desired overall
score/ranking

Least absolute
deviation/maximum split

[12]

OWA Real numbers Ranking Maximum likelihood [1]
Choquet integrals Real numbers Desired overall

score/ranking
Least squares/maximum

split/minimum
variance/minimum distance

[38]

OWA, ordered weighted averaging; SAW, simple additive weighting; GBM, generalized Bonferroni mean.

employed measurements of the consistency between ranking and
valuation tasks and between two ranking tasks, the Cognitive Style
Index, the fitting ability of rankings of subsets, and the distribu-
tions of weights. To test fitting ability, Beliakov et al. [12] applied
the percentage of comparisons accurately predicted using various
aggregation functions, as well as the results of fitting aggregation
functions to raw abundance data. Beliakov and James [55] intro-
duced 10-fold cross-validation accuracy to test the adaptability of
aggregation functions. Grabisch et al. [38] analyzed the distribu-
tions of weights of different constraint objective functions in regres-
sion for empirical results.

3. PRELIMINARIES

In this section, we set out to introduce the necessary background
on the SAW and GEBM. After giving some important definitions
and properties, we present our constraint objective function and
linear constraints in regression for SAW and GEBM. More detailed
overviews of aggregation functions can be found in [56,57], and,
without further specifications, this paper follows roughly the nota-
tion used in [8,27].

Definition 1. [56] A function f ∶ [0, 1]n → [0, 1] is called an
aggregation function if it is monotone nondecreasing in each vari-
able and satisfies f (0, 0, … , 0) = 0, f (1, 1, … , 1) = 1.

Aggregation functions are classified depending on their behavior
with respect to inputs [58]. An aggregation function A is conjunc-
tive if the output is bounded by 0 ≤ A (x) ≤ Min (x), disjunctive
if the output is bounded by 1 ≥ A (x) ≥ Max (x), or averaging the
output is bounded by Min (x) ≤ A (x) ≤ Max (x). Otherwise, it is
included in the mixed class of aggregation functions.

Definition 2. [56] For a given strictly monotone and continuous
function g ∶ [0, 1] → [–∞,+∞], which is called a generating func-
tion or generator, and a weighting vector w, the weighted quasi-
arithmetic mean is the function

Mw,g (x) = g–1

(
n

∑
i=1

wig (xi)

)
.

In particular, if the generating function is g (x) = x, it degenerates
into the weighted average mean operator WAM (x) = wixi.

The SAW method, also known as the weighted sum method, is the
most widely used MADM method [59]. The basic principle of SAW
is to obtain a weighted sum of the performance ratings of each alter-
native under all attributes [60]. The SAW method consists of two

basic steps [59,60]: (1) scale the values of all attributes to make them
comparable; (2) aggregate the values of all the attributes for each
alternative with weighted average mean operator.

As an effective aggregation function, the BM has been success-
fully applied in such fields as image processing [61,62], envi-
ronmental modeling [63], water quality analysis [24], and social
network analysis [64]. The BM has such a wide range of applications
because of its decomposable structure and distinguishable com-
ponents. Its original functional form is composed of two averag-
ing operators and a conjunctive operator that can be interpreted as
involving a product of each argument with the average of the other
arguments [65].

Definition 3. [22] Let p, q ≥ 0 and xi ≥ 0, i = 1,… , n. The BM is
the function

Bp,q (x) =
(

1
n (n – 1)

n

∑
i,j=1,i≠j

xpi x
q
j

)1/ (p+q)
.

The BM is an averaging aggregation operator. It can be interpreted
as computing the average satisfaction of each input xi AND (the
power mean of the remaining inputs). Given the special case in
which n = 2 and p = q, the BM is equivalent to the geometric
mean. If q = 0, the BM becomes the power mean.

As an extension of this basic concept, Yager [65] replaced the sim-
ple average operator by other types of mean aggregation function
such as the OWA function and the discrete CI and introduced argu-
ments with varying importance weights. Beliakov et al. [66] then
studied various weighted quasi-arithmetic means and t-norm func-
tions to replace the averaging operators and conjunctive function,
respectively, and investigated the properties of this generalized BM
(GBM).

Definition 4. [66] Let M denote a three-tuple aggregation function
⟨M1,M2,C⟩ with M1 ∶ [0, 1]n → [0, 1], M2 ∶ [0, 1]n–1 → [0, 1],
and C ∶ [0, 1]2 → [0, 1], with the diagonal of C denoted by 𝛿C (t) =
C (t, t) and the inverse diagonal 𝛿–1

C . The GBM is given by

BG
M (x) = 𝛿–1

C
(

M1
(

C
(
x1,M2

(
xj≠1

)
, … ,C

(
xn,M2

(
xj≠n

)))))
.

Both M1 and M2 are averaging operators, while C is a conjunctive
operator. The function can be interpreted as the average satisfaction
of each input xi AND (the average of the remaining inputs). In the
special case in which M1 is the arithmetic mean, M2 is the powerPdf_Folio:987
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mean with power q, and C
(
x, y

)
= xpyq, the GBM operator degen-

erates into the conventional BM.

Beliakov et al. [66] found that the GBM has sufficient modeling
capabilities for the concepts of partial conjunction, partial disjunc-
tion, k-tolerance, and k-intolerance. The GBM has also been found
to be capable of modeling any number of mandatory requirements
by iteration of the inner mean with Bonferroni-type functions, and
this widens its range of application to real-world problems [27].

The GBM refers to a connection of each argument xi with all other
arguments xj≠i, from which we can see that the aggregation func-
tion assumes that each attribute ci has a connection with all the
other attributes C ∖ {ci}, where C = {c1, c2, ..., cn} denotes a set of
attributes. However, in the real world, the attributes may not follow
homogeneous interrelationship patterns, and some attributes may
depend only on a nonempty subset Bi of the set C ∖ {ci} that consti-
tutes an attribute subsetΠD, while others are mutually independent
and constitute a subset ΠID. Obviously, ΠD and ΠID are two dis-
joint subsets of the attribute set C. To model this scenario, the EBM
operator is introduced.

Definition 5. [23] For any p > 0 and q ≥ 0, the EBM operator
of dimension n is a mapping denoted by Bp,q

E (x) ∶ [0, 1]n → [0, 1]
such that

Bp,q
E (x) = [[¬I′]]

n

(
1

[[¬I′]] ∑i∈¬I′
(xi)p

(
1

[[Ii]]
∑
j∈Ii

(
xj
)q)) 1

p+q

+[[I′]]n

(
1

[[I′]] ∑i∈I′
(xi)p

) 1
p ,

where Ii are the indices of the attributes setBi that is related to ci, and
I′ and ¬I′ are the indices of the attributes in ΠID and ΠD, respec-
tively. The cardinality of any set K is denoted by [[K]] .

As indicated by this formula, the EBM operator is divided into two
components: the dependent part (the former) and the independent
part (the latter). If [[¬I′]] = n, and each input argument is depen-
dent on all other input arguments, the EBM operator reduces to the
BM. Similar to the construction of the general form of the BM, the
EBM was generalized by Chen et al. [8] as follows.

Definition 6. [8] Let  denote a quintuple aggregation func-
tion ⟨M1,M2,M3,M4,C⟩, with M1 ∶ [0, 1][[¬I′]] → [0, 1], M2 ∶
[0, 1][[¬I′]]–1 → [0, 1], M3 ∶ [0, 1][[I′]] → [0, 1], M4 ∶ [0, 1]2 →
[0, 1], and C ∶ [0, 1]2 → [0, 1], with the diagonal of C denoted by
𝛿C (t) = C (t, t) and the inverse diagonal by 𝛿–1

C . The GEBM is given
by

BGE (x) = M4
(
𝛿–1

C

(
M1

(
C[[¬I′]]

(
xi∈¬I′,M2

(
x|Ii

))))
,

M3
(

x|I′
))
,

where x|K denotes the restriction of x when regarded as a function
from [n] to [0, 1] to the subset K. In other words, x|K is the [[K]]-
tuple obtained by considering only the coordinates of x indexed by
the elements of K in increasing order.

In addition to aggregation operators, utility measurement is also an
important part of the empirical-data-fitting process. In this paper,

we use linear, concave and convex utility functions for utility mea-
surement, as suggested in Reimann et al. [16]:

linear utility function:

u
(
ai,k

)
=

ai,k – ak
ak – ak

,

concave utility function:

u
(
ai,k

)
=
(ai,k – ak

ak – ak

) 1
2
,

convex utility function:

u
(
ai,k

)
=
(ai,k – ak

ak – ak

)2

,

where ak and ak denote the best and worst value of any alternative
in attribute k.

We apply the maximum split approach to establish the constraint
objective function in regression, which can be interpreted as

Max z
s.t. fw (ui) – fw

(
uj
)
≥ z, ∀i, j ∶ Ai ≻ Aj,

n

∑
k=1

wk = 1,

where fw (ui) is the aggregated value of the utility values
ui = (ui,1, ui,2, … , ui,k) with attribute weighting vector w =
(w1,w2, … ,wk) by the aggregation function f.

From the general form of the constructed constraint objective func-
tion, we can see that only a positive value of the deviation variable z
will indicate that all constraints resulting from the subject’s ranking
can be fulfilled. A negative value of z indicates that some compar-
isons in a ranking cannot be made and that the model is not able to
fit the ranking. For the SAW model, the objective function can be
specified as

Max z

s.t.
n

∑
k=1

wku
(
ai,k

)
–

n

∑
k=1

wku
(
aj,k

)
≥ z, ∀i, j ∶ Ai ≻ Aj,

n

∑
k=1

wk = 1.

For the GEBM, we use a weighting vector v ∈ [0, 1][[¬I′]] and for
each x|Ii we associate an [[Ii]]-dimensional vector vi with weights
vj/∑j∈Ii

vj for all j. Two main approaches to fitting a weighting
vector to an objective function are introduced in [55]: fitting vij
weights to product pairs and fitting wi weights with fixed u. The
latter approach is considered in this paper. The weights of each x|Ii
are assigned with 1 / [[Ii]] equally. By using the SAW model for M1,Pdf_Folio:988



Z. S. Chen et al. / International Journal of Computational Intelligence Systems 12(2) 984–997 989

M2, and M3, the product of the conjunctive operator, we can obtain
the objective function in regression as

Max z

s.t.
[[¬I′]]

n

⎛⎜⎜⎜⎝
(
∑
k∈¬I′

wku
(
ai,k

)( 1
[[Ik]]

∑
t∈Ik

u
(
ai,t

))) 1
2

–

(
∑
k∈¬I′

wku
(
aj,k

)( 1
[[Ik]]

∑
t∈Ik

u
(
aj,t

))) 1
2 ⎞⎟⎟⎟⎠

+
[[I′]]
n

(
∑
k∈I′

wku
(
ai,k

)
– wku

(
aj,k

))
≥ z, ∀i, j ∶ Ai ≻ Aj,

n

∑
k=1

wk = 1.

4. EXPERIMENTAL DESIGN AND DATA
COLLECTION

To compare the fitting quality of GEBM and SAW towards empir-
ical data, we took smart phones as the experimental materials
because they are widely used and their configuration parameters
are easily understood. Students were taken as subjects because the
majority of students possess at least one smart phone. In this exper-
iment, we provided various configuration parameters of several
smart phones and asked the subjects to rank these phones according
to their preferences. To avoid any influence of brand effect on our
empirical results, we did not include any brand information on the
experimental materials in the questionnaire, and no photographs
or models were shown to the subjects. We employed the following
attributes and configuration parameters.

• Battery capacity (A1): with increasing use of smart phones,
battery capacity has become of great importance. A
small battery capacity often leads to low power in a smart
phone or even to the phone switching itself off, causing
disruption to the user’s everyday activities. Therefore, mobile
phone manufacturers expend much effort in improving battery
capacity.

• Thickness (A2): thickness is another factor influencing the
selection of smart phones. A thin phone can be handled more
easily and comfortably than a thick one. In addition, thinner
phones are lighter and have a more attractive appearance.

• Screen size (A3): more and more attention is now being paid to
screen size when selecting a smart phone. A large screen gives
users a better experience when watching movies,
communicating, and reading.

• Cruising power (A4): cruising power indicates how long a
smart phone can be used continuously for a single function
such as watching a movies, playing a game, or making a call.
There are many tests to measure cruising time for various
smart phones, and we used these to obtain necessary data for
our experiment. The data were measured in an environment
where smart phones were used for playing games continuously.

• Camera (A5): taking photographs is a vital function for smart
phones. A higher number of pixels gives clearer photographs.

• ROM (A6): a larger ROM capacity gives smoother and longer
use.

A heterogeneous interrelationship can be established on the basis
of these six attributes. In general, cruising power is related to
battery capacity, screen size, and phone thickness, and a thinner
phone often implies a smaller battery capacity. The interrelation-
ships among the attributes are shown in Figs. 1–5. The configura-
tion parameters of the smart phones in our experiment are given in
Table 2. Utility measurements are given in Tables 3–5.

We conducted our experiment using an online questionnaire that
asked three questions of each subject: their gender and age and their
preference rankings for the seven smart phones. To improve the
analysis, we conducted two surveys under the same conditions. The
first survey involved 208 subjects, who took an average time of 87.28
s each to complete the questionnaire. After excluding subjects who
completed the questionnaire in less than 20 s, we were left with 149
answers from 70 male (46.98%) and 79 female (53.02%) subjects,
with an average age of 21.8 years and an average completion time of
105.05 s. In the second survey, 223 subjects were involved and pro-
vided 175 available answers. In this survey, 76 participants (43.43%)
were male and 99 (56.57%) female, with an average age of 21.5 years
and an average completion time of 94.55 s.

5. COMPARISON OF FITTING QUALITY OF
AGGREGATION OPERATORS

According to the empirical surveys designed above, the fitting
quality of GEBM and SAW can be compared. In this section, the
number of fully or partly fitted subjects, consistency for subjects
according to the better fitting model, and reliability of attribute
weights learned by either the GEBM or the SAW are empirically
examined in a bid to demonstrate the quantitative construction of
fitting quality measurement.

5.1. Descriptive Statistics

The responses provided by our subjects were quite heterogeneous.
As can be seen from Tables 6 and 7, except for smart phones A and
G, the distributions of ranks for the other phones are even, with
standard deviations below 10.4 in both surveys, which means that
the viewpoint of subjects on ranking is highly decentralized. We can
also observe that some alternatives (B and D in both surveys) have
almost the same chance of being ranked first and last. Thus, the
preferences of the subjects cover a wide range of possible rankings
and provide a rich sample to which the two models can be fitted.

To test whether considering interrelationships among attributes can
provide a better representation of real preferences, we need to com-
pare the fitting quality of the GEBM operator with that of the SAW
model. A comparative analysis between the GEBM and SAW mod-
els will be conducted with regard to the following aspects.

5.2. Number of Fully Fitted Subjects

As mentioned above, only a positive z can indicate that a model can
be fully fitted to the rankings. Thus, the fitting quality of the two
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Figure 1 Interrelationships among selected attributes of smart phones.
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Figure 2 Available questionnaires of survey 1.

Gender Male 

Time spent on the questionnaire More than 20s

70 subjects selected among 208 subjects

Number Submission time Time spent on the questionnaire Gender Age Preference ranking

77s

44s

51s

84s

143s

144s

Male

Male

Male

Male

Male

Male

E—B—D—A—C—G—F

A—C—D—E—G—B—F

A—E—F—G—B—C—D

G—F—D—E—A—B—C

A—D—C—E—F—B—G

D—G—E—F—C—A—B

Figure 3 Available male subjects of survey 1.

Table 2 Configuration parameters of smart phones.

Smart Phone Battery Capacity
(mAh)

Thickness
(mm)

Screen Size
(inches)

Cruising Power
(hours)

Camera
(megapixels)

ROM
(GB)

A 4000 7.80 6.10 7.56 20 64
B 3300 8.60 6.30 6.15 12 128
C 3500 8.50 6.20 7.18 12 64
D 3060 11.1 5.70 7.00 19 128
E 3300 7.25 6.00 7.00 20 128
F 3520 7.62 6.00 6.00 12 256
G 2716 7.70 5.80 6.80 12 256
ak 4000 7.25 6.30 7.56 20 256
ak 2716 11.1 5.80 6.00 12 64
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Figure 4 Genders and ages of available subjects of survey 1.

Gender
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Age

Age Number Proportion

Total

Lower than 15

More than 30

Figure 5 Genders and ages of available subjects of survey 2.

Table 3 Linear utility measurement.

Smart Phone Battery Capacity Thickness Screen Size Cruising Power Camera ROM
A 1.000 0.857 0.667 1.000 1.000 0
B 0.455 0.649 1.000 0.096 0 0.333
C 0.611 0.675 0.833 0.756 0 0
D 0.268 0 0 0.641 0.875 0.333
E 0.455 1.000 0.500 0.641 1.000 0.333
F 0.626 0.904 0.500 0 0 1
G 0 0.883 0.167 0.513 0 1

Table 4 Concave utility measurement.

Smart Phone Battery Capacity Thickness Screen Size Cruising Power Camera ROM
A 1.000 0.926 0.817 1.000 1.000 0
B 0.675 0.806 1.000 0.310 0 0.577
C 0.782 0.822 0.913 0.869 0 0
D 0.518 0 0 0.801 0.935 0.577
E 0.675 1.000 0.707 0.801 1.000 0.577
F 0.791 0.951 0.707 0 0 1
G 0 0.913 0.409 0.716 0 1
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Table 5 Convex utility measurement.

Smart Phone Battery Capacity Thickness Screen Size Cruising Power Camera ROM
A 1.000 0.766 0.449 1.000 1.000 0
B 0.207 0.421 1.000 0.009 0 0.111
C 0.373 0.456 0.694 0.572 0 0
D 0.072 0 0 0.411 0.766 0.111
E 0.207 1.000 0.250 0.411 1.000 0.111
F 0.392 0.817 0.250 0 0 1
G 0 0.780 0.028 0.263 0 1

Table 6 Distribution of ranks for all alternatives in
survey 1.

Rank 1 2 3 4 5 6 7
A 62 18 12 9 8 21 19
B 12 24 22 21 34 24 12
C 12 16 34 15 24 21 27
D 16 19 22 38 24 14 16
E 17 26 30 34 27 12 3
F 20 29 14 15 19 41 11
G 10 17 15 17 13 16 61

Table 7 Distribution of ranks for all alternatives in
survey 2.

Rank 1 2 3 4 5 6 7
A 85 18 14 10 12 18 18
B 14 28 26 24 40 28 15
C 9 27 39 27 18 29 26
D 13 23 24 46 32 18 19
E 16 26 32 34 39 21 7
F 21 33 27 18 21 40 15
G 17 20 13 16 13 21 75

aggregation operators can be revealed by the proportion of positive
z. The calculation results are given in Table 8, and the means of z
from the two models are given in Table 9.

From these tables, we observe that the GEBM operator has a lower
proportion of positive z values in fitting to empirical data than the
SAW model. The GEBM operator fails to fit fully to more subjects.
The SAW model is better at fitting numbers. In addition, except for
the linear utility measurement in survey 2, the GEBM operator has a
smaller mean of z values than the SAW model. However, the fitting
results of both aggregation operators are poor owing to their low
proportion of positive z values, which can also be seen from Table 9,
where the mean z values for both models are negative. The SAW
model with linear utility function in survey 2 can be fitted to the
largest number of rankings, but this is still less than one-fifth of the
total.

5.3. Number of Partly Fitted Subjects

As revealed in Section 5.2, the fits of both aggregation functions to
the complete rankings are poor. Therefore, we consider both mod-
els with all possible subsets of these alternatives (n = 2,… , 6) and
analyze the quality of the fit to the subsets of rankings for both
models.

From Tables 10–12, we can see that the SAW model fits better for all
possible subsets of alternatives. In particular, with increasing subset
size, the quality of fit of the GEBM operator falls rapidly, as a result

Table 8 Proportion of positive z.

Linear Concave Convex
Survey 1
SAW 0.1342 0.1074 0.0805
GEBM 0.0201 0.0067 0.0268
Survey 2
SAW 0.0971 0.0743 0.0801
GEBM 0.0457 0.0229 0.0571
SAW, simple additive weighting; GEBM, generalized extended Bonferroni mean.

Table 9 Mean of z in different models.

Linear Concave Convex
Survey 1
SAW –0.0791 –0.0706 –0.0905
GEBM –0.0834 –0.0836 –0.1046
Survey 2
SAW –0.0852 –0.0699 –0.1042
GEBM –0.0834 –0.0786 –0.1063
SAW, simple additive weighting; GEBM, generalized extended Bonferroni mean.

Table 10 Proportion of positive z for alternative subsets with
linear utility measurement.

Subset Size 2 3 4 5 6
Survey 1
SAW 0.9741 0.9223 0.7785 0.5407 0.2982
GEBM 0.9111 0.7166 0.4754 0.2557 0.1074
Survey 2
SAW 0.9766 0.9298 0.7856 0.5265 0.2678
GEBM 0.9118 0.7159 0.4740 0.1257 0.0457
SAW, simple additive weighting; GEBM, generalized extended Bonferroni mean.

Table 11 Proportion of positive z for alternative subsets with
concave utility measurement.

Subset Size 2 3 4 5 6
Survey 1
SAW 0.9741 0.9108 0.7421 0.4775 0.2378
GEBM 0.9112 0.7093 0.4740 0.2432 0.0911
Survey 2
SAW 0.9767 0.9207 0.7660 0.5088 0.2359
GEBM 0.9118 0.7198 0.4908 0.2574 0.1020
SAW, simple additive weighting; GEBM, generalized extended Bonferroni mean.

Table 12 Proportion of positive z for alternative subsets with
convex utility measurement.

Subset Size 2 3 4 5 6
Survey 1
SAW 0.9741 0.9089 0.7283 0.4548 0.2205
GEBM 0.9112 0.7031 0.4491 0.2375 0.0959
Survey 2
SAW 0.9766 0.9161 0.7303 0.4405 0.2082
GEBM 0.9118 0.7022 0.4465 0.2446 0.1102
SAW, simple additive weighting; GEBM, generalized extended Bonferroni mean.
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of which it gives a far poorer fit for larger subset sizes. For exam-
ple, for n = 5 and 6with linear utility measurement in survey 2, the
quality of fit of the SAW model is about four times higher than that
of the GEBM operator. These results indicate that the GEBM oper-
ator fails to fit to a larger number of subjects either fully or partially.

5.4. Consistency for Subjects According to
the Better Fitting Model

The subjects can be separated into those whose preferences are bet-
ter explained by the SAW model and those whose preferences are
better represented by the GEBM operator by comparing the z val-
ues for the two aggregation operators. The number of subjects for
the better fitting model is given in Table 13.

According to rational choice theory, the fitting quality of a pref-
erence model is a function of the consistency of the preferences
manifested by subjects toward an object [16]. Therefore, to evalu-
ate the quality of fit of aggregation operators, consistency for sub-
jects according to the better fitting model may be another important
aspect. An aggregation operator is expected to give a better fit to the
preferences of rational and consistent subjects than to those of irra-
tional and inconsistent subjects. We calculate the distance between
rankings a and b, and the overall distance as

Cab =
1
n

n
∑
i=1

||ra,i – rb,i|| ,

Co =
N
∑
a=1

N
∑

b=1,b≠a
CDab,

respectively, where ra,i and rb,i are the positions of alternative i in
rankings a and b, respectively. Table 14 presents the calculation
results.

In both models, the GEBM operator has a higher consistency for
subjects than the SAW model. We can therefore conclude that
although GEBM can only fit a smaller number of rankings than
SAW, the rationality and consistency of these rankings are better.

Table 13 Number of subjects for better fitting model.

Linear Concave Convex
Survey 1
SAW 59 115 81
GEBM 90 34 68
Survey 2
SAW 62 117 81
GEBM 113 58 94
SAW, simple additive weighting; GEBM, generalized extended Bonferroni mean.

Table 14 Number of subjects for better fitting model.

Linear Concave Convex
Survey 1
SAW 2.111 2.176 2.228
GEBM 1.901 1.739 1.785
Survey 2
SAW 2.179 2.151 2.167
GEBM 1.885 1.727 1.822
SAW, simple additive weighting; GEBM, generalized extended Bonferroni mean.

5.5. Comparison of Attribute Weights Based
on Individual Views

Attribute weights are the product of the fitting process. The fitting
ability of aggregation operators can also be measured by the relia-
bility of attribute weights. In this subsection, we compare attribute
weights learned by the SAW and the GEBM based on individual
views, i.e., we compare the weighting vectors of subjects. The group
weighting vector is used to represent individual weighting vectors in
each model and to compare the fitting quality of aggregation oper-
ators. We calculate the group weighting vector with the minimum
deviation principle:

Min
S
∑
s=1

K
∑
k=1

(
wk – wk

)2
s.t.

6
∑
k=1

wk = 1,

where S and K are the numbers of subjects and attributes respec-
tively, and wk are the individual weighting vectors. Tables 15 and
16 give the group weighting vectors of both models.

We can see that the group weighting vectors in the same model of
both surveys are very similar, which indicates that the empirical
data shown in the surveys are reliable. However, there is an obvi-
ous difference between the SAW group weighting vectors and the
GEBM group weighting vectors. For example, the weight of ROM
obtained by the GEBM operator is nearly twice as high as that
from the SAW model, which indicates a difference in their fitting
quality. Which operator is more reasonable? To compare the two
operators effectively, we conducted a questionnaire online involv-
ing 50 subjects and learned the importance of these attributes for
their preferences. After analysis of the empirical results, we found
that the average attribute weighting vector in these subjects was
(0.154, 0.146, 0.151, 0.175, 0.180, 0.194). Obviously, the weighting
vectors of the GEBM operator is farther from the real weighting
vector, because the ROM weight for the GEBM operator is so high.
However, the weighting vector of the GEBM operator is more rele-
vant to the real weighting vector than the SAW model.

5.6. Consistency between TOPSIS Ranking
and Real Ranking

In this subsection, we compare the consistency between TOPSIS
ranking and real ranking to measure the fitting quality of GEBM
and SAW. TOPSIS (“technique for order of preference by similarity
to ideal solution”) ranks the alternatives by calculating the distance
of each alternative from the ideal solution and the negative ideal
solution (NIS) [59]. Using individual weighting vectors, we can
obtain a new ranking with the TOPSIS decision-making approach.
In this way, the reliability of attribute weights on individual views
can also be represented how the TOPSIS ranking represents the real
smart phone ranking, in other words, the consistency between the
TOPSIS ranking and the real ranking. The process can be conducted
according to the following steps:

Step 1: Normalize the indicator matrix

rij =
xij

√∑n
i=1 x

2
ij

.
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Table 15 Group weighting vectors of both models in survey 1.

Survey 1 Linear Concave Convex
SAW (0.038, 0.007, 0.228,

0.250, 0.067, 0.410)
(0.197, 0.013, 0.160,
0.274, 0.002, 0.354

(0.012, 0.009, 0.269,
0.148, 0.122, 0.440

GEBM (0.031, 0.003, 0.092,
0.012, 0.122, 0.740

(0.030, 0.005, 0.040,
0.069, 0.035, 0.721

(0.037, 0.006, 0.079,
0.003, 0.219, 0.656

SAW, simple additive weighting; GEBM, generalized extended Bonferroni mean.

Table 16 Group weighting vectors of both models in survey 2.

Survey 2 Linear Concave Convex
SAW (0.039, 0.009, 0.222,

0.252, 0.063, 0.415
(0.204, 0.019, 0.150,
0.268, 0.002, 0.357

(0.009, 0.012, 0.272,
0.136, 0.131, 0.440

GEBM (0.030, 0.001, 0.094,
0.016, 0.122, 0.737

(0.132, 0.005, 0.035,
0.076, 0.030, 0.722

(0.023, 0.002, 0.085,
0.003, 0.240, 0.647

SAW, simple additive weighting; GEBM, generalized extended Bonferroni mean.

Table 17 Average distance between TOPSIS rankings and real
rankings.

Linear Concave Convex
Survey 1
SAW 2.4698 2.4545 2.4966
GEBM 2.3797 2.3969 2.3950
Survey 2
SAW 2.5208 2.5649 2.5371
GEBM 2.4473 2.4784 2.4686
SAW, simple additive weighting; GEBM, generalized extended Bonferroni mean.

Step 2: Determine the positive ideal solution (PIS) A+ =
{r+1 , … , r

+
j , … , r+6 } and the NIS A– = {r–

1, … , r–
j , … , r–

6}.

Step 3: Calculate the distance and relative closeness of each smart
phone from the PIS and NIS:

d+ =
√

m
∑
j=1

(
wkrij – wkr+j

)2
,

d– =
√

m
∑
j=1

(
wkrij – wkr–

j

)2
,

RCi =
d–

d+ + d– .

Step 4: Rank the smart phones according to RCi.

Step 5:Calculate the distance between the TOPSIS rankings and the
real rankings as Cab = (1/n)∑n

i=1 |ra,i – rb,i|. The average distance
for each model is given in Table 17.

The GEBM operator has a smaller average distance between TOP-
SIS rankings and real rankings for both models, which reflects the
same conclusion as in Section 5.5. So as Section 5.5, this section
conclude that on individual views, GEBM receives more reliable
weighting vectors of subjects than SAW model.

5.7. Comparing Attribute Weights Based on
the Attribute View

The weighting vectors obtained by the fitting process provide some
important insights about interrelationships among attributes. From
the study above, we know that the individual weighting vectors
learned by GEBM are more relevant to the actual cognition by
the subjects. Meanwhile, we can gain some important information
on attributes by comparing weights of various attributes among

individual subjects, which is based on the attribute view. Using this
information, we can compare the fitting quality of the aggregation
operators in an effective manner.

We know that the weights of all attributes add up to 1. There is a
negative correlation between the weights of independent attributes.
However, for dependent attributes, the correlation may be positive
or negative, depending on the dependence. In this way, from the
attribute weights, we can reveal interrelationships among attributes
as perceived by the subjects. We shall just analyze attribute weights
in linear utility measurement in survey 1. The results are shown as
Tables 18 and 19.

Interrelationships among attributes are reflected in these tables.
For example, the correlation between battery capacity and cruising
power is positive in both tables, which means that they are strongly
dependent. We may conclude from this that the GEBM provides a
good representation of human cognition. For instance, the corre-
lation between battery capacity and screen size is as high as 0.359.
The attribute weights obtained by the SAW model are closer to those
given by the human cognitive process.

6. DISCUSSION AND CONCLUSION

We have investigated whether considering interrelationships
among attributes can provide a better representation of real pref-
erences by fitting the SAW and GEBM models to empirical data.
From an analysis of the results of fitting, we can draw the following
conclusions.

1. The GEBM operator does not provide a realistic model
of preferences that fits those of most people; i.e.,
most people do not consider interrelationships among
attributes when making decisions. Decision-making is
usually a time-consuming task and decision makers are
not always rational, so it is understandable that inter-
relationships among attributes are ignored by decision
makers.

2. The GEBM operator shows a higher consistency for
subjects than the SAW model. The GEBM models
the preferences of more rational and consistent deci-
sion makers particularly well; i.e., rational and consis-
tent decision makers consider interrelationships among
attributes when making decisions. Considering such
interrelationships aids rational decision-making.
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Table 18  Pearson correlation coefficient of attributes weights for SAW model in linear utility measurement
in survey 1.

Battery Capacity Thickness Screen Size Cruising Power Camera ROM
Battery capacity 1.000 –0.044 –0.268 0.202 –0.231 –0.286
Thickness –0.044 1.000 0.107 –0.184 –0.087 –0.064
Screen size –0.268 0.107 1.000 –0.201 0.086 –0.542
Cruising power 0.202 –0.184 –0.201 1.000 –0.326 –0.518
Camera –0.231 –0.087 0.086 –0.326 1.000 –0.136
ROM –0.286 –0.064 –0.542 –0.518 –0.136 1.000

Table 19 Pearson correlation coefficient of attributes weights for GEBM operator in linear utility
measurement in survey 1.

Battery Capacity Thickness Screen Size Cruising Power Camera ROM
Battery capacity 1 –0.060 0.359 0.170 –0.230 –0.397
Thickness –0.060 1 –0.125 0.021 0.385 –0.336
Screen size 0.359 –0.125 1 –0.195 –0.182 –0.557
Cruising power 0.170 0.021 –0.195 1 –0.159 –0.056
Camera –0.230 0.385 –0.182 –0.159 1 –0.592
ROM –0.397 –0.336 –0.557 –0.056 –0.592 1

3. More people make decisions that are in line with those
indicated by the SAW model than by the GEBM, as
described in Sections 5.2 and 5.3. However, the results
for the weighting vectors learned by the GEBM are more
relevant to the real weighting vectors than those of the
SAW model.

4. The GEBM operator considers interrelationship among
attributes. However, the attribute weights learned by
the GEBM operator fail to reflect this information, and
indeed they do not even obey the interrelationships.

We can therefore conclude that considering interrelationship
among attributes when representing real preferences is scenario-
dependent. Rational and consistent decision makers would con-
sider interrelationships among attributes when making decisions.
However, most people may not be rational and consistent in
real life. Thus, although consideration of interrelationships among
attributes might represent the preferences of rational and consistent
people, this is not necessarily the case for most people. This conclu-
sion can provide useful guidance for manufacturing enterprises. If
consumers want to spend more on a product, they will consider the
interrelationships among attributes. This means that an attribute
will have a strong impact on the consciousness of a decision maker
only when independent attributes have a similar impact.

There are also some limitations to the approach adopted in this
paper. There are many aggregation operators that consider inter-
relationships among attributes, such as the CI and the PA oper-
ator [20,21,67,68], but we have only studied the fitting quality of
the GEBM operator to test whether considering interrelationships
among attributes can provide a better representation of real prefer-
ences. Furthermore, the GEBM operator is a composite operator,
and the selection of averaging operators, conjunctive operator, and
related parameters has an important impact on the fitting quality of
the GEBM. In addition, further studies are needed to improve on
the empirical results presented here.
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