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Abstract—Today, decision making problems are continually
evolving due to the new needs of society, caused mainly by
continuous technological advances. Many times, in order to face
these new decision problems, it is no longer enough with the
participation of only a few experts, but hundreds or thousands
are necessary. The engagement of many experts implies, in turn,
the appearance of new challenges such as the management of
greater uncertainty, scalability, opinions’ polarization etc. This
contribution is focused on group decision making problems in a
large-scale context in which uncertainty is modeled by linguistic
information and how to deal with the scalability problem under
these conditions through clustering methods. Clustering methods
are used to manage the scalability problem by grouping the
initial large group of experts into smaller subgroups according
to the similarity of their opinions and assign different weights
to such subgroups. The weights assignment is a key issue due to
its influence in the final solution of the problem and classically,
it has been carried out by taking into account exclusively the
size of the subgroups, by ignoring other features such as the
cohesion of the opinions in the subgroups, which may provoke
a misassignment of the importance in experts’ subgroups and
thus, unfair solutions. Therefore, this paper introduces a new
way to calculate and assign properly the relevance of experts’
subgroups in clustering methods by taking into account both size
and cohesion of such subgroup under uncertainty conditions in
which experts use linguistic assessments.

Index Terms—large-scale group decision making, hesitant
fuzzy linguistic term set, fuzzy clustering, linguistic cohesion
measure

I. INTRODUCTION

Human beings are continually making decisions in their

daily lives, choosing which clothes to wear, what to eat

or which political party to vote for. In some problems the

participation of a single person is enough to make the decision

but, usually, due to the increasing complexity of decision

problems and the need of considering several opinions, it is

required the participation of several people in the decision

process leading to Group Decision Making (GDM). In a GDM

problem, a group of people with different knowledge and

points of view work side by side in order to select one of

several alternatives as solution of the decision problem [7].

Nowadays, society undoubtedly has to face new and more

complex decision making problems that have appeared mainly

due to the dizzying advance of technology [8], [20], [21].

Finding a solution for this type of problems is not a simple

task and requires the participation of a large number of experts,

leading to Large-Scale Group Decision Making (LSGDM). So

far, GDM problems have assumed a small number of decision

makers, but in LSGDM problems may be from 20 to hundreds

or thousands [3]. LSGDM implies new challenges [15], for

instance, scalability, minority opinions, non-cooperative be-

haviors, stronger disagreement positions and so on.

This contribution is focused on the scalability problem,

which makes reference to the difficulty to manage a huge

amount of information at the same time. Specifically, for

LSGDM problems, such amount of information is represented

by the preferences of hundreds or thousands of experts. To

reduce the scalability problem in LSGDM problems, clustering

methods have been used successfully [9], [23]. Clustering

methods classify the initial group of decision makers into

smaller subgroups composed by those decision makers whose

opinions are similar to each other. To obtain fair solutions

in LSGDM problems, it is common to weight the experts’

subgroups and, in this way, control the influence of each

subgroup in the final decision. Classically, the relevance of

the experts’ subgroups has been exclusively based on the

number of experts who compose the subgroups, in such a

way the greatest number of experts are the most influential

group. However, although experts belong to same subgroup,

disagreements might appear to some extent by provoking a

wrong assignment of the subgroups’ weights and lastly, an

unjust solution of the problem.

Additionally, in LSGDM the uncertainty and vagueness of

the information inherent in the problems is often modeled

by means of linguistic approaches [12], [13], [24]. Never-

theless, linguistic information is usually modeled by single

linguistic terms, which may not enough due to experts may

hesitate among several terms [19]. To manage these situations,

Rodrı́guez et al. proposed the use of Complex Linguistic
Expressions (CLEs) based on Hesitant Fuzzy Linguistic Terms
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Set (HFLTS) which allow to model experts’ hesitations [17],

[18] and are similar to the expressions that experts use in real

world decision problems.

In [16] was introduced a first attempt to deal with cohesion

in LSGDM with fuzzy preference relations. However, it seems

logical to extend this effort for linguistic LSGDM in which

CLEs should be considered. Because, so far, there is no any

proposal beyond the subgroup’s size to improve the weights

assignment to them.

Therefore, our proposal aims at defining a new way to

weight subgroups in linguistic LSGDM that not only con-

siders the size of the subgroups but also the togetherness of

subgroups members’ opinions, i.e, their cohesion. To achieve

this aim, a new linguistic cohesion measure for assessing the

togetherness in experts’ subgroups is proposed that will be

integrated in the linguistic LSGDM resolution process.

This paper is composed by different sections: Section II

revises preliminary concepts in LSGDM, CLEs based on

HFLTS and fuzzy clustering to understand easily the proposal.

Section III presents a clustering method for linguistic LSGDM

problems. Section IV introduces a new process to compute

the cohesion in clusters of experts for LSGDM dealing with

CLEs. Afterwards, Section V shows a case study to bring to

light the utility of the proposal. To conclude, Section VI points

out some findings and coming studies.

II. PRELIMINARIES

In this section, contents about LSGDM, CLEs and fuzzy

clustering are briefly.

A. Large-scale Group Decision Making

In a GDM process, several experts, who present different

behaviors and opinions, attempt to achieve a common solution

by choosing one or several alternatives among a group of

them [11].

Formally, a GDM problem is characterized by a finite set

of decision makers, E = {dm1, . . . , dmm} who evaluate a

finite set of alternatives or solutions, A = {a1, . . . an} [7].

Two main steps compose the classical resolution scheme for

GDM problems (see Fig.1):

• Aggregation: the decision makers’ opinions are aggregat-

ed by means of an aggregation operator for obtaining a

global opinion for each alternative.

• Exploitation: the collective opinion for each alternative

are ranked, by obtaining the solution of the problem.

In GDM problems is common the apparition of uncertainty

and vagueness provoked by the complexity of the problems

and the changing contexts in which they take place. Such

uncertainty cannot be modeled in a quantitative way thus,

classical decision theory models cannot be applied. On the oth-

er hand, linguistic information has been applied successfully

to model such uncertainty. The use of linguistic preferences

to evaluate the alternatives gives rise to Linguistic Decision
Making (LDM). To solve this type of problems, a similar

scheme to the one represented in Fig. 1 is used but with two

additional phases [6] (see Fig. 2):

• Define syntax and semantics: first, a linguistic expression

domain to model the experts’ opinions is defined.

• Select a linguistic aggregation operator: second, it is es-

sential to choose a proper linguistic aggregation operator

to obtain the collective opinion from the decision makers’

assessments.

On the other side, GDM problems is constantly envolved.

Nowadays, the participation of a high number of decision

makers to solve the increasingly complex GDM problems is

becoming more and more necessary, which implies to manage

a bigger amount of information. For this reason, LSGDM has

attracted the attention of many scholars [4], [15], [22]. This

concept is quite similar to GDM, but with two significant

differences, the number of experts is much more bigger than

in the latter and, in turn, the number of experts is much more

bigger than the alternatives.

Formally, a LSGDM problem consists of a finite set of

decision makers, E = {dm1, . . . , dmm} who express their

opinions over a finite set of alternatives A = {a1, . . . , an},

(n ≥ 2) or possible solutions for the problem, being (m >>
n). The resolution of LSGDM problems can be carried out

by following similar schemes to the ones represented in

Figs. 1 and 2, these problems introduce novel challenges [15],

focusing this contribution on the scalability problem related to

the management of a great amount of information.

Fig. 1. GDM resolution scheme.

Fig. 2. LDM resolution scheme.

B. Use of Complex Linguistic Expressions

Uncertainty in LSGDM problems has been modeled suc-

cessfuly by linguistic information but most of the linguistic

proposals only consider that decision makers assess the alter-

natives by using single just one linguistic term, insufficient to
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reflect their opinions when they consider that several linguistic

terms might be used to evaluate the different alternatives. Tak-

ing into account this premise, Rodrı́guez et al. [17] proposed

the use of richer linguistic expressions generated by a context-

free grammar (see [18] for further details). Some examples of

CLEs may be between good and bad, at most poor or at least
medium.

These CLEs are easy to understand and can represent ex-

perts’ opinions in a comprehensive way. Furthermore, with the

aim of facilitating the experts’ assessments elicitation by using

such expressions, they are usually modeled by means of a Hes-
itant Fuzzy Linguistic Preference Relation (HFLPR) [25], that

is a matrix A×A → Sll, where Sll is the set of CLEs generated

by the linguistic terms belonging to the linguistic term set S.

Let S = {very expensive, expensive, fair, cheap, very cheap},

be a linguistic term set, an example of HFLPR provided by

the expert dmi could be:

P i =

⎛
⎝ − fair cheap

fair − at most expensive
expensive at least cheap −

⎞
⎠
(1)

The linguistic computations with CLEs are performed by

using a transformation function was defined. This function

transforms the CLEs into HFLTS that is a new representation

of linguistic information.
Definition 1: [17] Let S = {s0, . . . , sg} be a linguistic term

set, a HFLTS, HS , is an ordered finite subset of consecutive

linguistic terms of S.

HS = {si, si+1, . . . , sj}, sk ∈ S, k ∈ {i, . . . , j}
Definition 2: [18] Let ECGH

be a function that transforms

the CLEs, ll ∈ Sll, obtained by the context-free grammar

CGH , into HFLTSs, HS . Being S the linguistic term set used

by CGH and Sll the expression domain generated by CGH .

ECGH
: Sll → HS

The transformations of the CLEs generated by the context-

free grammar CGH are the following ones:

ECGH
(si) = {si|si ∈ S}

ECGH
(at most si) = {sj |sj ≤ si and sj ∈ S}

ECGH
(at least si) = {sj |sj ≥ si and sj ∈ S}

ECGH
(between si and sj) = {sk|si ≤ sk ≤ sjand sk ∈ S}

Different computational models have been introduced to

deal with HFLTS [10], [18]. In this proposal we will use the

fuzzy envelope, a fuzzy representation of the CLEs that models

the uncertainty and vagueness expressed by them. This fuzzy

representation allows to carry out the computations by fuzzy

sets and obtain more precise results than using intervals [18].
Definition 3: [10] The fuzzy envelope, envF (HS), is defined

as a trapezoidal fuzzy membership function as follows:

envF (HS) = T̃ (a1, a2, a3, a4)

where HS is a HFLTS and T̃ (a1, a2, a3, a4) is a fuzzy

trapezoidal membership function (see [10] for further detail).

C. Fuzzy C-means

One of the biggest drawbacks in LSGDM problems is

scalability problem. To tackle this problematic, clustering

techniques aim at dividing a big group of data objects into

different subgroups or clusters and manage them indepen-

dently, by reducing the problem of scalability. There are

several clustering algorithms proposed in the literature, in this

contribution we will use the fuzzy c-means algorithm [2],

because it has provided very good results in different problems

and it is quite simple. In a brief summary, this algorithm

computes iteratively centroids and classify each data object

to a specific cluster through the computation of distances

among it and the centroid (see [2] for further details). One

of the most important step in fuzzy c-means is to initialize the

clusters and centroids. For this contribution, the number of

clusters, N , is fixed as the number of alternatives, N = n,

and their respective centroids are initialized with HFLPRs

(see (12)) in which each alternative predominates over the

others. In this way, the formed subgroups are composed by

experts with similar opinions respect to the alternatives. For

each iteration, t, the centroids Ck are computed together

with the membership degree of each expert’ preference P i to

each centroid Ck. As in this contribution, experts elicit their

preferences by using HFLPRs, the algorithm has been adapted

as follows:

Algorithm 1 Fuzzy c-means for HFLPRs

Inputs: decision makers provide their opinions by HFLPRs,

P i

Start :

1: Fix N , (N ≥ 2) and b.
2: Compute centroids Ck, k ∈ {1, . . . , n}.

3: while condition do
4: Compute the membership degree of each decision mak-

er’s preference P i, μCk(P i) to each cluster represented

by its centroid, Ck

μCk,t(P i) =
(1/dH(P i, ck,t))2/(b−1)∑n
u=1(1/dH(P i, cu,t))2/(b−1)

(2)

5: Update cluster centers, Ck

Ck
lj =

∑n
l=1

∑n
j=1

∑m
i=1 env(ECGH

(P i
lj))

#Ck
(3)

6: end while

where dH(·) is a distance measure between two HFLPRs [25],

t is the current iteration, #Ck the number of experts in the

cluster Ck and b the fuzziness degree [2].

Remark 1: Note that the elements that compose the centroids

are represented by trapezoidal fuzzy numbers, T k
lj(a, b, c, d),

obtained from the aggregation of the fuzzy envelopes of the

assessments of all the experts that compose the cluster Ck for

each pair of alternatives (al, aj).
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III. A LARGE-SCALE METHOD BASED ON FUZZY

C-MEANS WITH A COHESION MEASURE FOR COMPLEX

LINGUISTIC EXPRESSIONS

This contribution presents a linguistic cohesion measure for

computing the weights of experts’ clusters when clustering

techniques are applied and in which experts express their

preferences by using CLEs modeled by HFLPRs taking into

consideration both the size and cohesion of the subgroups.

Therefore, this section introduces a large-scale method based

on CLEs and fuzzy clustering that includes the proposed lin-

guistic cohesion measure introduced in the following section.

The method consists of several steps described in further

detail below and represented in Fig. 3:

1) Inputs: decision makers express their assessments by

means of CLEs that are modeled by HFLPRs (see the

example introduced in Section II-B). Afterwards, the

fuzzy envelope of each CLE is obtained.

2) Clustering process: all the experts are divided into several

subgroups, G = {G1, . . . GN}, by using the clustering

algorithm introduced in Section II-C.

3) Weighting subgroups: the relevance of each subgroup,

W = {w1, . . . wN}, is computed by taking into account

both its cohesion and size (see Section IV).

4) Aggregation: to represent the global opinion of all the

decision makers in the decision problem, the centroids

Ck of each subgroup Gk are aggregated by obtaining a

matrix. Several aggregation operators could be applied

but, without losing of generality, in this contribution we

have used, a weighted average operator, although any

other could be applied.

Definition 4: Let Ck = (cklj)n×n be the centroids of the

clusters Gk and W = {w1, . . . wN} the weights assigned

to each subgroup, the collective matrix P c = (pclj)n×n is

obtained as follows:

Ck
lj =

n∑
l=1

n−1∑
j=2

N∑
k=1

ckljwk (4)

5) Exploitation: finally the alternatives are ranked by com-

puting the non-dominance degree [14] among them in

P c.

Fig. 3. LSGDM clustering method scheme.

IV. LINGUISTIC COHESION MEASURE

As it was aforementioned, once a clustering process is ap-

plied in the linguistic LSGDM and the experts’ subgroups are

obtained, the next step is to compute the importance of each

subgroup. Classically, such importance has been determined

just by the clusters size, the greater the number of decision

makers in a cluster, the greater its importance. However, the

fact that a large number of experts belong to the same sub-

group does not imply implicitly that their opinions match each

other. Therefore, from our view, a cluster composed by a large

numbers of experts but whose opinions are not cohesive should

not be considered so relevant as a cluster with a similar size

and greater cohesion. For this reason, our proposal consists

of a novel linguistic cohesion measure able to determine

the degree of closeness in the decision makers’ opinions.

Therefore, to calculate more appropriately the importance in

experts’ subgroups, we take into consideration both size and

cohesion. In this way, better solutions for LSGDM problems

will be obtained.

For sake of simplicity, let us suppose a cluster composed by

two experts, Gk = {dm1, dm2} who take part of a LSGDM

with three alternatives A = {a1, a2, a3}. The fuzzy linguistic

term set used to model the assessments is S = {No Importance
(NI), Very Unimportant (VU), Unimportant (U), Fair (F),
Important (I), Very Important (VI), Essential (E)} and modeled

by the following HFLPRs:

P 1 =

⎛
⎝ − I V I

U − At most U
V U At least I −

⎞
⎠ (5)

P 2 =

⎛
⎝ − V I V I
V U − U
V U I −

⎞
⎠ (6)

Then, the experts’ linguistic assessments are transformed

into HFLTS:

P 1 =

⎛
⎝ − {I} {V I}

{L} − {NI, V U,U}
{V U} {I, V I, E} −

⎞
⎠ (7)

P 2 =

⎛
⎝ − {V I} {V I}
{V U} − {U}
{V U} {I} −

⎞
⎠ (8)

Finally, the fuzzy envelope of each HFLTS [10] is comput-

ed:

P
1

=

⎛
⎜⎝

− T1
12(0.5, 0.667, 0.833) T1

13(0.667, 0.833, 1)

T1
21(0.167, 0.333, 0.5) − T1

23(0, 0, 0.15, 0.5)

T1
31(0, 0.167, 0.333) T1

32(0.5, 0.86, 1, 1) −

⎞
⎟⎠ (9)

P
2

=

⎛
⎜⎝

− T2
12(0.667, 0.833, 1) T2

13(0.667, 0.833, 1)

T2
21(0, 0.167, 0.333) − T2

23(0.167, 0.333, 0.5)

T2
31(0, 0.167, 0.333) T2

32(0.5, 0.667, 0.833) −

⎞
⎟⎠

(10)

Afterwards, a matrix Qk, in which each element [q−lj , q
+
lj ]

is an interval that represents the smallest fuzzy envelope q−lj
and the largest fuzzy envelope q+lj of the experts’ preferences

belonging to Gk for each pair of alternatives (al, aj) is

obtained.
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Remark 2: To compare the fuzzy envelopes, the concept of

magnitude of a fuzzy number [1] is used.

Mag(T̃ (a1, a2, a3, a4)) =
1

2

(
a2+a3− a1 − a2

6
+

a3 − a4
6

)

(11)

So that:

A) Mag(T1) > Mag(T2) ⇐⇒ T1 � T2

B) Mag(T1) < Mag(T2) ⇐⇒ T1 ≺ T2

C) Mag(T1) = Mag(T2) ⇐⇒ T1 ∼ T2

where T1 and T2 are two fuzzy numbers.
The resulting Qk for our example is shown as follows:

Q̃k =

⎛
⎝ − [T 1

12, T
2
12] [T 1

13, T
2
13]

[T 1
21, T

2
21] − [T 1

23, T
2
23]

[T 1
31, T

2
31] [T 1

32, T
2
32] −

⎞
⎠ (12)

The pairs of fuzzy envelopes in Qk on (al, aj) are graph-

ically shown in Fig. 4 according to the geometrical fuzzy

distance [5] among each pair. The items represented in the

figure are:

• X-axis: this axis is formed by the set of all the pair of al-

ternatives over A, noted as Z, where zt = (al, aj), l, j ∈
(1, 2, 3), l �= j.

• q−lj : the fuzzy envelope with less magnitude for the pair

of alternatives (al, aj) in Q̃k.

• q+lj : the fuzzy envelope with greater magnitude for the

pair of alternatives (al, aj) in Q̃k.

• T k: the area enclosed by the points aT , bT , cT and dT ,

where T k = gT × nT where gT is the maximal distance

between two fuzzy envelopes, which is 1, and nT is equal

to the number of pair of alternatives.

• Ak: the shaded area. This are represents the cohesion of

Gk, the larger the area, the less cohesion.

Remark 3: Notice that the pairs zt are located by the

minimum assessments q−lj in increasing order.

To compute the cohesion for Gk is necessary to compute

the values q−lj and q+lj .

q−lj = min

{
q1lj , q

2
lj , . . . q

s
lj

}
, ∀ (l, j) ∈ I (13)

where I is the nT pairs over the set of alternatives A =
{a1, . . . , an}.

Fig. 4. Graphical visualization for cohesion computation.

q+lj = max

{
q1lj , q

2
lj , . . . q

s
lj

}
, ∀ (l, j) ∈ I (14)

and,

q−ab = minl,j∈I

{
q−lj

}
, (a, b) ∈ I (15)

q+cd = maxl,j∈I

{
q−lj

}
, (c, d) ∈ I (16)

Therefore, Ak is obtained as:

Ak =

[ ∑
l,j∈I

(
dT (q

+
lj , q

−
lj )

)
−dT (q

+
ab, q

−
ab) + dT (q

+
cd, q

−
cd)

2

]
·D

(17)

where dT (·, ·) represents the geometric distance for fuzzy

numbers introduced in [5] as follows:

d(T 1, T 2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

4
(|a1 − a2|λ + |b1 − b2|λ + |c1 − c2|λ+

|d1 − d2|λ)
1

λ , if 1 ≤ λ ≤ ∞
max(|a1 − a2|, |b1 − b2|, |c1 − c2|, |d1 − d2|),
if λ = ∞

(18)

where T 1 and T 2 are two parametric fuzzy numbers.

To compute the cohesion for the cluster Gk:

cohesion(Gk) = 1− Ak

T k
∈ [0, 1] (19)

Finally, to obtain the weight for each subgroup Gk:

Definition 5: Let YGk = {c, s} be cohesion and size of the

cluster Gk, the cluster’s weight is obtained as follows

δ(YGk) = (1 + s)cγ (20)

where γ > 0 allows to measure the influence of c in the

resulting weights.

Finally, the values δ(YGk) are normalized:

wk =
δ(YGk)∑n
z=1 δ(YGz )

(21)

V. CASE STUDY

Once the new measure to obtain the weights for experts’

subgroups has been introduced, this section evaluates its

performance through a case study. First, a LSGDM problem

is defined and by means of the LSGDM model introduced

in Section III is solved. Such a model will be applied with

different values of the parameter γ, to see how the cohesion

affects to the solution of the problem. Finally, we study and

analyse the results obtained.

Let E = {dm1, . . . dm50} be a group of 50 business people,

who decide to build a sustainable hospital in China. Three

cities are candidates for the building of the hospital, A =
{a1 : Shanghai, a2 : Pekin, a3 : Canton}.

Following the different steps introduced in Section III.

1) Inputs: decision makers assess the alternatives by CLEs

which are modeled by HFLPRs. Afterwards, the fuzzy

envelope of each CLE is computed.
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2) Clustering process: the fuzzy c-means algorithm is ap-

plied to group the decision makers into clusters with

similar preferences. Table I shows the resulting experts’

clusters, {G1, G2, G3}, one for each alternative.

3) Weighting subgroups: the importance of the experts’

clusters are calculated by Eqs. 20 and 21. Additionally,

such a weight has been also computed by ignoring the

cohesion to compare and analyse the results. Table II

shows the results obtained for the cohesion and size and

Table III display the weights for each group taking into

account different values of γ.

4) Aggregation: the aggregation of the the centroids,

{C1, C2, C3}, is carried out by using Eg 4.

5) Exploitation: the alternatives are sorted using the col-

lective opinion P c for the different values of γ (see

Table IV).

According to Table IV, different values of gamma pro-

vide different solutions for the decision making problem.

When cohesion is not taken into account in the weights

computations, the most important experts’ subgroups are

those that have a greater number of experts, in this case

G1 and G3 (see Table III), and their weights are the same,

0.36. In addition, the ranking of alternatives when the

cohesion is not applied is a1 � a2 � a3 being a1 the best

solution (see Table IV). Nevertheless, when the cohesion

is considered to compute the weights, the subgroups

G1 and G3 have a different weight (see Table III),

although their size is the same, being the biggest weight

assigned to the subgroup G3. Regarding the ranking of

the cities obtained, in both experiments gamma = 1.5
and γ = 3.0, the ranking is the same, although the

variation of the value γ might cause different solutions.

Therefore, it depends on the value for γ, the effect of

the cohesion can increase or decrease the computation

of the subgroups’ weights. In this case, both experiments

present a different solution to the one provided without

considering the cohesion. The ranking of the cities is

a2 � a1 � a3 being the best solution, a2. Therefore,

the inclusion of cohesion can provoke different solutions,

consequently, it is a measure that should be studied and

analyzed.

VI. CONCLUSIONS

One of the pivotal key when clustering algorithms are used

for LSGDM problems is the computation of the weights of

the experts’ subgroups. Classically, such weights have been

computed only considering the size of the subgroups and

ignoring other features as the cohesion degree in the experts’

opinions, which might lead to unfair solutions. Furthermore,

LSGDM problems usually present uncertainty related to their

complexity, which have been modeled in a successful way by

means of linguistic information. However, such complexity

can provoke that experts hesitate when they have to elicit

their opinions by using single linguistic terms. Under these

conditions, CLEs are useful to model the experts’ hesitancy

and similar to the expressions that experts use in decision

TABLE I
EXPERTS’ CLUSTERS

Subgroup Experts

G1

dm1, dm3, dm5, dm6,
dm7, dm13, dm18, dm19,
dm20, dm23, dm33, dm35,
dm38, dm42, dm45, dm46

dm47, dm50

G2

dm2, dm9, dm10, dm12,
dm16, dm17, dm25, dm27,
dm32, dm34, dm37, dm43,

dm44, dm49

G3
dm4, dm8, dm11, dm14,
dm15, dm21, dm22, dm24

dm26, dm28, dm29, dm30,
dm31, dm36, dm39, dm40,

dm41, dm48

TABLE II
EXPERTS’ CLUSTERS FEATURES

Cluster Size Cohesion
G1 18 0.3367
G2 14 0.3398
G3 18 0.3565

processes. This work has presented a linguistic cohesion

measure to obtain the relevance of decision makers’ clusters in

linguistic LSGDM by considering not only their size, but also

their cohesion. Additionally, a novel fuzzy clustering LSGDM

method has been introduced to evaluate the performance of the

proposed measure.

The performance of the proposed linguistic cohesion mea-

sure in a consensus reaching process for LSGDM problems

may be considered for future research.
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