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Abstract

Models of Fuzzy Multi-Criteria Decision Analysis (FMCDA) are based, as a rule, on different approaches to fuzzy extension 
of source MCDA methods. For this, simplified models are used to approximate the functions of fuzzy variables with propagation 
of parametric fuzzy numbers (FNs) through all calculations. In this paper, authors suggest a novel approach to fuzzy extension 
of MCDA methods, for PROMETHEE-I/II, through development of fuzzy PROMETHEE-I/II (FPOMETHEE-I/II) models of dif-
ferent complexity: in addition to simplified models, the standard fuzzy arithmetic (SFA), and transformation methods (TMs) are 
implemented for assessing functions of FNs corresponding to these models. For ranking of alternatives, two defuzzification based, 
and one pairwise comparison ranking methods are implemented within the developed models. Special attention is paid to anal-
ysis of the overestimation problem, which can occur when using SFA in the presence of dependent variables in corresponding 
expressions, and to “proper fuzzy extensions” of PROMETHEE-I/II (i.e., results of all functions of FNs within the model are in 
accordance with the extension principle) based on TMs and, for some models, on the SFA. One of the key goals of this contribution 
is comparison of the distinctions in ranking alternatives by different FPROMETHEE-II models. It is demonstrated by evaluating a 
large number of scenarios based on Monte Carlo simulation that the probability of distinction in ranking alternatives by “proper” 
and “approximated” FPROMETHEE-II models may be considered as significant for ranking multicriteria problems. Another goal 
of this paper is analysis of the correctness of FPROMETHEE-I/II models with respect to the basic MCDA axiom related to ranking 
of dominated and dominating alternatives. Authors demonstrate that the basic axiom can be violated, in the general case, by all 
developed FPROMETHEE-I/II models and suggest an approach to fix this problem.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Classical methods of Multi-Criteria Decision Analysis (MCDA) [2,27,37] along with the methodology of their 
implementation and application [5] are a basis for subsequent extensions to corresponding models in the fuzzy envi-
ronment and form a ground for this contribution in which we will focus on fuzzy extensions of PROMETHEE I/II 
MCDA methods.

Fuzzy MCDA (FMCDA) models [14,33,42,47] imply the use of fuzzy criteria values or/and fuzzy weight coeffi-
cients, implementing functions of fuzzy arguments, and ranking alternatives using one of the methods for ranking of 
Fuzzy Numbers (FNs). In the existing FMCDA models, instead of implementing the extension principle [64,55] for 
assessing functions of FNs, which is not effective when determining even simple arithmetic functions, various simpli-
fied methods have been implemented. For ranking alternatives, which are presented by fuzzy values of a generalized 
criterion (criteria), defuzzification based ranking methods are mainly used.

The objectives of this contribution, which form its novelty, are to explore different fuzzy extensions of 
PROMETHEE-I/II methods and their comparison, and evaluate the correctness of these methods in relation to the 
basic axiom of MCDA. The Basic Axiom (BA) for any MCDA/FMCDA model, M, is as follows: if alternative A
dominates alternative B in Pareto, A �P B , then A is not worse than B according to model M, A �M B .

The studies presented in this paper include:

• Development of the models of different complexity for fuzzy extensions of the classical methods PROMETHEE-
I/II (Preference Ranking Organization METHod for Enrichment Evaluations) [6,9] with the use of:
- Standard Fuzzy Arithmetic (SFA) for assessing functions of FNs based on corresponding operations with α-

cuts considering all variables of expressions under consideration as independent ones [20,31,55];
- Transformation Methods (TMs), which lead to proper assessing functions of FNs and are used when evaluated 

expressions have dependent variables [30,31];
- Simplified approach to assessing functions of FNs based on the use of triangular FNs (TrFNs) and a consistent 

approximating the results of all functions of FNs by corresponding TrFNs [39];
- Three methods for ranking of FNs, which are an integral part of the developed FPROMETHEE-I/II models: 

two defuzzification based ranking methods, Centroid Index/Yager-1 and Integral of Means/Yager-2 [53,57,56], 
and one pairwise comparison ranking method based on Yuan’s fuzzy preference relation [54,63].

• Exploring the distinctions in ranking alternatives by FPROMETHEE-II models of different complexity with the 
use of Monte Carlo simulation;

• Analysis of the basic MCDA axiom violation by developed FPROMETHEE-I/II models.

In this paper, authors pay a special attention to the overestimation problem [31], which can occur when using SFA 
in the presence of dependent FNs in corresponding expressions, and to “proper” FPROMETHEE-I/II models (i.e., 
results of all functions of FNs within the model are in accordance with the extension principle) based on TMs and, 
for some models, on the SFA. Distinctions in ranking alternatives by “proper” FPROMETHEE-II models and those 
based on SFA and approximated approaches along with the use of different ranking methods are explored with the use 
of Monte Carlo simulation.

Authors prove that, in the general case, the basic MCDA/FMCDA axiom can be violated by all suggested 
FPROMETHEE-I/II models of different complexity. Additional requirement to fix this problem is suggested.

All computations in this work are based on the use of DecernsMCDA system [58] extended to FMCDA models by 
using SFA, approximate assessing functions of FNs (with triangular/trapezoidal FNs), and TMs methods with the use 
of different methods for ranking of FNs.

It should be pointed out, the suggested FPROMETHEE-I/II models are based on the pure fuzzy approaches (which 
can also be applied for fuzzy extensions of other MCDA methods), and defuzzification is used only on the stage of 
comparison of the output FNs when defuzzification based ranking methods (Centroid Index and Integral of Means) 
are implemented.

This paper is structured as follows. Section 2 revises the basic notions used in this paper. Fuzzy extension of 
PROMETHEE-I/II is presented in section 3. Violation of the basic axiom by different FPROMETHEE-I/II models 
along with the suggestion how to fix it is considered in section 4. Comparison of FPROMETHEE-II models with 
different complexity based on Monte Carlo simulation is considered in section 5. In section 6, the results of this 
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contribution on development and application of the FMCDA models with different level of complexity as well as 
violation of the basic axiom are discussed. Eventually, section 7 concludes this paper.

2. Preliminaries

In this section, basic notions about Fuzzy Numbers (FNs), fuzzy ranking methods, the overestimation problem, and 
PROMETHEE-I/II method are reviewed.

2.1. Fuzzy numbers and fuzzy preference relations

The concept of α − cuts [20,38,55] is a basic one in the fuzzy sets theory and plays a key role in both definition 
and application of FNs.

Definition 1. Let Z be a fuzzy set on X with the membership function μZ : X → [0, 1], and α ∈ (0, 1]. An α-cut of Z
is defined as:

Zα = {x ∈ X : μZ(x) ≥ α}

A fuzzy set Z on R is bounded if there are real numbers a and b: Supp(Z) = {x : μZ(x) > 0} ⊆ [a, b]. The 
following definition of FN is considered in this paper [38,49,55].

Definition 2. A fuzzy number Z is a normal bounded fuzzy set on R with the following property: for each α ∈ (0, 1], 
α-cut Zα is a closed interval.

F denotes the set of FNs according to Definition 2.
As FN Z is bounded and taking into account the property of α-cuts [55], the closure of the set supp(Z), supp(Z), 

is a closed interval (segment); denote it as [c1, c2]. FN Z is considered as positive, Z > 0, if c1 > 0, and non-negative, 
Z ≥ 0, if c1 ≥ 0.

In Definition 1, α-cuts, Zα = [Aα, Bα], are given for 0 < α ≤ 1. For α = 0, consider the segment [c1, c2] and set: 
A0 = c1 and B0 = c2. As membership function, μZ(x), is defined for all x ∈R, 0 ≤ μZ(c1) ≤ 1 and 0 ≤ μZ(c2) ≤ 1. 
Then, FN Z can be identified with the family of segments: Z = {[Aα, Bα], 0 ≤ α ≤ 1} (below, when an expression 
Z = {[Aα, Bα]} is used and there are no additional specification on α, it is implied but not indicated directly, that α
points to the whole segment [0, 1]).

Let G ⊆ Rn, f : G → R be a real function, and propagation of fuzziness by function f (x1, ..., xn) is imple-
mented, i.e., instead of real numbers xi , FNs Zi are used, and the membership function, μZ(z), of fuzzy quantity 
Z = f (Z1, ..., Zn), is determined with application of the extension principle [64,39,55]:

μZ(z) =
∨

z=f (x1,...,xn)

(
∧

i=1,...,n

μZi
(xi)); (1)

and μZ(z) = 0 if f −1(z) = ∅;
Direct implementation of Eq. (1) for assessing functions of FNs is not effective even for simple functions, and 

in most cases the Standard Fuzzy Arithmetic (SFA) is implemented based on α-cuts for all FNs [20,31,55]. E.g., if 
Zi = {[Ai

α, Bi
α]}, Zj = {[Aj

α, Bj
α]} ∈ F , then (in the general case, for independent FNs, see subsection 2.3),

Zi − Zj = {[Ai
α − Bj

α,Bi
α − Aj

α]}
ZiZj = {[Ai

αAj
α,Bi

αBj
α]} (Zi,Zj ≥ 0)

Definition 3. Fuzzy preference relation R is a binary fuzzy relation on F × F : R = ((Zi, Zj ), μR(Zi, Zj )), where 
membership function μR(Zi, Zj ) (∈ [0, 1]) indicates the degree of preference of Zi over Zj .

One of the classes of binary fuzzy preference relations R, which are consistent regarding comparison of FNs and 
demanded in applications, is a class of reciprocal preference relations [46,63], defined by the expression:
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μR(Zi,Zj ) + μR(Zj ,Zi) = 1 (2)

For any Zi, Zj ∈ F and reciprocal fuzzy preference relation R, their fuzzy ranking is defined as:

Zi � Zj if μR(Zi,Zj ) > 0.5, Zi ∼ Zj if μR(Zi,Zj ) = 0.5,Zi ≺ Zj if μR(Zi,Zj ) < 0.5. (3)

The following notations are also used here within ranking by pairwise comparison methods:

μij = μR(Zi,Zj ) = μR(Zi ≥ Zj ) = μR(Zj ≤ Zi). (4)

Note that the symbols ≤, ≥, used here for notational purposes, are different from the symbols �, �, which are 
associated with ranking of FNs.

2.2. Methods for ranking of fuzzy numbers

The ranking of FNs is a key stage in all FMCDA models. Corresponding definitions and detailed reviews of the 
three main classes of ranking methods, defuzzification based, etalon/reference, and pairwise comparison ranking 
methods can be found in [34,53–57,63]. Below, the three wide-used ranking methods, which are implemented in this 
contribution, are revised.

1. Centroid Index, CI (or Yager-1) [53,56] is widely used defuzzification based ranking method and is represented 
by the following expression:

CI (Z) =
∫

xZ(x)dx∫
Z(x)dx

(5)

here, Z(x) = μZ(x).
Within this method, FNs, Zi, i = 1, ..., n, are represented by corresponding real numbers CI (Zi) with their 
subsequent ranking: FN with higher value of CI has higher rank.
Centroid Index has evident association with mathematical expectation/mean value of random variable.
In terms of α-cuts, CI (Z) for FN Z = {[Aα, Bα]} can be presented by the formula:

CI (Z) =
1∫

0

(Bα + Aα)(Bα − Aα)/2S dα, (6)

here S = S(Z) is the area under membership function μZ(x):

S =
c2∫

c1

μZ(x)dx =
1∫

0

(Bα − Aα) dα. (7)

For singleton FN, Z = c, CI (Z) = c (in this case, formulas (5) and (6) are not used as area S under membership 
function equals 0).

2. Within Integral of Means, IM, (or Yager-2) ranking method [53,57], the following value for FN Z = {[Aα, Bα]}
is assessed:

IM(Z) =
1∫

0

(Aα + Bα)/2 dα. (8)

FN Z with higher value of IM(Z) has higher rank.
3. Yuan’s ranking method (Y) is based on the Yuan’s fuzzy preference relation [54,63] and belongs to the class of 

pairwise comparison ranking methods. A brief description of the Yuan’s ranking method is presented below.
Let Zi = {[Ai

α, Bi
α]}, Zj = {[Aj

α, Bj
α]} ∈ F be two FNs and Zij = Zi − Zj = {[Aα, Bα]}. Within the Yuan’s fuzzy 

preference relation, RY = ((Zi, Zj ), μY (Zi, Zj )), the area, S+
Y , is considered as a “distance” of the positive part 

of Zij = {[Aα, Bα]} to the axis OY , which is computed as [62]:
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S+
Y (Zij ) =

1∫

0

(Bαθ(Bα) + Aαθ(Aα))dα (9)

here θ(x) is the Heaviside function:

θ(x) = {1, x ≥ 0; 0, x < 0} (10)

The total adjusted area under FN Zij is assessed as [62]

SY (Zij ) = S+
Y (Zij ) + S+

Y (Zji) =
1∫

0

(|Bα| + |Aα|)dα, (11)

Definition 4. [63] Let Zi, Zj ∈ F be two FNs and Zij = Zi − Zj . The Yuan’s fuzzy preference relation, RY =
((Zi, Zj ), μY (Zi, Zj )), in which μij = μY (Zi, Zj ) represents the degree of preference of Zi over Zj , is defined as:

μY (Zi,Zj ) = S+
Y (Zij )/SY (Zij ) if SY (Zij ) > 0. (12)

For singleton FNs, Zi = ci, Zj = cj , cij = ci − cj :

μY (Zi,Zj ) = {1, cij > 0; 0, cij < 0; 0.5, cij = 0} (13)

According to Definition 4, preference relation RY is reciprocal [63], and

μY (Z1 ≥ Z2) = μY (Z1 − Z2 ≥ 0) and Z1 �Y Z2 iff (Z1 − Z2) �Y 0; (14)

2.3. The overestimation problem

For development of different FPROMETHEE-I/II models in accordance with the goals of this paper (section 1), 
Standard Fuzzy Arithmetic (SFA) as well as Transformation Methods (TMs) (subsection 2.4) are implemented for 
assessing functions of FNs.

SFA is based on operations with α-cuts considering all variables of expression under estimation as independent 
ones [20,31,55]. Simplified computations with consistent propagation of TrFNs (or trapezoidal FNs, TpFNs) in all 
operations are based on the use of only two segments for each FN Zi = {[Ai

α, Bi
α]} under consideration: α-cut [Ai

1, B
i
1]

for α = 1, and segment [Ai
0, B

i
0] for α = 0.

The use of SFA for assessing functions of FNs can lead, in the general case, to the overestimation problem [31], 
which can be shortly presented as follows.

Let W, A, and B be three non-negative not crisp FNs, and consider the two expressions for assessing FNs ZO and 
ZT based on SFA:

ZO = WA − WB (15)

ZT = W(A − B) (16)

Expressions (15) and (16) are fuzzy extensions of real functions f1 and f2 (17):

f1(w,a, b) = wa − wb; f2(w,a, b) = w(a − b) (17)

Functions f1 and f2 are equivalent in the class of real numbers. However, implementation of SFA for assessing 
expressions (15) (Z1 = WA, Z2 = WB, ZO = Z1 − Z2) and (16) (Z = A − B, ZT = WZ) results in different FNs: 
supp(ZT ) ⊂ supp(ZO). The latest reflects the problem of overestimation when using SFA, Fig. 1 (in denotations ZO

and ZT , O and T mean, correspondingly, Overestimation and Transformation).
The problem of overestimation [31] arises when there are dependent variables (subsection 2.4) in the fuzzy ex-

pression under consideration; e.g., in (15), FNs WA and WB are dependent ones. It should also be added, proper 
assessing ZO (15) based on the extension principle (1) results in FN ZT (16).
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Fig. 1. Overestimation: FNs ZO (15) and ZT (16); W,A,B are Triangular FNs: W = (0,1,2), A = (3,5,7), B = (2,4,6).

Remark 1. If instead of Eqs. (15), (16), FNs Z1 and Z2 are determined with the use of expressions

Z1 = WA + WB, Z2 = W(A + B) (18)

for positive FNs W, A, B , then Z1 = Z2 despite FN W occurs twice in expression for assessing Z1. However, if 
some of FNs under consideration have both negative and positive points in their supports, Z1 and Z2 may differ in the 
general case. Features of the overestimation and its dependence on the use of arithmetic operations are discussed in 
[31].

Another (classical) example, which demonstrates the role of dependent FNs within fuzzy arithmetic, is presented 
below.

What is the FN f (Z) = Z − Z for (not crisp) FN Z? Let Z = (1, 2, 3) be the TrFN. According to direct imple-
mentation of α-cuts approach within SFA, f (Z) = (1, 2, 3) − (1, 2, 3) = (−2, 0, 2). However, in fact, using such an 
approach, we assess FN Z3 = Z1 − Z2, where Z1 = Z and Z2 = Z, and Z1 and Z2 are considered as different (in-
dependent) FNs. The latest expression is the fuzzy extension of the real function f (x1, x2) = x1 − x2. However, if 
Z1 and Z2 are different denotations for the same FN Z (the same value/element of a model), then f (Z) is the fuzzy 
extension of the function g(x) = x − x; hence, f (Z) = Z − Z = 0.

Taking into account this example, Definition 4 can be extended to the case μY (Z, Z) = 0.5, that is in agreement 
both with (13) (Zij = 0) and with the reciprocity property (2) for preference relation μY (Zi, Zj ).

2.4. Dependent fuzzy numbers and their ranking

In this subsection, the reason of overestimation problem and the features of ranking independent and dependent 
FNs are revised, and the use of SFA and TMs for developing FPROMETHEE-I/II models of different complexity is 
justified.

Let f (X1, ..., Xn) be a fuzzy extension of a real function f (x1, ..., xn), and Xi, i = 1, ..., n, are FNs. The following 
definition of dependent FNs is considered here.

Definition 5. Fuzzy numbers, Z1 and Z2, are considered as dependent ones within a model/problem under 
study, if they are the results of functions, which have one or several common fuzzy arguments, i.e., Z1 =
f1(W1, ..., Wk, X1, ..., Xm) and Z2 = f2(W1, ..., Wk, Y1, ..., Yp), k ≥ 1, m ≥ 0, p ≥ 0.

Arbitrarily selected FNs as well as FNs with missing links are considered to be independent.
Before discussing the example of ranking independent and dependent FNs, consider the following Lemma con-

cerning Yuan’s ranking method [62].

Lemma 1. Let Z = {[Aα, Bα]} ∈ F . Z �Y 0 iff y(Z) = ∫ 1
(Bα + Aα)dα ≥ 0.
0
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Despite IM and Y belong to different classes of ranking methods, the following Proposition was proved [60] based 
on Lemma 1.

Proposition 1. Ranks of independent FNs by Integral of Means and Yuan’s ranking methods coincide.

Taking into account Proposition 1, the following statement was also proved in [60].

Proposition 2. Ranking of dependent FNs by IM and Y ranking methods may differ.

This proposition means that implementation of IM and Y ranking methods within an FMCDA can result in different 
ranking of alternatives, as values of the generalized criterion of a chosen FMCDA model are dependent FNs (see, e.g., 
Eqs. (30), (31), (38)).

The use of SFA for assessing expressions with dependent FNs can lead to the overestimation problem, subsection 
2.3. To overcome the overestimation when the expression contains dependent variables, the Transformation Method(s) 
(TMs) can be used [30,31]. TMs are briefly revised below.

Let f : Rn → R be a real function, and propagation of fuzziness by a function f (x1, . . ., xn) is implemented, 
i.e., instead of real numbers xi , FNs Zi are used, and fuzzy extension function, f (Z1, ..., Zn), is considered with 
application of the extension principle (1) [55,64]. The goal of TMs is a numerical determination of FN Z, Z =
f (Z1, ..., Zn), using an appropriate number M of α-cuts (for the same α), Zi

α, for each FN Zi = {[Ai
α, Bi

α]}.

1. If function f (x1, ..., xn) is monotonic for each xi, i = 1, ..., n, in segment Ui = [Ai
0, B

i
0], that is, for differen-

tiable functions, ∂f/∂xi does not change its sign in the given segment Ui for fixed values of all other variables in 
corresponding segments, RTM (Reduced TM) is implemented: for each α-cut, Zi

α , values Y = f (X1, ..., Xn)

are determined for all combinations {X1, ..., Xn}, where Xi is one of the marginal points of Zi
α , i.e., Xi ∈

{Ai
α, Bi

α}, with subsequent assessing minimal and maximal values of Y to form α-cut Zα = [Aα, Bα] of FN 
Z = f (Z1, ..., Zn).

2. If function f (x1, ..., xn) is not monotonic for each xi in segment Ui , GTM (General TM) is used: for 
each α-cut, values Y = f (X1, ..., Xn) are determined for all combinations {X1, ..., Xn}, where Xi is one 
of the Nα points in the segment [Ai

α, Bi
α]; for this, segment [Ai

α, Bi
α] is subdivided for Nα − 1 inter-

vals, in accordance with a specific algorithm, by the points C1, ..., CNα−2, i.e., Xi ∈ {Ai
α, C1, ..., CNα−2, Bi

α}; 
then minimal and maximal values of Y for forming α-cut Zα = [Aα, Bα] are found. Let’s stress that RTM 
may also be used (as an approximation, using extended number of α-cuts) in this case too. However, in 
both cases 1 and 2, the special algorithm for organizing cycles for α-cuts from α = 1 to α = 0 is imple-
mented.

3. In the general case, function f (x1, ..., xn) can be monotonic for some variables xi in segments Ui, i = 1, ..., n1, 
and non-monotonic for other variables in their segments. In this case, to diminish number/time of computations, 
instead of GTM, an ETM (Extended TM) can be used: for “monotonic variables” xi , RTM is used, for remaining 
variables, GTM is implemented.

4. In some cases, Problem Specific ETM (PSETM) can be used: the points C1, ..., Ck , indicated in item 2 above, are 
chosen purposefully for each α-cut, taking into account the properties of function f (x1, ..., xn) under considera-
tion.

With the increase of the number of alpha-cuts M and correct implementation of TMs, the estimated fuzzy number 
Z(M) tends to the proper value Z = f (Z1, ..., Zn) in accordance with the extension principle. Taking into account 
this comment, the result of determining function of FNs with the use of TMs is called hereafter as proper assessment 
despite an approximation due to the use of a finite number of α-cuts during the computing of Z(M).

Thus, approximate models (through propagating TrFNs for all computations with the use of α-cut for α = 1 and 
corresponding segments for α = 0), models based on SFA with M α-cuts (M ≥ 15), and models with the use of 
more complicated (more resource and time consuming) computational algorithms based on TMs along with the three 
ranking methods form the set of FPROMETHEE-I/II models with different complexity, which have been stated in the 
title and in the introduction to this paper.
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The use of SFA and TMs for implementation of FPROMETHEE-I/II models with ranking methods CI, IM, and Y 
is considered in section 3.

2.5. PROMETHEE-I/II methods and their fuzzy extensions

In this subsection, ordinary/classical PROMETHEE-I/II methods are revised, and their existing fuzzy extensions 
are briefly reviewed.

PROMETHEE-I/II [7,9] belong to the class of outranking MADM methods (Multi-Attribute Decision Making 
methods, when a finite number of predefined alternatives is considered). Among the PROMETHEE family [8,27], 
PROMETHEE-I/II methods are the most spreed. Different variants of PROMETHEEs methods along with the full list 
of PROMETHEEs’ publications can be found in [2,6,27] and [44].

PROMETHEE-I/II methods can be presented through implementation of the following steps.

1. Forming the set of alternatives A = {ai, i = 1, ..., n} and the set of criteria C = {Cj , j = 1, ..., m}.
2. Forming the performance table with criteria values, cij , for alternative ai and criterion Cj , i = 1, ..., n, j =

1, ..., m.
3. Assigning weight coefficients, wj , for criteria Cj , j = 1, ..., m, based on one of the existing approaches [2,9]; 

weight coefficients are often normalized as follows:

0 < wj < 1,

m∑
j=1

wj = 1 (19)

4. Setting preference function for each criterion Cj , fj (x), fj (x) ∈ [0, 1], and evaluating the intensity of preference 
of alternative ai over alternative ak , Pj (ai, ak), based on the difference of corresponding criterion values:

Pj (ai, ak) = fj (cij − ckj ) (20)

j = 1, ..., m; i, k = 1, ..., n. According to the properties of preference functions used in PROMETHEE, if fj(x) >
0 then fj (−x) = 0. Thus, according to (20), from Pj (ai, ak) > 0 follows Pj (ak, ai) = 0. There are at least 
six types of preference functions, which are used in PROMETHEE [2,9], and the most demanded of them in 
applications are linear functions with q , p thresholds.

5. Assessing the preference index, P(ai, ak), which is the wighted average of the intensity of preference of alterna-
tive ai over alternative ak on all criteria:

P(ai, ak) =
m∑

j=1

wjPj (ai, ak) (21)

6. Assessing positive, �+(ai), and negative, �−(ai), outranking flows for alternative ai, i = 1, ..., n:

�+(ai) =
n∑

k=1

P(ai, ak) (22)

�−(ai) =
n∑

k=1

P(ak, ai) (23)

7. Ordering alternatives according to PROMETHEE-I method:
• Alternative ai (strongly) exceeds/outranks alternative ak , ai � ak , iff the positive flow for ai is not less than the 

positive flow for ak AND the negative flow for ai is not greater than the negative flow for ak, i.e.:

ai � ak iff �+(ai) ≥ �+(ak) AND �−(ai) ≤ �−(ak) (24)

wherein, at least one of the indicated above inequalities for flows �+ or �− is strong.
• Alternative ai is indifferent/equivalent to alternative ak iff their positive and negative flows, correspondingly, 

are equal:

ai ∼ ak iff �+(ai) = �+(ak) AND �−(ai) = �−(ak) (25)
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Fig. 2. Frequencies of fuzzy PROMETHEE publications with respect to years.

• If all three statements, ai � ak , ak � ai , and ai ∼ ak , are wrong, in accordance with the definitions above, then 
alternatives ai and ak are considered as incomparable.

8. Ranking alternatives according to PROMETHEE-II method:
• Assessing the net flow for each alternative ai, i = 1, ..., n:

�(ai) = �+(ai) − �−(ai) (26)

• alternative with higher net flow has higher rank:

ai � ak iff �(ai) > �(ak), ai ∼ ak iff �(ai) = �(ak) (27)

PROMETHEE-I can result, in the general case, in partial order of alternatives when there are incomparable ones. 
PROMETHEE-II provides complete order of alternatives.

PROMETHEE has been extended to its fuzzy versions starting from the year 2000 [24,26]. Extension of an MCDA 
method, including PROMETHEE, to corresponding fuzzy model consists in substitution of all or some of the cri-
teria values and weight coefficients by appropriate FNs (or linguistic variables), assessing the generalized criterion 
(or criteria, as for PROMETHEE-I) for each alternative through determining corresponding functions of FNs with 
subsequent ranking alternatives/FNs based on the use of a chosen ranking method. These questions are considered in 
details in section 3.

A literature review based on SCOPUS database yields 292 publications on fuzzy PROMETHEE (on Aug 1 2019). 
Frequencies of these publications with respect to years are illustrated in Fig. 2. Fuzzy PROMETHEE models are 
intensively used in various applied areas, and five the most popular among them are Computer science, Engineering, 
Mathematics, Decision sciences, Business and management [33].

Novel fuzzy sets are also actively used for creating corresponding versions of fuzzy PROMETHEE. In this 
direction, the following models have been developed: intuitionistic fuzzy PROMETHEE [3,43], hesitant fuzzy 
PROMETHEE [28,41], type-2 fuzzy PROMETHEE [11,15,16], and Pythagorean fuzzy PROMETHEE [17,18,65].

Advanced linguistic approaches, which implement heterogeneous frameworks by means of the fusion methods, 
including the use of 2-tuple linguistic values in pure linguistic PROMETHEE I/II models have also been developed 
and explored [13,19,23,29,32,45].

Despite developing new fuzzy PROMETHEE models based on the novel fuzzy sets, there are a range of problems 
concerning FPROMETHEE models with ordinary fuzzy sets, which require further deep research. Several problems 
in this direction, models of different complexity and their comparison (subsection 3.2 and section 5), and violation of 
the basic MCDA axiom by FPROMETHEE models (section 4), are explored in this contribution.

3. From PROMETHEE-I/II to fuzzy PROMETHEE-I/II

In this section, a general approach of transition from PROMETHEE-I/II to Fuzzy PROMETHEE-I/II (FPROMETHE
I/II) models is presented and discussed.
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Fig. 3. Linear preference function f (x), FNs Z and f (Z): μf (Z)(1) = 1, μf (Z)(0) = 0.28, lim
x→1−μf (Z)(x) = 0.82. (For interpretation of the 

colors in the figure(s), the reader is referred to the web version of this article.)

3.1. Fuzzy extension of PROMETHEE-I/II

Extension of PROMETHEE-I/II to corresponding fuzzy PROMETHEE-I/II (FPROMETHEE-I/II) models can be 
presented through fuzzy extension of the steps 1-8 of PROMETHEE-I/II implementation, reviewed in subsection 2.5.

1. Forming the set of alternatives A = {ai, i = 1, ..., n} and the set of criteria C = {Cj , j = 1, ..., m}.
2. Setting criteria values, cij , for alternative i and criterion j, i = 1, ..., n, j = 1, ..., m, with the use of FNs, Zij , of 

any type (in accordance with Definition 2).
3. Assigning weight coefficient, wj , for criterion Cj , j = 1, ..., m, using FNs of any type. In fuzzy models, weight 

coefficients wj are often considered in the segment [0,1]: supp(wj) ∈ [0, 1], however, normalization (19) does 
not have place in the general case.

4. Setting a real preference functions, fj (x), for each criterion Cj , fj (x) ∈ [0, 1], as for PROMETHEE-I/II and eval-
uating the (fuzzy) intensity of preference of alternative ai over alternative ak , Pj (ai, ak), based on the difference 
of corresponding fuzzy criterion values:

Pj (ai, ak) = fj (Zij − Zkj ) (28)

j = 1, ..., m; i, k = 1, ..., n. It should be stressed here that preference function fj(x) is considered here as a 
continuous one, otherwise, in the general case, fj (Z) can be a fuzzy quantity, which is not a FN. Taking into 
account this comment, in this contribution continuous monotonically increasing/decreasing preference functions 
f (x) for benefit/cost criteria with corresponding q, p thresholds are considered [2,9]. In the general case, both 
FNs, Pj (ai, ak) and Pj (ak, aj ), can differ from zero. Function fj (Z) can result in upper semi-continuous FN, 
Fig. 3, which can be effectively implemented in assessing functions of FNs through the use of SFA or TMs. 
Fig. 3 demonstrates also that assessing functions of FNs through consistent implementation of TrFNs within 
approximate computational process can lead to significant differences for output results in comparison with the 
proper determination (see Section 5).

5. Assessing the (fuzzy) preference index, P(ai, ak):

P(ai, ak) =
m∑

wjPj (ai, ak) =
m∑

wjfj (Zij − Zkj ) (29)

j=1 j=1
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6. Assessing positive, �+(ai), and negative, �−(ai), (fuzzy) outranking flows for alternative ai, i = 1, ..., n:

�+(ai) =
n∑

k=1

P(ai, ak) =
m∑

j=1

wj(

n∑
k=1

fj (Zij − Zkj )) (30)

�−(ai) =
n∑

k=1

P(ak, ai) =
m∑

j=1

wj(

n∑
k=1

fj (Zkj − Zij )) (31)

7. Ordering alternatives according to FPROMETHEE-I method:
• Alternative ai exceeds/outranks alternative ak according to a used model of FPROMETHEE-I with a ranking 

method R:

ai �R ak iff �+(ai) �R �+(ak) AND �−(ai) �R �−(ak) (32)

wherein, at least one of the indicated above inequalities for fuzzy flows �+ or �− is strong.
In contrast to defuzzification ranking method I (CI and IM), when values I (�+(ai)) and I (�−(ai)) are com-
puted and then compared according to (32), ordering FNs �+(ai) = �+

i and �−(ai) = �−
i by Yuan’s/Y 

ranking method is based on assessing differences �+
il = �+

i − �+
l , and �−

il = �−
i − �−

l , i, l = 1, ..., n. The 

indicated values �+/−
il can be computed with two different approaches using (30), (31):

�
+,O
il = (

m∑
j=1

wj(

n∑
k=1

fj (Zij − Zkj ))) − (

m∑
j=1

wj(

n∑
k=1

fj (Zlj − Zkj ))) (33)

or

�
+,T
il =

m∑
j=1

wj(

n∑
k=1

(fj (Zij − Zkj ) − fj (Zlj − Zkj ))) (34)

and, correspondingly:

�
−,O
il = (

m∑
j=1

wj(

n∑
k=1

fj (Zkj − Zij ))) − (

m∑
j=1

wj(

n∑
k=1

fj (Zkj − Zlj ))) (35)

or

�
−,T
il =

m∑
j=1

wj(

n∑
k=1

(fj (Zkj − Zij ) − fj (Zkj − Zlj ))) (36)

The meaning and difference of the O (Overestimation) and T (Transformation) models are discussed in subsec-
tions 2.3 and 2.4.

• Alternative ai is indifferent/equivalent to alternative ak:

ai ∼R ak iff �+(ai) ∼R �+(ak) AND �−(ai) ∼R �−(ak) (37)

• If all three statements, ai �R ak , ak �R ai , and ai ∼R ak , are wrong, in accordance with the definitions above, 
then alternatives ai and ak are considered as incomparable.

8. Ranking alternatives according to FPROMETHEE-II method:
• Assessing fuzzy net flow for each alternative ai, i = 1, ..., n:

�i = �(ai) = �+
i − �−

i (38)

According to (30), (31), �i can be assessed with two approaches:

�O
i = (

m∑
j=1

wj(

n∑
k=1

fj (Zij − Zkj ))) − (

m∑
j=1

wj(

n∑
k=1

fj (Zkj − Zij ))) (39)

or
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�T
i =

m∑
j=1

wj(

n∑
k=1

(fj (Zij − Zkj ) − fj (Zkj − Zij ))) (40)

For ranking alternatives by Y method, FNs �il = �i − �l are computed according to (38). The main two 
approaches for assessing �il are as follows: direct determination of �O

il as the difference of �O
i and �O

l

computed according to (39):

�O
il = �O

i − �O
l (41)

and, according to the second approach, based on the approaches similar to (34) and (40):

�T
il =

m∑
j=1

wj(

n∑
k=1

(fj (Zij − Zkj ) − fj (Zkj − Zij ) − fj (Zlj − Zkj ) + fj (Zkj − Zlj ))) (42)

• alternative with higher net flow (for a chosen ranking method R) has higher rank:

ai �R ak iff �(ai) �R �(ak), ai ∼R ak iff �(ai) ∼R �(ak) (43)

The approaches to assessing generalized criteria �+(ai) (30), �−(ai) (31) for FPROMETHEE-I, and generalized 
criterion �(ai) (38) for FPROMETHEE-II along with ordering alternatives based on the ranking methods under 
consideration are discussed in subsections 3.2.

3.2. FPROMETHEE-I/II: models with different complexity

Analysis of PROMETHEE Bibliographical Database [44] shows that there are no publications, where SFA or/and 
TMs are consistently implemented within an FPROMETHEE model for determining corresponding functions of FNs. 
Existing models are based on simplified computing functions of FNs with the use of Tr/TpFNs (or linguistic vari-
ables), and, in most cases, using CI ranking method, e.g., [4,13,21,25,40], and [48,50,51,66]. It should be stressed, in 
this contribution defuzzification is implemented only when comparing the output FNs within FPROMETHEE-I and 
FPROMETHEE-II with the use of defuzzification based ranking methods CI and IM.

In this subsection, different approaches for development of FPROMETHEE-I and FPROMETHEE-II models are 
considered based on the use of SFA and TMs and three ranking methods, CI, IM, and Y.

3.2.1. Different models for FPROMETHEE-I
For determining �+(ai) (30) and �−(ai) (31), the SFA may be implemented due to there is no overestimation 

when using SFA for these expressions (see also Remark 1).

1. Let I be ranking method CI or IM. The values I (�+(ai)) and I (�−(ai)), i = 1, ..., n, are assessed with subse-
quent implementing the decision rules (32) and (37) for ordering alternatives (in the general case, partial ordering). 
Corresponding models of FPROMETHEE-I are denoted hereafter as model FPISCI (that mens, FPROMETHEE-I 
with implementation of SFA for assessing all functions, and using CI ranking method) and model FPISIM.

2. The use of Y ranking method within FPROMETHEE-I can be based on determination of FNs �+,O
il and �−,O

il , 
or �+,T

il and �−,T
il in accordance with (33)-(36).

(a) In model with overestimation, FPIYO, SFA is implemented for assessing �+,O
il (33) and �−,O

il (35), and 
decision rules (32), (37), taking into account the property (14), are used for ordering alternatives.

(b) Consider the approaches to assessing �+,T
il (34) (�−,T

il , (36)). The basic part of Eq. (34) is the function

Fjk(Zij ,Zlj ,Zkj ) = fj (Zij − Zkj ) − fj (Zlj − Zkj ) (44)

This function can be considered as a fuzzy extension of the real function

Fj (x1, x2, z) = fj (x1 − z) − fj (x2 − z) (45)

Hereafter, to explore properties of different FPROMETHEE-I/II models, without loss of generality, benefit 
criteria are considered as an example; functions fj (x) are considered as linear or monotonically increasing 
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Gaussian preference functions with thresholds q = qj and p = pj . Thus, preference function, fj , is mono-
tonically increasing in interval (qj , pj ) and fj (x) = 0, x ≤ qj , fj (x) = 1, x ≥ pj . Function Fj (x1, x2, z) is 
monotonic in x1 and x2 and non-monotonic, in general case, in z. Thus, in accordance with subsection 2.4, 
item 3, ETM can be used to avoid overestimation when assessing (44) (RTM approach is implemented at each 
α-cut for FNs Zij and Zlj along with GTM for Zkj ).
However, taking into account the features of preference functions fj(x), Problem Specific ETM (PSETM, 
subsection 2.4, item 4) can be used. For this, when determining function Fjk(X1, X2, Z) (44) as the 
fuzzy extension of function Fj(x1, x2, z) (45), in addition to the left and right marginal points of each 
α-cut, ZL,α, ZR,α , the following points, zs

rv, r = 1, 2, v = L, R, s = q, p, are used provided that 
zs
rv ∈ (ZL,α, ZR,α): zs

rv = xrv − s (here, xrv is one of the marginal points of α-cut for FN Xr in accordance 
with RTM, subsection 2.4, item 1).

(c) Taking into account the property of function (45) and implementation of RTM for assessing left and right 
marginal points for α-cuts of FN Fjk = Fjk(Zij , Zlj , Zkj ) (44), FN Fj as a part of Eq. (34) is assessed based 
on SFA:

Fj =
n∑

k=1

Fjk (46)

(d) FN �+,T
il (34) is determined according to (46) with the use of SFA by the expression

�
+,T
il =

m∑
j=1

wjFj (47)

(e) A similar approach is implemented for assessing �−,T
il (36).

The described model for implementation of FPROMETHEE-I based on PSETM with ranking method Y is denoted 
as FPIYTE.

Summarizing the different approaches to estimating the function of FNs, the following models can be used within 
FPROMETHEE-I:

• Models FPISCI and FPISIM in accordance withe the item 1 of this subsection
• Model FPIYO according to item 2a
• Model FPIYTE based on the approaches presented in the items 2b-2e above
• FNs �+,T

il (34) and �−,T
il (36) can be estimated not only with the use of PSETM, but also approximated based on 

SFA and RTM; corresponding models are denoted as FPIYTO and FPIYTR.
• Consider also simplified approach, which is the most often used within FMCDA: weight coefficients and criteria 

values are considered as TrFNs (TpFNs can also be used based on such a simplified approach): all functions 
with TrFNs results in TrFNs. E.g., for monotonically non-decreasing function f (x) and TrFN Z = (a, b, c), 
FN f (Z) is approximated by TrFN (f (a), f (b), f (c)). Arithmetic operations with TrFNs result in TrFNs and 
are implemented through standard (approximate) procedures with TrFNs. For this approach, implementation of 
functions (30) and (31) results in TrFNs with their subsequent ranking by CI or IM that forms models FPITrCI 
and FPITrIM.

3.2.2. Different models for FPROMETHEE-II
General approaches to extension of PROMETHEE-II to FPROMETHEE-II were suggested by Eqs. (38)-(43). Tak-

ing into account the models of subsection 3.2.1, the following main models of FPROMETHEE-II can be highlighted.

1. Simplified approach for implementation of FPROMETHEE-II based on TrFNs when assessing all functions in 
Eq. (39) forms the models FPIITrFNsCI and FPIITrFNsIM. The following abbreviations are used in these no-
tations: FPII corresponds to FPROMETHEE-II; TrFNs means here that all functions within these models are 
approximated by TrFNs, CI and IM are corresponding ranking methods for ranking alternatives according to 
(43).
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2. Implementation of ranking methods CI and IM to Eq. (39) forms models FPIISOCI and FPIISOIM of 
FPROMETHEE-II; S means implementation of SFA for determining functions of FNs without taking into ac-
count that there are dependent FNs in the expression that leads to overestimation (O) when assessing FNs �O

i ; CI 
and IM are ranking methods.

3. A basic part of �T
i (40) is the expression

Fjk = Fj (Zij ,Zkj ) = fj (Zij − Zkj ) − fj (Zkj − Zij ) (48)

which can be considered as a fuzzy extension of function

Fj (x, z) = fj (x − z) − fj (z − x) (49)

Function fj (x) is non-decreasing one (as benefit criteria are considered without loss of generality), then Fj(x, z)
is monotonic in x and monotonic in z. Therefore, for proper assessing (48) RTM can be used. Proper estimations 
of F2,j (50) and �T

i (40)/(51) can be obtained using SFA:

F2,j =
n∑

k=1

Fjk (50)

and

�T
i =

m∑
j=1

wjF2,k (51)

Implementation of CI and IM for ranking of FNs �T
i (40)/(51) forms (proper) FPROMETHEE-II models FPI-

ITRCI and FPIITRIM (R means here the use of RTM method).
4. The use of ranking method Y within FPROMETHEE-II based on SFA for assessing expressions (39) and (41)

forms the model FPIIYO, which leads to overestimation (O) due to the presence of dependent FNs in correspond-
ing expressions.
The model FPIIYTO is based on the use of SFA for determining (42).

5. Implementation of Y ranking method along with the proper assessing all functions of FNs requires implementation 
of a TM for determining �T

il (42) for each pair of alternatives ai and al , i = 1, ..., n, l = 1, ..., n, i �= l. The basic 
part of expression (42) are functions FT

jk :

FT
jk = FT

jk(Zij ,Zlj ,Zkj ) = fj (Zij − Zkj ) − fj (Zkj − Zij ) − fj (Zlj − Zkj ) + fj (Zkj − Zlj ) (52)

This function is a fuzzy extension of the following real function:

FT
j (x1, x2, z) = fj (x1 − z) − fj (z − x1) − fj (x2 − z) + fj (z − x2) (53)

Function (53) is monotonic in both x1 and x2 and non-monotonic in z in the general case. Thus, for proper 
determining FT

jk(X1, X2, Z) = FT
jk(Zij , Zlj , Zkj ) (52), ETM can be used in this case: RTM is implemented for 

FNs Zij and Zlj , and GTM is used for Zkj .
However, taking into account the property of function FT

j (x1, x2, z) (53), Problem Specific ETM (PSETM) can 
be implemented (as it was done for proper estimating function (44)). Here, PSETM implies that apart from 
marginal points of α-cuts, ZL,α, ZR,α , for FN Z = Zkj , the following additional critical points, zst

rv, r = 1, 2, v =
L, R, s = q, p, t = 1, 2, are used provided that zst

rv ∈ (ZL,α, ZR,α): zst
rv = xrv + (−1)t s; here, xrv is one of 

the marginal points of α-cut for FN Xr in accordance with RTM, subsection 2.4, item 1, q = qj , p = pj are 
indifference and preference thresholds of preference function fj (x). �T

il (42)/(55) is then assessed with the use 
of SFA:

FT
j =

n∑
k=1

FT
jk (54)

and
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�T
il =

m∑
j=1

wjF
T
j (55)

The described model can be denoted as FPIIYTE. Implementation of RTM instead of PSETM for approximation 
of (42) forms a model FPIIYTR.

Thus, the following models of FPROMETHEE-II have been considered in this contribution:

• Model FPIITrFNsCI, FPIITrFNsIM (in accordance with the item 1 of this subsection)
• Models FPIISOCI and FPIISOIM (item 2)
• Models FPIITRCI and FPIITRIM (item 3)
• Models FPIIYO and FPIIYTO (item 4)
• Models FPIIYTR and FPIIYTE (item 5).

4. Violation of the basic axiom by FPROMETHEE-I/II models

In this section, the basic axiom (BA) for FMCDA models is formulated and analyzed for FPROMETHEE-I/II as 
an example. Violation of BA by FPROMETHEE-I/II models is demonstrated in subsection 4.1. An approach to fix 
this problem to avoid violation of BA is presented in subsection 4.2.

4.1. Basic axiom for FMCDA and its violation by FPROMETHEE models

Justified use of MCDA methods is based on fulfillment of some requirements/axioms (hereafter the term axiom is 
used). E.g., for additive MAVT method, the axiom of mutual difference independence should have the place to ensure 
the existence of an additive multiattribute measurable value function [27]. At the same time, for each MCDA method 
M, the following Basic Axiom (BA) is assumed: if alternative a exceeds alternative b in Pareto, then, according to the 
decision rule of the method M, alternative a should be not worse than alternative b.

In MCDA/FMCDA, for the ranking or choice multicriteria problem, the decision rule for a given MCDA/FM-
CDA model consists of assessing the value of corresponding generalized criterion (criteria) for each alternative with 
subsequent ranking (or selecting the “best”) of assessed values/alternatives by the used ranking method. E.g., for 
MAVT/FMAVT, the generalized criterion presents a generalized (overall) value, V (a), of alternative a [37,59]; for 
TOPSIS/FTOPSIS [10,61], a coefficient of closeness, CC(a), of alternative a is determined; for PROMETHEE-
II/FPROMETHEE-II, it is the net flow, �(a), for alternative a; however, for PROMETHEE-I/FPROMETHEE-I, the 
decision rule consists of the two generalized criteria: the positive flow, �+(a), and negative flow, �−(a), for alterna-
tive a. It should be stressed the indicated generalized criteria are benefit ones, except criterion �−(a), which is cost
one.

Consider the following definitions adjusted for FMCDA models.

Definition 6. Let cij be a criterion value of alternative ai for criterion j, j = 1, ..., m, i = 1, ..., n, and R is a method 
used for ranking of FNs. Alternative ai = (ci1, ..., cim) dominates alternative ak = (ak1, ..., akm) according to Pareto, 
ai �P(R) ak , if ai is at least as good as ak for all criteria, i.e., cij �R ckj for all benefit criteria {jb} and cij �R ckj for 
all cost criteria {jc}, and at least one of the indicated inequalities is strong.

The Basic Axiom for any FMCDA model M with the ranking method R, M(R), can be formulated as follows.

Definition 7 (Basic Axiom). If for a given ranking method R alternative a dominates alternative b in Pareto, a �P(R) b, 
then, according to the decision rule of an FMCDA model M(R), alternative a is not worse then alternative b: a �M(R)

b.

For FPROMETHEE-I, the BA, Definition 7, implies the following conditions for positive and negative flows:

if a �P(R) b then �+(a) �R �+(b) AND �−(a) �R �−(b) (56)
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Table 1
Performance table for FPROMETHEE-I/II models with rank-
ing methods IM and Y; q = 1, p = 5.

C1 C2 C3

A1 (0.5,3.5,4) (1,1,1.75) (0.5,1.5,1.5)
A2 (1,1,8.25) (0.75,1.25,1.5) (1,1,2)
A3 (0,2,6) (1,1.5,2) (1,1.5,2)
W (0.05,0.325,0.6) (0.6,0.7,0.8) 1

For PROMETHEE-II, fulfillment of the BA implies the following inequality for net flows:

if a �P(R) b then �(a) �R �(b) (57)

Before proceeding to exploring the BA for PROMETHEE-I/II, consider the axioms for fuzzy ranking methods, 
A1 − A7, [53,54] (with the denotations, adjusted to this paper: R is a method for ranking of FNs, F is the set of all 
FNs in accordance with Definition 2):

• A1 (reflexivity): For an arbitrary finite subset A of F and FN A ∈A, A �R A;
• A2 (antisymmetry): For an arbitrary finite subset A of F and (A, B) ∈ A2, if A �R B and B �R A, then A ∼R B;
• A3 (transitivity): For an arbitrary finite subset A of F and (A, B, C) ∈A3, if A �R B and B �R C, then A �R C;
• A4 (distinguishability): For an arbitrary finite subset A of F and (A, B) ∈ A2, if inf supp(A) > sup supp(B), 

then A �R B;
• A5 (absence of ranks reversal): Let S and S′ be two arbitrary finite subsets of F , in which method R can be 

applied; if A and B are in S
⋂

S′, then: A �R B on S′ iff A �R B on S;
• A6: for any FNs A, B and C in F , if A �R B , then A + C �R B + C;
• A7: for any FNs A, B and non-negative FN C in F , if A �R B , then AC �R BC.

Ranking methods IM and Y satisfy the axiom A6 and both do not satisfy the axiom A7; ranking by CI does not 
satisfy the axioms A6 and A7 [53,54].

An extended analysis of axioms A6 and A7 violation by the three ranking methods, IM, CI, and Y, have been 
elaborated in [60]. One of the results from that research is presented below. Here, F1 is a subset of FNs Z in F with 
supp(Z) ⊆ [0, 1].

Lemma 2. (Violation of Axiom A7 by ranking method Y) [60]. For any δ ∈ (0, 0.5) there exist FNs A, B , and C from 
the set F1 such that for Yuan’s preference relation RY , μY (B ≥ A) ≥ 1 − δ and μY (CA ≥ CB) ≥ 1 − δ.

Violation of axioms A6 and A7 by demanded in applications ranking methods allowed to put forward a conjecture 
about violation of the BA by FPROMETHEE-I/II models. In [60], violation of the BA by FMAVT and FTOPSIS 
models was proved.

Violation of the BA has been proved for all FPROMETHEE-I/II models indicated in subsection 3.2. In this paper, 
violation is presented, as an example, for four FPROMETHEE-I models (FPITrCI, FPISCI, FPIYO, and FPIYTE) and 
for two FPROMETHEE-II models (FPIIYTO and FPIIYTE).

Consider the following input data for analysis of multi-criteria problems by FPROMETHEE-I/II models.
Below, �+/−

i = �+/−(Ai).
Violation of BA for the chosen FPROMETHEE-I methods with the use of corresponding source data, Tables 1

and 2, is presented in Table 4: A1 �P(R) A2 for three ranking methods R, Table 3, and alternative A2 exceeds A1
according to FPROMETHEE-I model M: A2 �M A1.

For selected models of FPROMETHEE-II, violation of BA is presented by the following inequalities:
for FPIIYTO: μY (�1 ≤ �2) = 0.531, and for FPIIYTE: μY (�1 ≤ �2) = 0.55869.

When computing functions of FNs for indicated FPROMETHEE-I/II models, number of α-cuts Nα = 15 was used. 
To demonstrate that the output results do not depend on the number of α-cuts, Nα, the assessments with different 
numbers Nα were computed. The results of the BA violation by the most complex model, FPIIYTE, are presented 
below:
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Table 2
Performance table for FPROMETHEE-I/II models with rank-
ing methods CI; q = 3.5, p = 8; for FPITrCI model: q =
3, p = 10.

C1 C2 C3

A1 (2,8,9) (0.75,1.25,1.5) (1,1,1.75)
A2 (2,3,13.75) (1,1,1.5) (0.75,1.5,1.5)
A3 (0,2,6) (1,1.5,2) (1,1.5,2)
W (0.05,0.325,0.6) (0.6,0.7,0.8) 1

Table 3
Domination of alternative A1 under A2 in Pareto, A1 �P(R)

A2, for different ranking methods R.

CI IM Y

c11 � c21 6.33 > 6.25 2.875 > 2.813 0.51
c12 � c22 1.167 = 1.167 1.188 = 1.188 0.5
c13 � c23 1.25=1.25 1.25=1.25 0.5

Table 4
Violation of Basic Axiom for selected models of FPROMETHEE-I.

FPITrCI FPISCI FPIYO FPIYTE

�+
1 ≺ �+

2 0.1571 < 0.208 0.1921 < 0.2223 0.5652 0.5613
�−

1 � �−
2 0.113 > 0.0728 0.1289 > 0.07921 0.501 0.5124

μY (�1 ≤ �2) =: 0.558088 f or Nα = 10; 0.558338 f or Nα = 20; 0.558416 f or Nα = 40

Additional assessments of μY (�1 ≤ �2) for FPIIYTE with the number of α-cuts 41 ≤ Nα ≤ 55 demonstrate that 
value μY (�1 ≤ �2) is in interval (0.55836, 0.558423).

Thus, the following statement has been proved taking into account the results presented above.

Proposition 3. In the general case, when there are no restrictions on fuzzy criteria values and fuzzy weight coefficients, 
the basic axiom for FMCDA can be violated by FPROMETHEE-I/II models.

4.2. Can any additional requirement fix violation of the basic axiom by FPROMETHEE-I/II models?

Correct use of (classical) MCDA methods demands not only fulfillment of the corresponding basic axiom for a 
generalized criterion, but also (e.g., for MAVT/MAUT) some additional requirements (axioms) [27,37]. It seems nat-
ural that a justified application of MCDA models in uncertain/fuzzy environment should be accompanied, in general, 
with some additional requirements.

In classical MCDA (except MAUT, where distributed/random criteria values may be considered with subsequent 
transition to expected utility for generalized criterion), the used criteria values are well distinguishable (e.g., 5.4 > 3.0, 
0.35 > 0.2). Within FMCDA, the input criteria values with intuitively non-distinguishable FNs, as a rule, are not used. 
Distinguishability is also presented in one of the forms by axiom A4 for ranking methods [53], revised in subsection 
4.1.

An approach to distinguishability concept for FNs was suggested in [62] and elaborated in [60].

Definition 8. [62] Two FNs, Zi = {[Ai
α, Bi

α]} ∈ F , i = 1, 2, are distinguishable if one of them, say Z1, is weakly on 
the left of another one: Z1 � Z2, i.e.,

A1
α ≤ A2

α and B1
α ≤ B2

α ∀α ∈ [0,1] (58)

The set Z = {Z1, ..., Zn} is a set of distinguishable FNs (DFNs), if any two of them are distinguishable.
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Below, each of two FNs, Zi and Zj , i �= j , Zi and W , are considered as independent. The following properties of 
DFNs have the place [60].

Lemma 3. If Z1 � Z2 then Z1 � Z2 according to CI, IM , and Y ranking methods.

Lemma 4. Let Zi, i = 1, ..., 4, Z, and W , be FNs, W ≥ 0, and Z1 � Z2, Z3 � Z4, then Z1 + Z3 � Z2 + Z4, Z1 −
Z4 � Z2 − Z3, Z − Z1 � Z − Z2, (for Zi ≥ 0) WZ1 � WZ2, and (for Zi > 0) Z1/Z4 � Z2/Z3.

Lemma 5. Let Z1 � Z2, f1(x) and f2(x) be continuous monotonically non-decreasing and monotonically non-
increasing real functions correspondingly. Then, f1(Z1) � f1(Z2) and f2(Z1) � f2(Z2).

Lemma 6. Let FNs W and Z = {[Aα, Bα]} ∈ F , W ≥ 0, Bα ≥ 0 and Aα + Bα ≥ 0, α ∈ [0, 1], then WZ �Y 0.

Lemma 7. If Zi �Y 0, i = 1, 2, then Z1 + Z2 �Y 0.

Lemma 1 along with Lemmas 3-7 allows to prove the following statement.

Proposition 4. If for a multicriteria problem, for each criterion, admissible criterion values form a set of distinguish-
able FNs, the Basic Axiom is not violated by FPROMETHEE-I/II models.

Proof. Among the models of FPROMETHEE-I, subsection 3.2.1, consider here models with different approaches to 
fuzzy extension of PROMETHEE-I to FPROMETHEE-I: models FPISCI and FPISIM with proper assessing positive 
and negative flows for alternatives ai, i = 1, ..., n, �+(ai), �−(ai) with CI/IM ranking method, and models with 
the use of Y ranking method: FPIYO, which leads to overestimation of the output FNs (flows), and model FPIYTE. 
Models FPIIYO and FPIIYTE are considered as an example to prove this proposition for FPROMETHEE-II.

Let criterion values Zij , i = 1, ..., n, are DFNs for each criterion j, j = 1, ..., m, and alternative a1 dominates 
a2 according to Pareto for ranking method R: a1 �P(R) a2. Without loss of generality, consider all criteria as benefit 
ones. Then, Z1j � Z2j , j = 1, ..., m.

1. FPROMETHEE-I: Models FPISCI and FPISIM. According to Eq. (28), and taking into account Lemmas 4
and 5, Pj (a1, ak) = fj (Z1j − Zkj ) � Pj (a2, ak) = fj (Z2j − Zkj ), as Z1j − Zkj � Z2j − Zkj , and function fj (x)

is monotonically non-decreasing, j = 1, ...m, k = 1, ..., n. Then, from (29) and Lemma 4: P(a1, ak) � P(a2, ak), 
P(ak, a1) � P(ak, a2) and, from (30), (31), and Lemma 4, �+

1 � �+
2 and �−

1 � �−
2 , here �+

1 = �+(a1), �−
1 =

�−(a1). From the two last expressions and Lemma 3: �+
1 �R �+

2 and �−
1 �R �−

2 , where ranking method R is CI or 
IM. Thus, a1 �M(R) a2, where model M(R) is FPISCI or FPISIM.

2. FPROMETHEE-I: Model FPIYO. According to item 1 above, from Z1j �Z2j follows �+
1 ��+

2 and �−
1 ��−

2 . 
Then, from Lemma 3: �+

1 �Y �+
2 and �−

1 �Y �−
2 . The latest means, in accordance with decision rule (32), a1 �M a2

for model M=FPIYO.
3. FPROMETHEE-I: Model FPIYTE. Implementing Y ranking method implies assessing differences �+,T

il (34)

and �−,T
il (36). Consider below �+,T

12 :

�
+,T
12 =

m∑
j=1

wj(

n∑
k=1

(fj (Z1j − Zkj ) − fj (Z2j − Zkj ))) (59)

To implement Extended TM (ETM) for assessing �+,T
12 , consider a basic part (60) of the expression (59) with 

omitted index j , which is a fuzzy extension of a real function (45)

F(Z1,Z2,Zk) = f (Z1 − Zk) − f (Z2 − Zk) (60)

According to subsection 3.2.1, item 2, implementation of ETM to (60) (as well as to (59)) consists in the use of 
Reduced TM (RTM) to FNs Z1 and Z2, and General TM (GTM) to FN Zk .

Let Zi = {[Ai
α, Bi

α]}, i = 1, 2, k. According to subsection 2.4, implementing TM to expression (60) for the given 
FNs consists in finding the marginal points of real function (45), x1 ∈ [A1

α, B1
α], x2 ∈ [A2

α, B2
α], z ∈ [Ak

α, Bk
α], to 
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form the α-cut of FN F = F(Z1, Z2, Zk). For fixed α ∈ [0, 1], and taking into account that f is monotonically non-
decreasing (for benefit criterion), the right and left marginal points, FR and FL, of (60) are determined as follows:

FR = maxz(FR(z) = f (B1 − z) − f (A2 − z)) (61)

FL = minz(FL(z) = f (A1 − z) − f (B2 − z)) (62)

for z ∈ [Ak, Bk]. As Z1j � Z2j , B1 ≥ B2 ≥ A2, thus, as (non-negative) function f (x) is monotonically non-
decreasing, FR(z) ≥ 0. Correspondingly,

−FL(z) = f (B2 − z) − f (A1 − z) (63)

From (61) and (63), as B1 ≥ B2 and A1 ≥ A2, then FR(z) ≥ −FL(z) and maxFR(z) = FR ≥ max(−FL(z)) =
−minFL(z) = −FL; then FR + FL ≥ 0.

We proved that for FN F = {[FL,α, FR,α]} (60), FL,α + FR,α ≥ 0, α ∈ [0, 1]. Thus, taking into account Lemma 1, 
F �Y 0. Based on this result, the sequential use of Lemmas 7 and 6 for expression (59) allows to prove �+,T

12 �Y 0; 
the latest means, according to (14), �+

1 �Y �+
2 . Similar approach is used to prove that �−

1 �Y �−
2 . Thus, a1 �M a2

according to model M=FPIYTE.
4. FPROMETHEE-II: Model FPIIYO. According to item 1 above, from Z1j �Z2j follows �+

1 ��+
2 and �−

1 ��−
2 . 

Thus, according to Lemma 4, �1 = �+
1 − �−

1 � �2 = �+
2 − �−

2 , and, from Lemma 3: �1 �Y �2. This means, 
a1 �M a2 according to model M=FPIIYO.

5. FPROMETHEE-II: Model FPIIYTE. This model with Y ranking method along with the proper assessing func-
tions of FNs is based on determining difference of net flows �1 and �2 for alternatives a1 and a2 with the use of 
expression (42): �T

12 = �1 − �2,

�T
12 =

m∑
j=1

wj(

n∑
k=1

(fj (Z1j − Zkj ) − fj (Zkj − Z1j ) − fj (Z2j − Zkj ) + fj (Zkj − Z2j ))) (64)

Implementation of ETM for determining �T
12 is similar to model FPIYTE, item 3 above. For assessing basic com-

ponents of (64) for fixed j and α-cut, the right and left margin point of function (53), FR and FL, are assessed as 
follows:

FR = max(FR(z) = f (B1 − z) − f (z − B1) − f (A2 − z) + f (z − A2)) (65)

FL = min(FL(z) = f (A1 − z) − f (z − A1) − f (B2 − z) + f (z − B2)) (66)

As function f (x) is monotonically non-decreasing, it can be proved, similarly to Eqs. (61), (62), and (63) that FR +
FL ≥ 0 (for each α ∈ [0, 1]). Based on Lemmas 1, 7, and 6, as in item 3 above for model FPIYTE, we prove that for 
expression (64), �T

12 �Y 0 and, according to (14), �1 �Y �2. The latter means alternative a1 exceeds alternative a2
according to model M=FPIIYTE: a1 �M a2.

Thus, we proved that for different models FPROMETHEE-I/II in the case of using distinguishable criterion values 
for each criterion of an FMCDA problem the BA is not violated. �
Remark 2. The use of fuzzy linguistic approaches within FPROMETHEE-I/II with setting criteria values based on a 
linguistic scale for each criterion with subsequent implementation of linguistic terms as FNs does not violate the basic 
axiom due to fuzzy linguistic terms are distinguishable FNs.

5. Comparison of different FPROMETHEE-II models

In this section, different FPROMETHEE-II models are compared by using Monte Carlo simulation. For this, rank-
ing alternatives by FPROMETHEE-II models with different levels of complexity, presented in subsection 3.2.2, are 
implemented at each Monte Carlo iteration, which forms a scenario for subsequent analysis. The following models 
are used within this analysis as an example:

• models with proper assessment of all functions: FPIITRIM, FPIITRIC, and FPIIYTE
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• models, where overestimation has the place: FPIISOIM and FPIISOCI; taking into account Eqs. (39), (41) and 
Proposition 1, rankings by models FPIISOIM and FPIIYO coincide, therefore only model FPIISOIM is considered 
below; and

• models with approximate computation based on TrFNs: FPIITrFNsIM and FPIITrFNsCI.

Below, one of the indicated models, M0, is considered as the basic model, and ranking alternatives by some of other 
FPROMETHEE-II model, Mp, p = 1, ..., p0, indicated above, are compared with ranking by the model M0. The 
following approach for comparing different FPROMETHEE-II models is implemented.

1. FMCDA problems with n = K alternatives and m = K criteria are analyzed, K = 4, 6; all criteria are considered 
as benefit ones.

2. Monte Carlo simulation is used to form scenarios of FMCDA problems for subsequent evaluation in accordance 
with the following steps.
2.1. Random number generator with uniform distribution in segment [0,1] is used;
2.2. At each Monte Carlo iteration, weight coefficients and criteria values are generated to form a scenario for 

evaluating by M0 and Mp models; hereinafter, p ∈ {1, ..., p0};
2.3. Weight coefficient w1 = 1 is assigned for criterion C1; to set the weight coefficient for each of other criterion 

Ck , in the general case, three points are generated, which form the TrFNs as a weight coefficient wk, k =
2, ..., K ;

2.4. Criterion value cik, i, k = 1, ..., K , is set as TrFN through generating, in the general case, 3 points;
2.5. For generating symmetric (isosceles) TrFNs for weight coefficients and criteria values, two points are gen-

erated, and the third point is taken in the middle;
2.6. A scenario with criteria values and weight coefficients are also generated with the use of linguistic variables 

(TrFNs) of a standard seven-term set [1,64] (using the discrete 7-points uniform distribution).
2.7. Parameters qj and pj of preference function fj (x), qj < pj , are generated at each iteration for criterion 

Cj , j = 1, ..., K , as two (different) points;
3. Ranks of alternatives for formed scenario are evaluated by models M0 and Mp;
4. The two or three groups of ranks {r} for alternatives are considered: g1 = {1}, g2 = {1, ..., K1}, and g3 =

{1, ..., K}, K1 ≤ K ; if K1 = K , two gropes of ranks, g1 and g2, are considered.
4.1. The number of distinctions in ranking alternatives by models M0 and Mp after implementation of iteration 

(t + 1) in the group g, g = g1, g2, g3, DISgp(t + 1) (DISgp(0) = 0), is assessed as follows. Let i(r; Ml)

be the number of alternative with the rank r, r = 1, ..., K , according to model Ml, l = 0, p. If at least for 
one r ∈ g, i(r, M0) �= i(r, Mp), then dgp(t + 1) = 1, otherwise, dgp(t + 1) = 0.

4.2. Eventually, the output result for iteration (t + 1) is DISgp(t + 1) = DISgp(t) + dgp(t + 1), g = g1, g2, g3.
5. Process of simulation is over when the number of iterations reaches maximum of the predefined value: t + 1 =

Nmax = N2 = 5000; intermediate results are also displayed for number of iteration N1 = 1000.

Remark 3. Degenerate cases can occur when several alternatives have the same rank (probability of such a case is 
close to 0). This can also have the place if alternatives ai and aj with close values of the generalized criterion, V (a)

(= �(a)), are considered as indifferent: |V (ai) − V (aj )| < ε for a predefined small ε > 0.
There are several approaches to deal with such cases taking into account the goal of this simulation (analysis of 

distinctions between models M0 and Mp). One of the approaches has been implemented in this contribution: if ranks 
of the same set of alternatives coincide for the group g1, then dg1,p(t + 1) = 0, otherwise, dg1,p(t + 1) = 1; if for the 
group g, g = g2, g3, ranks of the same set of alternatives also coincide according to item 4.1 above, dg,p(t + 1) = 0, 
otherwise, dg,p(t + 1) = 1.

The distinctions in ranking alternatives by models Mp, p ∈ {1, ..., p0}, in comparison with ranking by basic model 
M0 are presented below; for all scenarios, basic number of α-cuts M=15 is used.

According to computations, the distinctions presented in Table 6 significantly exceed corresponding distinctions 
(except for the first column) when input values are linguistic terms (item 2.6), Table 5.
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Table 5
Relative frequency of distinctions (%) in ranking alternatives by indicated 
models in comparison with the basic model FPIITRIM for ranks 1/(1-4), 
K = 4, when using Linguistic Variables (item 2.6).

FPIISOIM FPIITrFNsCI FPIITrFNsIM FPIIYTE

N1=1000 0.4/2.7 6/15 4.6/12.7 2.3/8.2
N2=5000 0.43/1.5 5.84/17.2 3.7/11.4 2.2/8.3

Table 6
Relative frequency of distinctions (%) in ranking alternatives by indicated 
models in comparison with the basic model FPIITRIM for ranks 1/(1-4), 
K = 4, when using symmetric TrFNs (item 2.5).

FPIISOIM FPIITrFNsCI FPIITrFNsIM FPIIYTE

N1=1000 0.4/1.8 12.8/32.6 7.8/22.3 4.6/13
N2=5000 0.4/1.4 11.3/32.54 8.68/25.66 4/12.5

Table 7
Relative frequency of distinctions (%) in ranking alternatives by 
indicated pairs of models for ranks 1/(1-4), K = 4, when using 
Linguistic Variables (item 2.6).

FPIITRCI-FPIITRIM FPIISOCI-FPIISOIM

N1=1000 5.6/14.4 5.1/13.8

Table 8
Relative frequency of distinctions (%) in ranking alternatives by 
indicated pairs of models for ranks 1/(1-4), K = 4, when using 
symmetric TrFNs (item 2.5).

FPIITRCI-FPIITRIM FPIISOCI-FPIISOIM

N1=1000 7/20.7 7.4/21.5

Table 9
Relative frequency of distinctions (%) in ranking alternatives by 
indicated models in comparison with basic model FPIITRIM for 
ranks (1-4), K = 4, when using symmetric TrFNs/non-symmetric 
TrFNs (items 2.3, 2.4, and 2.5).

FPIISOIM FPIITrFNsCI FPIITrFNsIM

N2=5000 1.4/1.5 32.5/48 25.7/39

Models FPIITRIM and FPIIYTE with an approach to proper assessing functions of FNs based on RTM, differ by 
ranking methods, correspondingly IM and Y. Tables 5 and 6 demonstrate that ranking by IM and Y of four dependent 
FNs, produced by the generalized criterion of FPROMETHEE-II (40), can distinct up to 13%.

The most significant distinctions when comparing with the basic model FPIITRIM have the place for approximate 
models, FPIITrFNsIM and FPIITrFNsCI – up to 33% for ranking problems and 12% for choice problems, Table 6. 
To analyze distinctions when ranking alternatives by CI and IM, additional comparisons of proper models, FPIITRCI 
and FPIITRIM, and models with the use of SFA, FPIISOCI and FPIISOIM, have been implemented, Tables 7, 8. 
These tables also confirm significant differences in ranking FNs/alternatives (up to 21%) by IM and CI ranking meth-
ods.

The distinctions in ranking alternatives by basic model M0=FPIITRIM in comparison with indicated ones when 
using symmetric and non-symmetric input FNs are presented in Table 9. According to this table, distinctions when 
using non-symmetric input TrFNs exceed ones for symmetric TrFNs.
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Table 10
Relative frequency of distinctions (%) in ranking alternatives by 
indicated models in comparison with the basic model FPIITRIM 
for ranks 1/(1-3)/(1-6) when using Linguistic Variables (item 2.6).

FPIISOIM FPIITrFNsCI FPIITrFNsIM

N1=1000 0.8/3.3/5 6.2/25.2/36.6 4.4/17.4/26
N2=5000 0.8/3.6/5.9 6.7/25.1/36.9 4.4/17/25.95

Table 11
Relative frequency of distinctions (%) in ranking alternatives by 
indicated models in comparison with the basic model FPIITRIM 
for ranks 1/(1-3)/(1-6) when using symmetric TrFNs (item 2.5).

FPIISOIM FPIITrFNsCI FPIITrFNsIM

N1=1000 0.6/3.9/5.9 11.4/43.9/59.4 9/35.6/49.1
N2=5000 0.88/4/6.2 12.6/43.4/59.6 9.2/34/48

Table 12
Relative frequency of distinctions (%) in ranking alternatives by indi-
cated models in comparison with the basic model FPIITRIM for ranks 1 
and (1-4) when using symmetric TrFNs (item 2.5) with different numbers 
of α-cuts M, 15/30/40, and number of Monte Carlo iteration N2 = 5000.

FPIISOIM FPIITrFNsCI FPIITrFNsIM

Rank 1 0.52/0.5/0.5 11.6/11.6/11.6 8.4/8.4/8.38
Ranks (1-4) 1.36/1.34/1.38 31.8/31.6/31.6 25.2/25.1/25.1

Additional evaluation of scenarios with 6 criteria and 6 alternatives (K = 6) have been implemented to analyze 
dependence of distinctions on the dimension of MCDA problems. Corresponding results for three FPROMETHEE-II 
models are presented in Tables 10 and 11.

The subject of this section is, first of all, exploring the level of distinctions when ranking alternatives by different 
FPROMETHEE-II models. According to Tables 5-11, the largest distinctions in ranking alternatives when comparing 
the basic model, FPIITRIM, with the other models, listed in the table, has the place for FPIITrFNsCI model (approx-
imate assessing functions of FNs based on TrFNs and using ranking method CI): up to 60% for FMCDA problems 
with 6 alternatives, and up to 33% in the case of 4 alternatives (when input values are symmetric TrFNs); distinctions 
for the choice problem can exceed 10%. For other models, the relative frequency (statistical assessment of the proba-
bility) that a choice problem results in different alternatives is less then 0.1; such a probability does not exceed 0.07 if 
input values are linguistic variables (item 2.6).

For ranking problem, distinctions in ranking alternatives (in comparison with basic model FPIITRIM) grow with 
increasing dimension of the task, Tables 5, 6, and 10, 11, and can reach 30-60%. At the same time, for linguistic 
scenarios with the small numbers of criteria and alternatives (not more than six) corresponding distinctions can be up 
to 25-37%.

It should also be stressed here that for FMCDA problem of small dimension (number of alternatives and does not 
exceed 6) distinctions in ranking alternatives by two “related” methods, FPIITRIM and FPIISOIM may be consid-
ered as insignificant (when using symmetric TrFNs as input values) for choice problems and acceptable for ranking 
problems (correspondingly, probability of distinctions is about 0.01 and 0.06);

Assessments of all the scenarios in this section are based on the number of α-cuts M = 15. Additional assessments 
of scenarios for the numbers of α-cuts M = 15, 30, 40 for models with minimal, FPIISOIM, and maximal, FPI-
ITrFNsCI and FPIITrFNsIM, distinctions in comparison with the basic model, FPIITRIM, demonstrate insignificant 
differences for output values, Table 12.
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6. Discussion

In contrast to existing works on comparison of different MCDA methods, e.g., [12,22,35,36,52], in this contribution 
different FMCDA models of fuzzy extension for the specific MCDA models, PROMETHEE-I/II, are explored and 
compared. A natural question in such a situation is: “How different are these models concerning ranking alternatives?” 
One of the approaches to analysis of this problem is to explore the level of distinctions in ranking alternatives by the 
developed models. This approach is implemented in section 5.

According to Tables 5-11, the relative frequency (probability) that the outcome within a choice problem according 
to basic model differs from corresponding outcome by other FPROMETHEE-II models can be considered as accept-
able or insignificant in fuzzy environment both for linguistic and symmetric TrFNs as the input data. Some exceptions 
here are models with an approximate estimation of functions of FNs with the use of TrFNs, FPIITrFNsCI and FPI-
ITrFNsIM: for these models, differences within the choice problem in comparison with the (proper) FPIITRIM model 
can reach up to 13%.

At the same time, the probability of distinctions within the ranking problem should be considered as significant (13-
50%) in the general case and increasing with augmentation of the dimension of FMCDA problems. Small distinctions 
(for a small numbers of criteria and alternatives) for both choice and ranking problems for the basic model, FPIITRIM, 
and FPIISOIM (Tables 5-11, 0.4-6.2%) is due to overestimation problem that has the place when using FPIISOIM 
model.

The second problem within application of FPROMETHEE models is as follows: taking into account the level 
of complexity and distinctions in ranking alternatives, which of the model(s) can be recommended for multicriteria 
decision analysis of the real case studies in the fuzzy environment?

To the moment, as a rule, simplified FMCDA models are implemented based on operations with Tr/TpFNs (sub-
section 3.2). These models (e.g., FPIITrFNsCI, FPIITrFNsIM), are easily implemented, unlike complex models with 
more accurate (taking into account the extension principle) assessing functions of FNs. Models with an approach to 
proper assessing functions of FNs, e.g., FPIITRIM and FPIIYTE, may be considered as a consistent fuzzy extension 
of the FPROMETHEE-I/II method with the use of Integral of Means and Yuan’s ranking methods. However, in con-
trast to simplified models, proper models, especially FPIIYTE, require implementation of complex algorithms and are 
resource/time consuming.

When using different FMCDA models, e.g., FTOPSIS and FPROMETHEE-II, the distinctions in ranking alterna-
tives may be justified by conceptually different models for decision-making. However, in the case of variety of fuzzy 
extension models for one basic (e.g., PROMETHEE-II) model, input information as well as requirements from deci-
sion maker(s) and experts may be considered as the same, however, the “data processing motor” is different for each 
model, which leads to distinctions in output results and can affect the appropriate decision making. E.g., proper mod-
els, FPIITRIM and FPIITRCI, differ only by ranking methods (IM and CI), at the same time, distinctions of output 
results for these models within the choice/ranking problems can exceed 7/20%, Tables 7, 8.

At the moment, without further research in this direction, development and usage of FMCDA models, which are 
based on the same MCDA method, is under conception of “presumption of model adequacy”.

There is also the third problem, which is not explored in this paper but may be considered as important one 
for correct and reasonable examining the distinctions in ranking alternatives, presented in Tables 5-11: the level or 
the measure of distinctions in ranking alternatives by different methods. E.g., if for models M1 and M2, ranks of 
alternatives Ai, i = 1, 2, 3, are correspondingly as follows: A1 � A2 � A3 and A2 � A1 � A3, however, distinction 
between generalized criteria values for alternatives A1 and A2 is negligible according to the ranking method(s) of 
models M1 and/or M2. The approaches to exploring this problem can be based on the use of linguistic methods 
(e.g., distinguishes can be negligible, medium, or substantial), or/and on FRAA (Fuzzy Rank Acceptability Analysis) 
concept [62]), which provides a degree of confidence/fuzzy measure for the rank assigned to each alternative and can 
be computed by using different fuzzy preference relations.

Another problem explored in this contribution is violation of the Basic Axiom (BA) by FPROMETHEE-I/II models. 
It means there exist two alternatives, a1 and a2, such that a1 exceeds a2 in Pareto, a1 �P a2, and a2 exceeds a1

according to FMCDA model M, a2 �M a1 (Proposition 3). However, the use of distinguishable criteria values within 
FPROMETHEE, that is also a natural approach to the use of FNs in applications, does not result in violation of the 
BA (Proposition 4).



24 B. Yatsalo et al. / Fuzzy Sets and Systems 422 (2021) 1–26
In classical MCDA, the justified use of some MCDA methods is accompanied by the fulfillment of additional 
requirements [37,27]. Regarding FPROMETHEE-I/II, existing additional requirements for founded application of 
FMCDA models may also be considered as a natural within the FMCDA theory.

At the moment, authors do not assert that the use of distinguishable criteria values (distinguishable FNs) is the only 
approach to avoid violation of the BA. This problem need further research. However, authors put the conjecture that 
the use of distinguishable FNs as criteria values allows to avoid the violation of BA for all discrete FMCDA models.

7. Conclusions

In this contribution, the following results are presented for the first time:

- FPOMETHEE-I/II models of different complexity have been developed based on implementation of approximate 
and proper (close to proper with increase of the number of α-cuts) assessing functions of FNs along with several 
methods for ranking of FNs;

- Distinctions in ranking alternatives by different FPOMETHEE-II models have been explored based on Monte 
Carlo simulating multicriteria problems with fuzzy criteria values and fuzzy weight coefficients. It has been 
demonstrated that within multicriteria ranking problems the distinctions may be considered as significant;

- Violation of the basic axiom has been demonstrated for different FPROMETHEE-I/II models;
- An approach to fix violation of the basic axiom through the use of distinguishable FNs for criteria values has been 

suggested.

Further research of the problems discussed in this paper will include the exploration of fuzzy models of different 
complexity for various MCDA methods, including deeper analysis of the degree of distinctions in ranking alternatives 
using linguistic and other approaches.

Another direction of research is violation of the basic axiom by different FMCDA models and approaches to fix 
this problem.

Authors consider the indicated problems and corresponding study as important both with fundamental and applied 
points of view.
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