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Abstract—The evaluation of indicators has become increasingly
important in various domains, necessitating a comprehensive
approach to assess their significance and reliability. This paper
introduces a novel framework that addresses the challenges of
indicators evaluation by incorporating minimum cost consensus
(MCC) and fuzzy thresholds. The framework tackles three
key issues: experts’ preference modeling, the consensus among
experts, and acceptance/rejection conditions. By leveraging lin-
guistic preferences and the MCC model, the framework generates
collectively agreed opinions and manages disagreements whereas
fuzzy thresholds account for uncertainty and subjectivity, offer-
ing a flexible representation of acceptance criteria. Advantages
include closer alignment with experts’ thinking, consensual
indicators’ evaluation, and reliable fuzzy acceptance degrees.
Furthermore, the proposal is applied to a circular economy
context, demonstrating its effectiveness.

Index Terms—Group decision-making, minimum cost consen-
sus, fuzzy threshold, circular economy

I. INTRODUCTION

In recent years, the evaluation of indicators has gained
significant importance across various domains, including eco-
nomics, finance, environmental sciences, and social sciences
[1]-[3]. Indicators serve as valuable tools to measure and mon-
itor the performance, progress, and overall health of systems,
processes, or entities. However, assessing the significance and
reliability of these indicators often poses a challenge, as their
evaluation requires consideration of multiple factors, such
as consensus among stakeholders, cost implications, and the
inherent uncertainty associated with their measurements.

Researchers have addressed the evaluation of indicators in
multiple contexts from different approaches, most of them
based on expert knowledge. Moreno et al. [1] identified the
most relevant good governance nonprofit indicators to evaluate
the transparency in nonprofit organizations following a Best-
Worst method approach [4]. Nufiez et al. [3] developed a mea-
surement scale based on an initial set of 234 circular economy
(CE) indicators, obtained from a literature review and analysis
of company reports. In this case, a Delphi approach [5] was
used to select the most important CE indicators. In [6], Yang et
al. conducted a 2-rounds online survey to collect information

4% Luis Martinez
Dept. of Computer Science
University of Jaén
Jaén, Spain
martin @ujaen.es

3™ Rosa M. Rodriguez
Dept. of Computer Science
University of Jaén
Jaén, Spain
rmrodrig @ujaen.es

and evaluate the importance of the sustainable development
goals [7]. However, these approaches demand a lot of attention
from experts due to their long duration and complexity, which
could result in the attrition of experts and excessive costs.

Regardless of the evaluation mechanism used, three main
issues should be kept in mind in the indicators’ evaluation
process.

1) Experts preference modelling: the way in which experts
express their opinions is key to the correct evaluation
of indicators. It is quite common to ask experts to
evaluate indicators on the basis of numerical assessments
[1], [3]. However, it is sometimes very difficult for
experts to evaluate the importance of indicators with
precise numerical ratings. In that sense, the use of fuzzy
linguistic terms such as “important” or “unimportant”
may help experts to express their actual opinions [8].

2) Consensus among experts: when the acceptance or re-
jection of the indicators is based on the opinions of
several experts, disagreements may appear [9]. Making
decisions ignoring such disagreements may lead to un-
satisfactory results, thus, they should be smoothed out
to obtain agreed solutions.

3) Acceptance and rejection conditions: determine the
thresholds to accept or reject an indicator is key. How-
ever, in many cases, simple numerical thresholds may
be too rigid and fail to take into account the uncertainty
and subjectivity inherent in the evaluation of indicators.
A fuzzy definition of the thresholds [10] is able to
provide a more flexible and adaptable representation of
the acceptance criteria.

On this basis, this paper presents a novel framework that
aims to address the challenges of indicators evaluation by
proposing a comprehensive approach to evaluating indicators
based on minimum cost consensus (MCC) [11] and fuzzy
thresholds. First, the experts will be asked to provide their
opinions about the different indicators using fuzzy linguistic
terms. Then, an MCC model is proposed to estimate the
collectively agreed opinions for the group that achieves an
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acceptable level of agreement among experts. To carry out
computations with linguistic information in the proposed MCC
model, the 2-tuple linguistic model is used. This model is able
to carry out the computing with words processes [12], [13],
keeping the interpretability and precision of the results [14].
In addition, we leverage the power of fuzzy thresholds within
our framework to account for the inherent uncertainty and
imprecision often associated with indicator measurements. To
do so, we define a fuzzy threshold to determine the acceptance
degree for each indicator that accounts for both the collective
opinion on the importance of the indicator and the similarity
between the experts’ original opinions and the corresponding
adjusted preferences obtained from the MCC model.
To sum up, the main advantages of this proposal are:

o Linguistic preferences: experts’ opinions are modeled by
linguistic information, closer to their common way of
thinking.

o Consensual indicators’ evaluation: disagreements among
experts are managed to obtain a final selection of indica-
tors that satisfy all the members of the group.

o Fuzzy acceptance degrees: fuzzy acceptance thresholds
provide a more flexible and adaptable representation of
the acceptance criteria and, consequently, a more reliable
evaluation.

The remainder contribution is organized as follows: Section
II reviews some notions related to the proposal. In Section III,
a fuzzy framework to evaluate indicators is proposed. Section
IV applies the proposed framework in the selection of CE
indicators and compares it with a similar approach. Finally,
Section V draws conclusions and future works.

II. PRELIMINARIES

This section revises some basic concepts regarding, group
decision-making (GDM), consensus reaching process (CRP),
and the 2-tuple linguistic model.

A. Group Decision-Making and Consensus Reaching Pro-
cesses

GDM involves a collective effort to generate, evaluate, and
select the best course of action from a range of options

[15]. Tt capitalizes on the diverse knowledge, expertise, and
perspectives of individual group members to enhance the
quality of decisions. By pooling together various viewpoints,
GDM aims to achieve better outcomes, improve problem-
solving capabilities, and foster a sense of shared responsibility.

While GDM offers numerous benefits, it is not without
challenges that can impede the decision-making process, lead
to prolonged discussions, and hinder the achievement of
consensus. Addressing these challenges is crucial for effective
GDM, and this work focuses on the management of conflicting
opinions in GDM through CRPs.

CRPs are designed to guide groups towards a shared agree-
ment that reflects the collective opinion and maximizes group
satisfaction. These processes aim to achieve a balance between
individual preferences and the overall group objectives, per-
forming several steps (see Fig. 1). Two main CRPs approaches
have been studied in the specialized literature [9]:

1) CRPs with feedback process: these CRPs are usually
guided by a moderator who identifies the disagreements
among the DMs and ask DMs to change their initial
views for bringing their opinions closer and reaching a
higher level of agreement [16], [17].

Automatic CRPs: these CRPs are automatically super-
vised. In this case, the DMs are not asked if they want
to change or not their initial preferences to increase the
level of consensus in the group, but they are changed
automatically [11], [18]. This contribution is focused on
this kind of CRPs.

A CRP will end either when a desired threshold of consensus
(mo) is reached, which will be defined a priori, or when a
maximum number of rounds of discussion, also defined a
priori, have been carried out.

2)

B. 2-tuple linguistic model

The 2-tuple linguistic model [14] was developed to ad-
dress the limitations of classical linguistic computational ap-
proaches. It employs a continuous fuzzy representation of
linguistic information and a computational model capable of
performing symbolic precise computations, thereby avoiding
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approximations and achieving accurate linguistic results based
on the computing with words scheme [12], [13].

A 2-tuple linguistic value is represented as (s;,a) € S,
where s; is a linguistic term from a predefined set S =
{s0, 51, - .,sg} (with g being a fixed even number), and «
denotes the symbolic translation. The symbolic translation
« is a numerical value that indicates the shift in the fuzzy
membership function of s;. It is important to note that the
possible values for « in the 2-tuple linguistic value (s;, ) € S
are limited to the interval [—0.5,0.5[.

[705,05) Zf S; € {51,527...,8g_1}
a € 4[0,0.5) if si=so
[—0.5,0] if s =54

One notable feature of 2-tuple linguistic expressions is their
ability to be translated into a numerical value x within the
range of [0, g]. This translation facilitates the computational
processes by simplifying the calculations involved.

Proposition 1: [14] Let S = {so, ... s4} be a linguistic term
set. Then, the function Ag' :'S — [0, g] defined by

Agt(si,a) =i+a, ¥ (si,a) €S

is a bijection whose inverse Ag : [0,g] — S is given by

As(x) = (Sround(x), * — round(z)) V x € [0, g],
where round(-) is the function that assigns the closest integer
number ¢ € {0,...,g}.

Remark 1: Note that any linguistic term s; € S can
be represented as a 2-tuple linguistic value by considering

(Si, 0) €_s.

III. A FRAMEWORK TO EVALUATE INDICATORS BASED ON
MINIMUM COST CONSENSUS AND FUZZY THRESHOLDS

In this section, we present a framework designed to provide
a comprehensive methodology for evaluating indicators based
on the principles of MCC and fuzzy thresholds. By introducing
this framework, we aim to address the inherent challenges in
indicator evaluation, including experts agreement, similarity
considerations, and the uncertainty associated with measure-
ments. By leveraging MCC and incorporating fuzzy thresh-
olds, we offer a robust framework that enables a more nuanced
and context-sensitive evaluation, enhancing the effectiveness
of indicators assessment.

To facilitate the elicitation process, here we assume that
a group of experts, F {e1,€a,...,em} provide their
opinions over a set of indicators, I = {i1,i2,...,i,}, using
linguistic values. Therefore, let us consider a linguistic term
set S = {so,...,54} where ¢ € N is an even number
and experts’ opinions are modeled through a decision matrix
with 2-tuple linguistic values O € M, %, (S). The 2-tuple
linguistic representation allows performing computations with
linguistic information by using Prop. 1 and guarantees precise
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results. Thus, an automatic CRP based on MCC [19] is defined
as follows:
Ag*(oni)

min Y5 3 [Ag (ki) —
(o;ﬂ) 1=1,2,...,n

AE (Gi) = o Zk 1A
M.lfﬁggyAS@M%ﬁ¥( D>, i=1,2,....n
MCO)
where (o €]0, 1] is the consensus threshold, O € Myxn(S)
are experts’ adjusted opinions and G € s" represents the
group collective opinion computed by using the arithmetic
mean.

After applying this model, we obtain a collective preference
G € 5" such that for each indicator i, the collective value G;
is accepted by the members of the group up to the consensus
level pp. Now, for each indicator i € {1,2,...,n} we can
compute the average similarity between experts’ original and
modified opinions by using the formula:

Si _1——Z|A

In order to automatize the indicator selection process, we need
to apply some key rules for each indicator i:

s (oni)]-

Okz -

o If the collective preference G;/g is lower than a certain
threshold a € [0, 1], then the indicator ¢ must be rejected.
Additionally, the performance of an indicator ¢ is con-
sidered excellent if the value G;/g surpasses a threshold
b €]0, 1].

o If the average similarity S; is lower than a certain
threshold ¢ € [0,1], it will be discarded. It will be
considered good enough if S; is greater than a threshold
d €]0,1].

In this context, it is reasonable to assume that, if the collective
preference Ag'(G;)/g is within the interval ]a, b], the accep-
tance degree should be close to 0 when Ag'(G;)/g is close
to a, whereas it should be close to 1 if Ag'(G;)/g is close to
b. In the same way, when .S; €]c, d], its acceptance should be
close to 0 when S; is close to ¢, and close to 1 if S; is close
to d. To model this behavior, given 0 < ¢ < ¢ < 1, we can
consider the piecewise linear fuzzy number @ : [0,1] — [0, 1]
(see Fig. 2) defined by:

0 if 2 < ¢
Qpp(x) = £=% if ¢ <z <y Vo e[0,1].
1 if >

Now, using the product t-norm [20] and given 0 < a < b <1
and 0 < ¢ < d < 1, we can construct the fuzzy threshold
D ap),(c,ay : [0,1] x [0,1] = [0,1] as follows (see Fig. 3):

D(a,b),(c,d) (.'1773/) = Qa,b(m) . Qc,d(y) v T,y € [07 1]

Therefore, the acceptance degree of the i-th indicator can be
computed as:
i)/9,5i)-

Aoty ety = Diab).c.a) (A5 (G
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Fig. 3. Membership function of D(g.2,0.8),(0.3,0.7)

In that case, if either the collective preference Ag'(G;)/g is
lower than a or the similarity .S; is under ¢, the i-th indicator
is rejected. Additionally, the higher the collective preference
and the similarity, the higher the value of déa,b),(c, ) In the
case that simultaneously Agl(Gi) /g > band S; > d, then

déa,b),(c,d) =1L

IV. CASE STUDY: CIRCULAR ECONOMY INDICATORS
EVALUATION

This section applies the proposed framework to the evalua-
tion of CE indicators and shows its reliability and advantages.
To do so, we follow the case study introduced in [3] and
compare our results with the ones obtained from the former
proposal.

A. Background

The concept of CE has gained significant attention in recent
years as a sustainable alternative to the traditional linear eco-
nomic model [21]. It emphasizes the importance of reducing
waste, promoting resource efficiency, and fostering closed-
loop systems. While the CE offers numerous environmental
and economic benefits, assessing its progress and impact
requires the use of suitable indicators [22].

Measuring CE achievements serves multiple purposes [23].
Firstly, it provides a means to monitor the progress of or-
ganizations and institutions in transitioning towards circular

practices. By quantifying and analyzing key performance indi-
cators, stakeholders can assess the effectiveness of their efforts
and identify areas for improvement. Secondly, measuring CE
achievements enables benchmarking and comparison among
different entities, facilitating knowledge sharing and best
practices dissemination. Lastly, it allows policy-makers and
decision-makers to evaluate the effectiveness of CE policies
and interventions and makes informed decisions based on
empirical evidence.

Determining the appropriate dimensions and indicators for
measurement is currently a pressing concern for researchers.
However, a key challenge in these emerging fields is the
absence of pre-validated scales in the existing literature. As
a result, researchers must undertake the construction and
validation processes using various methods.

Recently, Nufiez et al. [3] developed a measurement scale
based on an initial set of 234 indicators obtained from a lit-
erature review and analysis of company reports and classified
them into 7 categories: energy, 3R’s, water management, waste
management, materials, emissions, and transition to CE. A
Delphi approach [5] was used to select the most important CE
indicators based on expert knowledge, resulting in a final set
of 54 indicators. The Delphi method is a CRP in which experts
participate in multiple rounds of questionnaires or surveys that
are administered and facilitated by a moderator. However, this
approach has several limitations:

o Long time horizon: it requires a long time to be completed

successfully.

o Attrition: participants may drop out because of the long

duration of the process.

« Financial cost: the longer the process, the higher the cost.

In the next section, we will replace the Delphi approach
used in Nuifiez et al. approach [3] by the proposed fuzzy
framework based on MCC and show how it can overcome
all the previous limitations and obtain very similar results
regarding the former. However, for sake of space, we will
focus only on the evaluation of 7 indicators belonging to the
category water management:
i1: Use of purified rainwater.
io: Environmental chemicals used in the process of treating

water and sewage.
i3: Fresh water consumption.
i4: Industrial water reuse ratio.
i5: Industrial, domestic, and ballast effluents.
16: Recycled and reused water.
i7: Water consumption per unit industrial production value.

B. Resolution

Firstly, 31 experts provide their preferences by using lin-
guistic terms. The fuzzy linguistic term set used is defined
as S = {sg : Very unimportant, sy : Unimportant, sy :
Fair,ss : Important, sy : Very important} and depicted
in Fig. 4. Table I shows the experts’ preferences. Notice,
the linguistic assessments have been transformed into 2-tuple
linguistic values with symbolic translation equal to 0 (see
Remark 1)
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TABLE I
EXPERTS’ PREFERENCES

Expert i1 19 13 i4 15 16 i7
e1 (s3,0.0) | (s3,0.0) | (s4,0.0) | (84,0.0) | (s3,0.0) | (s4,0.0) | (s3,0.0)
€2 (s3,0.0) ($4,0.0) | (s4,0.0) (54,0.0) | (s4,0.0) | (s4,0.0) (s4,0.0)
es3 (s3,0.0) | (s4,0.0) | (s4,0.0) | (s2,0.0) | (s2,0.0) | (s4,0.0) | (s3,0.0)
e4 (51,0.0) | (s1,0.0) | (s2,0.0) | (s3,0.0) | ($4,0.0) | (s4,0.0) | (s2,0.0)
es (s3,0.0) (54,0.0) | (s4,0.0) (s3,0.0) | (s3,0.0) | (s4,0.0) (s2,0.0)
e6 (s2,0.0) | (s3,0.0) | (s3,0.0) | (s2,0.0) | (s2,0.0) | (s3,0.0) | (s3,0.0)
er (s2,0.0) (s2,0.0) | (s3,0.0) (s2,0.0) | (s2,0.0) | (s3,0.0) (s3,0.0)
es (s3,0.0) | (s3,0.0) | (84,0.0) | (84,0.0) | ($4,0.0) | (54,0.0) | (s4,0.0)
€9 (51,0.0) | (s4,0.0) | (s4,0.0) | (s4,0.0) | (s3,0.0) | (s4,0.0) | (s3,0.0)
€10 (s4,0.0) ($4,0.0) | (s4,0.0) (54,0.0) | (s4,0.0) | (s4,0.0) (s4,0.0)
e11 (s3,0.0) | (s3,0.0) | ($4,0.0) | (54,0.0) | ($4,0.0) | (54,0.0) | (54,0.0)
e12 (54,0.0) | (s4,0.0) | (84,0.0) | (84,0.0) | (54,0.0) | (54,0.0) | (s4,0.0)
e13 (s3,0.0) (s2,0.0) | (s4,0.0) (s3,0.0) | (s2,0.0) | (s4,0.0) (s3,0.0)
€14 (s3,0.0) (s4,0.0) (54,0.0) (s4,0.0) (s3,0.0) (s4,0.0) (84,0.0)
eis (54,0.0) | (s4,0.0) | (84,0.0) | (84,0.0) | (54,0.0) | (s4,0.0) | (s4,0.0)
€16 (s4,0.0) (s3,0.0) | (s4,0.0) (54,0.0) | (54,0.0) | (s4,0.0) (s3,0.0)
e1r (s3,0.0) | (s4,0.0) | (s4,0.0) | (s3,0.0) | (s3,0.0) | (s4,0.0) | (s4,0.0)
e18 (2,0.0) | (s3,0.0) | (54,0.0) | (54,0.0) | (s3,0.0) | (54,0.0) | (s4,0.0)
€19 (s3,0.0) (s3,0.0) | (s3,0.0) (s3,0.0) | (s3,0.0) | (s4,0.0) (s3,0.0)
€20 (s2,0.0) | (s2,0.0) | (s4,0.0) | (s3,0.0) | (s2,0.0) | (s3,0.0) | (s4,0.0)
e21 (s3,0.0) (s3,0.0) | (s4,0.0) (s3,0.0) | (s2,0.0) | (s3,0.0) (s4,0.0)
€22 (54,0.0) | (s3,0.0) | (84,0.0) | (84,0.0) | (54,0.0) | (54,0.0) | (s4,0.0)
€23 (s5,0.0) | (s3,0.0) | (s2,0.0) | (s4,0.0) | (s3,0.0) | (s4,0.0) | (s2,0.0)
€24 (s4,0.0) (s4,0.0) | (s3,0.0) (54,0.0) | (s4,0.0) | (s4,0.0) (s3,0.0)
€25 (82,0.0) (82,0.0) (5270.0) (82,0.0) (s2,0.0) (82,0.0) (82,0.0)
€26 (s3,0.0) | (s3,0.0) | (s3,0.0) | (s3,0.0) | (s3,0.0) | (s3,0.0) | (s2,0.0)
ea7 (s4,0.0) (s3,0.0) | (s4,0.0) (84,0.0) | (s3,0.0) | (s4,0.0) (s2,0.0)
eas (s4,0.0) (s4,0.0) (s4,0.0) (s4,0.0) (4,0.0) (s4,0.0) (s4,0.0)
€29 (s3,0.0) | (s4,0.0) | (84,0.0) | (84,0.0) | (s3,0.0) | (s3,0.0) | (s3,0.0)
€30 (s1,0.0) (s1,0.0) | (s2,0.0) (54,0.0) | (s4,0.0) | (s3,0.0) (s3,0.0)
es1 (84,0.0) | (s3,0.0) | (s0,0.0) | (s4,0.0) | (80,0.0) | (s4,0.0) | (s2,0.0)

Very unimportant Unimportant Fair Important Very important

0.25 0.5 0.75

Fig. 4. Fuzzy linguistic terms set for assessments.

To smooth out the possible disagreements among experts,
we apply the MCC model. This model changes automatically
the initial experts’ preferences as less as possible to achieve
an acceptable level of agreement. In this experiment, it has
been fixed p9 = 85.

After obtaining the consensual opinions, the CE indicators
are evaluated. The acceptance conditions will be determined
by two aspects: (i) the average importance value obtained from
the experts’ preferences for each indicator, i.e., if the experts
evaluate a specific indicator with a low importance, then the
indicator will be directly refused, (ii) the cost of modifying the
experts’ preferences to achieve the consensus, i.e, if achieving
a consensus for a specific indicator implies to change a lot the
initial experts’ preferences and, thus, the resulting cost of the
MCC is quite high, we will refuse the indicator considering
that an excessive change over the experts’ preferences is not

realistic (in real situations experts are not receptive to modify
their opinions too much). Keeping in mind this, the next step
consists of defining the thresholds and the rules of acceptance
as follows:

R1 If the collective value is lower than a = 0.6, then
the indicator 7 must be rejected. On the contrary, if
the collective performance of 7 surpasses the threshold
b = 0.9, the indicator is considered excellent.

If the average similarity of the expert’ opinions over an
indicator 7 is lower than ¢ = 0.98, ¢ must be rejected.
On the contrary, the indicator ¢ will be considered good
enough is its average similarity is equal to the threshold
d=1.

Remark 2: Notice, the values of the thresholds have not
been assigned randomly, but they have been set according to
the acceptance conditions established in [3].

Taking account the previous rules, the consensual collective
preference is shown in Table II together its corresponding 2-
tuple linguistic value. In this case, no indicator presents a low
value according to the threshold a = 0.6, but one of them is
considered with an excellent performance (greater than b =
0.9), which is ig.

In addition, the average similarities for each indicator
(measured from the cost of modifying experts’ preferences)
between modified and original preferences are shown in Table
III. Note that the lowest similarity values according to the
threshold ¢ = 0.98 refer to the indicators 7, 73 and 5.

R2
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TABLE II
COLLECTIVE PREFERENCE

Indicator 11 12 13 I i5 i6 i7
Collective 0.75 0.767 0.889 0.878 0.75 0.928 0.782
2-tuple (s3,0.0) | (s3,0.068) | (s4,—0.443) | (s4,—0.489) | (s3,0.0) | (s4,—0.29) | (s3.0,0.128)
TABLE IIT TABLE V
AVERAGE OPINIONS’ SIMILARITY FOR EACH INDICATOR FUzZzY ACCEPTANCE DEGREES
Indicator [ 11 12 13 14 15 i6 17 Indicator 11 12 13 14 15 16 i7
Similarity l 0.972 l 0.984 l 0.973 l 0.993 l 0.972 l 0.999 l 0.983 Degree 0.0 | 0.135 | 0.0 | 0.617 | 0.0 | 1.0 | 0.108
Acceptance R A* R A R A R*

TABLE IV
CONSENSUS DEGREES

Indicator 71 12 13 14 15 16 7
Initial 0.823 | 0.831 | 0.814 | 0.842 | 0.819 | 0.892 | 0.831
Modified 0.85 0.85 0.85 0.85 0.85 0.89 0.85

The consensus degrees achieved by the experts for each
indicator have been shown in Table IV. Notice all of them
satisfy the consensus threshold condition g = 0.85.

Finally, Table V shows the decision about the acceptance
and rejection of the CE indicators. The indicators 41, i3 and
15 have been rejected according to the predefined rules, and the
remainder are accepted with different degrees of acceptance,
in which ¢ highlights with the maximum degree.

Note that the indicators that have been rejected using the
proposed framework are exactly the same as those that were
rejected in [3]. However, while this approach took months
to perform the indicators’ selection, our approach obtains the
same results in just a few seconds, demonstrating its potential.

V. CONCLUSIONS

In this contribution, we have presented a framework for the
evaluation of indicators, addressing the challenges associated
with their assessment. Such a framework introduces several
key advantages:

1) it models experts’ opinions using fuzzy linguistic terms,

allowing them to express their preferences in a manner
closer to their common way of thinking. This linguistic
preference modeling enhances the accuracy and reliabil-
ity of the evaluation process.
it facilitates the achievement of consensus among ex-
perts. By using the MCC model, we estimate the col-
lectively agreed opinion for the group, ensuring that the
final selection of indicators satisfies all members and
effectively addresses disagreements.
Fuzzy acceptance degrees through the use of fuzzy
thresholds are included. Considering the uncertainty
and subjectivity inherent in indicator evaluation, this
enables a more flexible and adaptable evaluation of the
acceptance criteria.

2)

3)

To demonstrate the effectiveness of this framework, it has been
applied to the selection of CE indicators and afterwards the
results have been compared with a similar approach which
uses Delphy method. The results showcased the advantages

of the proposed method, highlighting the importance of the
use of linguistic preferences, consensus-building, and fuzzy
acceptance degrees in indicator evaluation.

In future works, we will explore different aggregation
techniques to improve the MCC approach. Moreover, investi-
gating advanced linguistic models and incorporating semantic
analysis methods could enhance the representation and inter-
pretation of experts’ opinions. Additionally, the application
of the proposed framework to other domains and contexts
would provide valuable insights into its generalizability and
effectiveness.
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