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A B S T R A C T

With the significant advancements in communication technology, group decision-making (GDM) can now be
implemented online, allowing a large number of decision-makers (DMs) to participate concurrently. However,
current methods for large-scale group decision-making (LSGDM) are primarily suitable for 20 to 50 DMs,
and their effectiveness in scenarios involving thousands or even tens of thousands of participants has yet
to be fully validated. Furthermore, as the number of participants increases, the evaluation information
becomes increasingly diverse and complex. At the same time, the social networks associated with the DMs
typically become sparse, making information sharing and consensus building more challenging. In light
of these challenges, we develop two new methods based on cooperative games to effectively address the
challenges in super LSGDM. First, we propose a two-stage semi-supervised fuzzy C-means (FCM) clustering
method with trust constraints, which aims to address the issue of sparsity in relationships within large-
scale social networks. This method utilizes trust relationships as reliable resources and prior knowledge to
guide and supervise the clustering process. On this basis, we discuss three scenarios from the perspective
of cooperative games: (i) subgroup optimal consensus adjustments in non-cooperative situations, (ii) group
optimal consensus adjustments in cooperative situations, and (iii) subgroup optimal consensus adjustments
in cooperative situations. Subsequently, we view the consensus adjustment allocation as a cost cooperative
game problem and propose two new LSGDM consensus methods based on Nash Bargaining (NB) and Kalai–
Smorodinsky Bargaining (KSB). Finally, experiments on real datasets demonstrate the superiority and reliability
of our proposed LSGDM methods.
1. Introduction

In recent years, rapid advancements in blockchain and communica-
ion technologies have greatly facilitated the widespread involvement
f decision-makers (DMs) in day-to-day incident management, which is
ow becoming the norm (Gupta, Modgil, Bhattacharyya, & Bose, 2022).
raditional group decision-making (GDM) theories usually involve no
ore than seven DMs and are showing their limitations when faced
ith more complex modern problems (Chiclana, Herrera-Viedma, Her-

era, & Alonso, 2007; Goers & Horton, 2023; Panda, Modak, Basu, &
oyal, 2015). Consequently, large-scale GDM (LSGDM) has emerged
s a prominent research topic, attracting widespread attention from
cholars (Liu, Shen, Zhang, Chen, & Wang, 2015; Palomares, Martínez,
 Herrera, 2013; Rodríguez, Labella, Tré, & Martínez, 2018; Tong &
hu, 2023; Xu, Du, & Chen, 2015). Ding et al. (2020) formally defined
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LSGDM, describing it as a decision-making process that involves at
least twenty DMs. A core issue in LSGDM research is how DMs from
various domains with different knowledge backgrounds can achieve a
consensus (Urena, Chiclana, Melancon, & Herrera-Viedma, 2019). In
this regard, numerous researchers have proposed various LSGDM meth-
ods, including those based on social networks (Lesser, Naamani-Dery,
Kalech, & Elovici, 2017), information granularity (Zhang, Dong, &
Pedrycz, 2022), online reviews (Chen, Liu, Chin, Pedrycz, Tsui, & Skib-
niewski, 2021; Guo, Zhan, Kou, & Martínez, 2024), and behavioural
decision-making (Chao, Kou, Peng, & Herrera-Viedma, 2021; Shen, Ma,
Zhang, & Zhan, 2024). However, most of these studies involve groups
of only around 20 to 50 DMs. A recent survey by García-Zamora,
Labella, Ding, Rodríguez, and Martínez (2022) criticized this limitation,
emphasizing the need to test models with much larger groups, involving
ttps://doi.org/10.1016/j.ejor.2024.10.016
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housands or even tens of thousands of DMs in LSGDM. Thus, despite
ignificant advancements in the research of LSGDM, several critical

challenges remain to be addressed.
To effectively reduce the complexity of LSGDM problems, clus-

tering techniques are widely utilized to divide numerous DMs into
more manageable subgroups. This technique simplifies the decision-
making process by organizing DMs into several manageable decision
units (Meng, Tang, & An, 2023; Shen, Ma, & Zhan, 2023; Tang &
Liao, 2021). Traditionally, clustering methods have primarily relied
on factors such as opinion similarity, alternative ranking, preference
consistency, and conflict (Shen et al., 2024). However, with the ad-
vancement of e-democracy and social network analysis (SNA), social
relations have emerged as a reliable and effective clustering resource,
which are extensively applied in addressing LSGDM challenges. On
the other hand, since DMs tend to adopt recommendations from those
they trust, the introduction of social networks not only helps to reduce
conflicts but also improves the acceptance of advice (Liu, Zhou, Ding,
Palomares, & Herrera, 2019). For example, Liu, Jiao, Shen, Chen, Wu,
and Chen (2022) proposed a dual-path consensus feedback model based
on a hybrid trust network, which improves the handling of dynamic
trust relationships and the control of adjustment cost. Additionally, Li
et al. (2023) developed a two-stage consensus model that integrates
dynamic social networks and employs spectral clustering algorithms
to enhance the efficiency of coordination among DMs. Despite these
dvantages, it is important to note that this method generally works
est in smaller, closely-knit groups. In contrast, in some large-scale

citizen participation projects in public decision-making, there are fewer
direct interactions between individuals due to the large number and
ispersal of participants, resulting in more sparse social networks.
n this case, it is difficult for traditional community detection algo-

rithms to achieve effective dimensionality reduction due to network
parsity, computational difficulty, and constraints of cost and human re-

sources. Therefore, the application of these algorithms faces significant
challenges in the context of both large and sparse networks.

After dividing a large-scale DM group into several subgroups, these
subgroups are treated as independent decision-making units, thereby
simplifying LSGDM problems into a more manageable traditional GDM
framework (Wan, Xu, & Han, 2024). Subsequently, a consensus reach-
ing process (CRP) is employed to coordinate the opinions among sub-
groups to reduce divergences to an acceptable level for the group. When
the consensus criteria are not met, most LSGDM methods employ a
feedback iteration mechanism. However, Meng, Wang, Pedrycz, and
Tan (2024) have identified several shortcomings in this mechanism,
including insufficient quantification, excessive adjustments, high time
costs, and the absence of fair and rational explanations. In response
to these issues, some scholars have extended the application of op-
timal model methods in GDM to LSGDM. For instance, Rodríguez,
Labella, Nuñez-Cacho, Molina-Moreno, and Martínez (2022) developed
a comprehensive minimum cost consensus model (MCCM) suitable for
the circular economy sector, while Zhang, Dong, Zhang, and Pedrycz
(2020) explored the interactions between coordinators and DMs and
constructed a consensus model with maximum return adjustment and
minimum cost feedback. Compared to the feedback iteration mech-
anism, the optimized model mechanism demonstrates better perfor-
mance addressing the aforementioned issues, particularly alleviating
the first three deficiencies. Nevertheless, this mechanism also has limi-
tations, including insufficient consideration of individual DMs’ willing-
ness to adjust and the distribution questions of consensus adjustments.
Intuitively, as reported by Meng, Gong, and Pedrycz (2023), DMs often
prefer to preserve their own interests and are reluctant adjust their
initial opinions, tending to minimize any unnecessary changes.

In summary, while some studies have addressed questions such as
minimum consensus adjustments (Dong, Xu, Li, & Feng, 2010), selfish
behaviours (Meng, Gong, & Pedrycz, 2023), and fair adjustment (Du,
Liu, & Liu, 2022), the interactions among various DMs remain in-

sufficiently explored and require further investigation. Clearly, these g
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decision-making paradigms do not meet the complex needs of LSGDM.
Consequently, this study addresses this gap by exploring consensus
adjustment questions for DMs across various scenarios. Specifically, this
study aims to answer the following research questions:

(1) How can information from large-scale sparse social networks be
leveraged to address the dimensionality reduction problem?

(2) What strategies can be implemented to ensure the acceptability
of final decision outcomes?

(3) Is cooperation universally beneficial for participants, or there are
conditions under which it may fail?

(4) How can a fair consensus adjustment mechanism be designed to
allocate resources fairly among participants?

To address these issues, this study proposes two new consensus
methods for LSGDM based on optimization models and cooperative
ame theory. Firstly, we introduce a two-stage semi-supervised fuzzy

C-means (FCM) clustering method with trust constraints, which effec-
tively tackles the problem of dimensionality reduction failure caused by
sparse and incomplete social network data. Next, we explore consensus
adjustment strategies under decentralized and centralized decision-
making from the perspective of cooperative games, comparing the
ptimal consensus adjustment costs in cooperative and non-cooperative

scenarios. The results indicate that in certain independent decision-
aking contexts, participants may achieve consensus with lower ad-

justment costs, suggesting that cooperation may not always be the
optimal choice. To this end, we transform the consensus adjustment
allocation into a cost cooperative game problem, designing a strategy
that minimizes the total cost while ensuring a fair distribution of costs
among all participants. Overall, this study contributes significantly to
the existing theory and demonstrates its potential for practical appli-
ations. Specifically, the main innovations of this study are outlined
elow:

(1) We introduce a two-stage trust-constrained semi-supervised
earning mechanism that effectively addresses the questions of sparse
nd incomplete social network data in LSGDM. Notably, this method
ot only improves the quality of dimensionality reduction but also
nables flexible control over the role of trust information in clustering
hrough the adjustment of regularization parameters.

(2) We discuss optimal consensus adjustment strategies across three
ifferent scenarios. In these scenarios, the global minimum adjustment
ost reflects collective interests, while the minimum adjustments cost
nder non-cooperative and cooperative conditions correspond to the
hreat points and ideal points in cooperative negotiations, respectively.

(3) We establish a two-type MCCM that fuses non-cooperative and
ooperative strategies, and the mechanism effectively balances the
nterests of cooperative and non-cooperative parties. This method pro-
ides a vital innovation for the coordination of complex multi-party
nterests, and has the potential to be widely applied to other areas
nvolving multi-party competition and cooperation.

(4) We develop two new LSGDM consensus methods based on Nash
argaining (NB) and Kalai–Smorodinsky bargaining (KSB) theories.
hese methods optimize the process by which DMs achieve their con-
ensuses in both decentralized and centralized environments, thereby
nhancing decision quality and fairness.

To improve readability, Table 1 lists the definitions corresponding
o a number of abbreviations and symbols.

The main structure of this study is exhibited below: Section 2 first
ntroduces the basic concepts of SNA, LSGDM and FCM to lay the
heoretical foundations for this study. Section 3 describes in detail
he proposed two-stage semi-supervised FCM clustering method with
rust constrains. Building on these foundations, Section 4 explores
ptimal consensus adjustment strategies for subgroups and groups in
arious situations from the perspective of cooperative games. Section 5
hen reveals two LSGDM consensus methods based on cooperative

ames under fairness concern considerations. Section 6 demonstrates
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Table 1
Meaning of some abbreviations and symbols.

Abbreviation Meaning Symbol Meaning

GDM Group decision-making 𝑆 𝐺 The set of all subgroups
LSGDM Large-scale group decision-making 𝑆1 The set of consensus subgroups
DM Decision-maker 𝑆2 The set of non-consensus subgroups
SNA Social network analysis 𝛥ℎ Minimum adjustment cost for the subgroup 𝑆ℎ
FCM Fuzzy C-means 𝑊 𝐶 The set of subgroups willing to cooperate in 𝑆2
NB Nash bargaining 𝑁 𝐶 The set of non-cooperative subgroups in 𝑆2
KSB Kalai–Smorodinsky bargaining 𝑇 𝑃ℎ Threat point of the subgroup 𝑆ℎ
CRP Consensus reaching process 𝐼 𝑃ℎ Ideal point of the subgroup 𝑆ℎ
MCCM Minimum cost consensus model 𝑇 𝐶∗ Group minimum adjustment cost
w

Table 2
The different representation schemes for social network.

Graph theory Algebraic relation Sociometric matrix

𝑒1𝑅𝑒2, 𝑒1𝑅𝑒3, 𝑒1𝑅𝑒4;

𝑒1𝑅𝑒5, 𝑒2𝑅𝑒3, 𝑒2𝑅𝑒5;

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 1 1 1 1

1 − 1 0 1

1 1 − 1 1

1 0 1 − 1

1 1 1 1 −

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑒3𝑅𝑒4, 𝑒3𝑅𝑒5, 𝑒4𝑅𝑒5;

the practical application effects of these methods through a real case,
and sensitivity analyses of key parameters are conducted. Section 7
verifies the applicability and superiority of the new methods through
a comparative analysis and discussion. Section 8 elaborates on the
theoretical and practical significance of this study based on in-depth
analysis of the research results. At last, Section 9 summarizes the major
contributions of this study and explores potential directions for future
research.

2. SNA, LSGDM and FCM

In this section, we exhibit several key concepts related to SNA,
LSGDM and FCM.

2.1. Social network analysis (SNA)

A social network typically comprises DMs and their social relation-
ships, with a graphical representation constructed by synthesizing all
DMs relationships in the network. In particular, social networks based
on similar views or trust relationships are frequently utilized in LSGDM
scenarios. Previous research has indicated that social relationships
significantly influence the decision-making process, as DMs may be
influenced by close friends to adjust their preferences (Li, Kou, Li, &
Peng, 2022).

Definition 2.1 (Wu & Chiclana, 2014). A social network can be
epresented by a graph 𝐺 = (𝐸 , 𝐿), where 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑚} is the

set of nodes and 𝐿 =
{

𝑙𝑘ℎ ∣ 𝑘, ℎ = 1, 2,… , 𝑚} denotes the set of edges of
relationships between nodes.

Additionally, a social network can be depicted using a matrix 𝑇 =
(𝑡𝑖𝑗 )𝑚×𝑚, where an element of 1 in the matrix indicates the presence of
a connection between nodes and 0 indicates no connection. Table 2
shows three distinct representations of social networks: graph form,
algebraic relations, and matrix representation.

In social networks, centrally located nodes often represent active or
core members of the community, as these nodes are directly connected
to many other nodes. Degree centrality index, as one of the measures
of a node’s importance in a network, reflects the number of direct
connections a node has with other nodes.

Definition 2.2 (Wu & Chiclana, 2014). Suppose that 𝑇 = (𝑡𝑖𝑗 )𝑚×𝑚 is the

adjacency matrix associated with the social network. Then, the degree

3 
centrality index 𝐷 𝐶𝑘 of the node 𝑒𝑘 can be computed as follows:

𝐷 𝐶𝑘 = 1
𝑚 − 1

𝑚
∑

𝑘=1,𝑘≠ℎ
𝑡𝑘ℎ, (2.1)

where 𝑚 is the total number of nodes in the graph, and 𝑡𝑘ℎ denotes the
connection weight between the node 𝑒𝑘 and the node 𝑒ℎ.

Next, we define 𝐷 𝐶ℎ
𝜎(𝑝) to denote the 𝑝th largest degree centrality

index in the community 𝐶ℎ. This notation helps to clearly indicate the
position and importance of specific nodes when discussing the internal
structure of the community.

2.2. Large-scale group decision-making (LSGDM)

In the LSGDM problem, it is assumed that 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑚}
represents the set of DMs, who typically provide individual evaluation
information about alternatives in a clear numerical form, represented
by 𝑂 = {𝑜1, 𝑜2,… , 𝑜𝑚}. The weights of the DMs are denoted by 𝑊 =
{𝑤1, 𝑤2,… , 𝑤𝑚}, where 𝑤𝑘 ≥ 0 and ∑𝑚

𝑘=1 𝑤𝑘 = 1.
To reduce the complexity of LSGDM, clustering is often employed

to downscale DMs (Xu et al., 2015). Its primary aim is to segregate
DMs into subgroups so that those with similar opinions are clustered
together. This method simplifies the decision problem by treating each
subgroup as a distinct decision-making unit. Suppose the large-scale
DMs are divided into 𝑘 subgroups. The evaluation value of the ℎth
subgroup, denoted as 𝑟ℎ, is obtained by averaging the evaluations of
its members. Then, the consensus level 𝐶 𝐿ℎ of the subgroup 𝐶ℎ can be
calculated as follows:

𝐶 𝐿ℎ = 1 − |

|

𝑟ℎ − 𝑔|
|

, (2.2)

here 𝑔 represents the group opinion of the weighted average of all
subgroups.

Next, the group consensus level 𝐺 𝐶 𝐿 can be calculated as follows:

𝐺 𝐶 𝐿 = 1
𝑘

𝑘
∑

ℎ=1
𝐶 𝐿ℎ. (2.3)

Remark 2.1. Notably, Eqs. (2.2)–(2.3) simplify the computational pro-
cess and increase efficiency by dividing large-scale DMs into subgroups.
By managing subgroups, the entire decision-making process can be
observed and controlled at a higher level, enhancing the flexibility and
relevance of decision-making.

2.3. Fuzzy C-means (FCM)

As an unsupervised clustering method, FCM is regarded as a pow-
erful mining tool for exploring data structures in machine learning
(Cannon, Dave, & Bezdek, 1986). Fundamentally, it operates as a
segmentation algorithm that employs a flexible fuzzy segmentation
method. By incorporating fuzzy theory into cluster analysis, the FCM
algorithm uses the membership function to determine the classification
of data objects, allowing it to maintain the flexibility of the algorithm
while improving the accuracy of the classification.
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To summarize, the core objective of the FCM algorithm is to solve
n optimization problem that aims to compute a partitioning matrix
hich reflects the membership degree of the samples to the different

lusters. Formally, in the scenario of a given dataset 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑚}
nd with the total number of clusters predetermined to be 𝑘, the FCM
lgorithm achieves its core objective by defining the following specific
bjective function:
𝐦𝐢𝐧 𝐽 (𝑈 , 𝐶) = ∑𝑚

𝑖=1
∑𝑘

𝑗=1 𝑢
𝑚∗
𝑖𝑗 𝑑2𝑖𝑗

s.t.
{

0 ≤ 𝑢𝑖𝑗 ≤ 1, ∀ 𝑖 = 1, 2,… , 𝑚, 𝑗 = 1, 2,… , 𝑘,
∑𝑘

𝑗=1 𝑢𝑖𝑗 = 1, ∀𝑖 = 1, 2,… , 𝑚,
(2.4)

here 𝑚 is the number of data points, 𝑘 is the number of clusters, 𝑢𝑖𝑗
enotes the membership degree of data point 𝑥𝑖 to the cluster centre 𝑐𝑗 ,
nd 𝑚∗ is the fuzzification parameter usually taken as 2. Additionally,
𝑖𝑗 = ‖𝑥𝑖 − 𝑐𝑗‖ represents the Euclidean distance from the data point 𝑥𝑖
o the cluster centre 𝑐𝑗 .

By applying the constraints of membership and optimizing the
bjective function using the Lagrange multiplier method to solve for
nd set the partial derivatives of the membership and cluster centres to
ero, the update formula for the membership is derived as follows:

𝑢𝑖𝑗 =
1

∑𝑘
𝑙=1

( 𝑑𝑖𝑗
𝑑𝑖𝑙

)
2

𝑚∗−1

. (2.5)

Analogously, the update formula for the clustering centre 𝑐𝑖 is as
follows:

𝑐𝑖 =

∑𝑚
𝑗=1 𝑢

𝑚∗
𝑖𝑗 𝑥𝑗

∑𝑚
𝑗=1 𝑢

𝑚∗
𝑖𝑗

. (2.6)

The algorithm terminates under either of the following conditions:
a) the decrease in the objective function becomes insignificant, or the
agnitude of updates to the cluster centres falls below a predetermined

hreshold; (b) the maximum number of iterations is reached. These
echanisms ensure the algorithm halts either upon convergence to a

table solution or when reaching the computational limit.

. Two-stage semi-supervised FCM clustering method with trust
onstraints

Based on previous discussions, the inherent sparsity of large-scale
ocial networks may affect the effectiveness of traditional community
etection methods. To address this challenge, we propose a two-stage
emi-supervised FCM clustering method. The first stage aims to identify
otential groups within the social network, while the second stage
urther refines the group partitioning using a semi-supervised FCM
lustering method under trust constraints. The motivation and specific
teps of this method will be detailed below.

.1. Main motivations

As García-Zamora et al. (2022) have indicated, advancements in
igital technology now allow addressing super LSGDM questions in-
olving thousands of DMs. Consequently, research into integrating
SGDM methodologies with popular technologies is of significant im-
ortance. It must be emphasized that reliance solely on theoretical
odels and case analyses involving only 20–50 DMs is insufficient

o demonstrate the efficacy of proposed methods in practical applica-
ions. This is because if a model cannot maintain good performance
cross various scales and complex environments, its real-world adop-
ion becomes highly unlikely. In summary, although unsupervised and
upervised clustering methods have achieved significant research out-
omes, the challenges of managing LSGDM with a large number of DMs
emain inadequately addressed, including:

(1) The existing clustering and community detection algorithms
often overlook the phenomenon of cliques and known labels that
may exist prior to clustering.
4 
(2) Human and cost constraints in large-scale social networks hin-
der a comprehensive understanding of DMs’ social connections,
thereby making it challenging for traditional community de-
tection algorithms to accurately identify tight groups in sparse
networks.

(3) When extending decision-making to social network environ-
ments, trust relationships as reliable resources and a priori
knowledge for clustering and CRP, their roles in guiding and
supervising clustering have not been fully investigated.

In light of the aforementioned questions, this section introduces
 two-stage semi-supervised FCM clustering method with trust con-
traints, aimed at improving the effectiveness of classification manage-
ent and maximizing the utilization of decision-making information.

n the following, we implement the proposed method in two stages as
ollows:

• Stage 1: Community detection for sparse social networks using
Louvain algorithm to identify and tag groups with strong social
connections. (When the labels are known, there is a flexible
option to move directly to Stage 2)

• Stage 2: To apply semi-supervised FCM algorithm to use the data
labelled in the Stage 1 as supervised information, by adjusting
the objective function of the FCM algorithm so that it can achieve
supervision in the iterative process of clustering.

The execution process of the proposed two-stage clustering method
s exhibited in Fig. 1.

.2. Stage 1: Identification of potential groups in social networks

In the first stage of this section, the objective is to identify potential
roups within social networks, particularly when social connections
etween DMs are sparse or difficult to fully capture. To achieve this, the
tudy employed the Louvain algorithm for community detection, which
as demonstrated significant efficiency and accuracy in identifying
ightly-knit groups in large-scale networks. Notably, in certain practical
cenarios, the labels of these groups may already be known, allowing
 direct transition to the second stage.

Initially, we assume that 𝑚 DMs are classified into 𝑟 different
ommunities based on their trust relationships (Waltman & Van Eck,
013), with the clustering results denoted by 𝐶 = {𝐶1, 𝐶2,… , 𝐶𝑟}. In the
ontext of sparse social network structures, the clustering process may
over only a few or a single DM, leading to suboptimal clustering results
hen the expected dimensionality reduction effect is not achieved.
onsequently, this study opts to retain those small groups with tight
embership and significant size, treating them as known labels. To

ffectively identify key DMs in the community, this study introduces
 degree centrality index based on SNA techniques to identify nodes
hat may correspond to known labels.

During the potential group identification, our objective is to iden-
ify members of the social network who meet specific conditions. We
uppose that a potential group should meet the following two criteria:

(1) The community 𝐶ℎ in which the small group 𝐵ℎ is located has
 relatively large number of people, where 𝐵ℎ ⊆ 𝐶ℎ.

(2) The probability of being a central node should be higher for the
embers of the small group 𝐵ℎ than for the other members within the

ame community 𝐶ℎ.
Assume that 𝐵ℎ represents a potential small group, it must satisfy

he following conditions:

ℎ = {𝑒𝑗 ∣ 𝑒𝑗 ∈ 𝐶ℎ ∧ |𝐶ℎ| ≥ ⌈𝑚∕𝑟⌉ ∧𝐷 𝐶𝑗 ≥ 𝐷 𝐶ℎ
𝜎(𝑝) }, (3.1)

here 2 ≤ 𝑝 ≤ ⌈𝑚∕𝑟⌉, |𝐶ℎ| is the number of DMs within 𝐶ℎ and ⌈ ⌉ is a
eiling function, 𝐷 𝐶ℎ

𝜎(𝑝) denotes the 𝑝th largest degree centrality index
n the community 𝐶ℎ. 𝑚 is the total number of decision makers and 𝑟
s the number of initial clusters.

By identifying these eligible cliques and labelling them as members
elonging to the same class (i.e., the known labels), a solid foundation
s laid for the subsequent semi-supervised clustering process.
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Fig. 1. The execution process of the proposed two-stage clustering method.
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.3. Stage 2: Semi-supervised FCM clustering method

Over the past decades, FCM clustering algorithms have seen
idespread use in various fields due to their simplicity and effective-

ness (Shen, Pedrycz, Chen, Wang, & Gacek, 2019). However, traditional
FCM algorithms often fail to fully utilize the available prior knowledge
in certain application scenarios (Pedrycz, 1985). Therefore, this study
introduces a semi-supervised FCM algorithm that utilizes a small num-
ber of category labels as supervisory information, which is integrated
into the objective function of the FCM algorithm to achieve the super-
visory function in the clustering process. At this point, the objective
function of this semi-supervised FCM algorithm is defined as follows:

𝐦𝐢𝐧 𝐽 (𝑈 , 𝐶) =
𝑚
∑

𝑖=1

𝑘
∑

𝑗=1
𝑢𝑚

∗
𝑖𝑗 𝑑2𝑖𝑗 + 𝛼

𝑚
∑

𝑖=1

𝑘
∑

𝑗=1
(𝑢𝑖𝑗 − 𝑓𝑖𝑗𝑎𝑗 )𝑚

∗
𝑑2𝑖𝑗

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ≤ 𝑢𝑖𝑗 ≤ 1, ∀ 𝑖 = 1, 2,… , 𝑚, 𝑗 = 1, 2,… , 𝑘,
0 ≤ 𝑓𝑖𝑗 ≤ 1, ∀ 𝑖 = 1, 2,… , 𝑚, 𝑗 = 1, 2,… , 𝑘,
∑𝑘

𝑗=1 𝑢𝑖𝑗 = 1, ∀ 𝑖 = 1, 2,… , 𝑚,
𝑎𝑗 ∈ {0, 1}, ∀ 𝑗 = 1, 2,… , 𝑘,

(3.2)

where 𝛼 is a regularization parameter used to balance unsupervised
and supervised information. It is proportional to the ratio of the total
number of samples 𝑚 to the number of labelled samples 𝑞. That is, the
value of the parameter 𝛼 should be adjusted according to the proportion
𝑚∕𝑞 (Pedrycz & Waletzky, 1997). 𝐴 = (𝑎𝑗 )1×𝑚 represents a labelling
ndicator, where the value for the known label 𝑥𝑖 is 𝑎𝑖 = 1, and 𝑎𝑖 = 0
therwise, 𝑓𝑖𝑗 represents the membership degree of a labelled sample
𝑖 for 𝑐𝑗 .

Using the Lagrange multiplier method, the iterative expression for
he membership matrix is given by:

𝑢𝑖𝑗 =
1

1 + 𝛼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 + 𝛼
(

1 − 𝑎𝑗
∑𝑘

ℎ=1 𝑓ℎ𝑗
)

∑𝑘
ℎ=1

𝑑2𝑖𝑗
𝑑2ℎ𝑗

+ 𝛼 𝑓𝑖𝑗𝑎𝑗

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (3.3)

Analogously, the update formula for the clustering centre 𝑐𝑖 is
defined as:

𝑐𝑖 =

∑𝑚
𝑗=1 𝑢

𝑚∗
𝑖𝑗 𝑥𝑗 + 𝛼

∑𝑚
𝑗=1

(

𝑢𝑖𝑗 − 𝑓𝑖𝑗𝑏𝑗
)𝑚∗

𝑥𝑗
∑𝑚

𝑗=1 𝑢
𝑚∗
𝑖𝑗 + 𝛼

∑𝑚
𝑗=1

(

𝑢𝑖𝑗 − 𝑓𝑖𝑗𝑏𝑗
)𝑚∗ . (3.4)

The optimal solution for 𝐽 is obtained by iteratively computing and
applying Eqs. (3.3) and (3.4). A more detailed description of this
lustering process is available in Algorithm 1.

emark 3.1. It should be noted that this method is flexible and
he choice of parameters should be set according to specific decision-
aking needs. By reasonably adjusting the parameters 𝛼 and 𝑝, it is
5 
Algorithm 1: Two-stage semi-supervised clustering algorithm
Input: The initial evaluation value 𝑂 = {𝑜1, 𝑜2,⋯ , 𝑜𝑚}, the

adjacency matrix 𝑇 = (𝑡𝑘ℎ)𝑚×𝑚, the number of clusters 𝑘
and the parameters 𝛼 , 𝑝.

Output: The final clustering result: 𝑆 𝐺 = {𝑆 𝐺1, 𝑆 𝐺2,⋯ , 𝑆 𝐺𝑘}.
Step 1: Initialize each node 𝑖 as a separate community 𝐶𝑖;
Step 2: For each node 𝑖, consider moving it to the community

here all its neighbouring nodes 𝑗 are located and calculate the
hange in the degree of modularity 𝛥𝑄 ;
tep 3: This move is performed if moving the node 𝑖 to another
ommunity increases the degree of modularity, i.e., 𝛥𝑄 > 0;
tep 4: Repeat Steps 2-3 until the movement of all nodes no
onger increases the modularity;
tep 5: Based on the current division of communities, a new
etwork is established in which each community becomes a new
ode;
tep 6: Repeat Steps 2-4 on the new network until the modularity
o longer increases;
tep 7: Obtain the initial community division result:
= {𝐶1, 𝐶2,⋯ , 𝐶𝑟};
tep 8: The initial partitioning result 𝐶 is further filtered
ccording to the two conditions in Eq. (3.1) to identify potential
abelled groups, and then the labelling indicator 𝐴 = (𝑎𝑗 )1×𝑚 for
he labelled samples and the membership matrix 𝐹 = (𝑓𝑖𝑗 )𝑘×𝑞 are
erived;
tep 9: The data with label information is used for initial division
nd then the result obtained is used as the initial clustering centre;
tep 10: Calculate the new membership matrix 𝑈 and the new
lustering centre according to Eqs. (3.3) and (3.4);
Step 11: Calculate the objective function according to Eq. (3.2). If
he difference between the two times before and after is less than
he threshold or the maximum number of iterations is reached,

then the algorithm ends; otherwise, go to Step 10;
Step 12: Classification results are obtained based on the final

embership matrix;
tep 13: End.

possible to make full use of the labelled data while maintaining a good
generalization ability to the unlabelled data.

4. Optimal consensus adjustment strategy: A cooperative game
perspective

In the previous section, we have elucidated the solution to the
classification problem involving large-scale DM. Next, we will discuss
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he cost allocation problem of consensus adjustment in CRP. Currently,
lthough consensus methods based on feedback iterative mechanisms
nd minimum cost are widely adopted, they both exhibit different

limitations (Meng et al., 2024). For this reason, we propose a new
olution in this section from the perspective of cooperative games.

As mentioned earlier, some of the optimal model adjustments are
obtained in light of the assumption that participants would accept them
nconditionally. However, it is important to note that the adjustments
ecommended by these models may be difficult to accept when partic-
pants have more advantageous options available. Therefore, a more
onvincing and reliable strategy should take into account the possible
elfish or non-cooperative behaviour of all participants. Based on this,
he following three hypotheses are presented before proposing a new
ethod:

1. Participants tend to reject further cooperation and negotiation
when cooperation fails to provide significant benefits.

2. Although participants generally exhibit selfishness, they do not
want their selfish behaviours to be a hindrance to consensus
formation.

3. If the consensus adjustment programme is fair and reasonable,
all participants will accept it.

4.1. Subgroup optimal consensus adjustment in non-cooperative situations

Inspired by previous work (Ben-Arieh & Easton, 2007; Labella, Liu,
odríguez, & Martínez, 2020; Meng, Pedrycz, & Tang, 2022), this
ection explores the optimal consensus adjustment problem in the CRP
rom the perspective of subgroup independent decision-making in non-
ooperative situations. Assume that 𝑆1 and 𝑆2 represent the set of
ubgroups that has reached a consensus and the set of subgroups that

has not reached a consensus, respectively, where 𝑆1 ∩ 𝑆2 = ∅ and
𝑆1 ∪ 𝑆2 = 𝑆 𝐺. For the subgroup 𝑆 𝐺ℎ ∈ 𝑆2 that does not reach
a consensus, we assume that this subgroup achieves a consensus by
minimizing the adjustment cost while keeping the initial opinions of
all other DMs unchanged. To quantify the minimum adjustment cost
required for each subgroup under independent decision-making, we
construct the following model:

𝐌𝐨𝐝𝐞𝐥 𝟏 ∶

𝐦𝐢𝐧 𝑇 𝑃ℎ = 𝑐ℎ ||𝑟ℎ − �̄�ℎ||

s.t.
⎧

⎪

⎨

⎪

⎩

𝐶 𝐿ℎ = 1 − |

|

�̄�ℎ − �̄�|
|

≥ 𝜃 , (𝑎)

�̄� = 𝜆ℎ �̄�ℎ +
∑𝑚

𝑙=1,𝑙≠ℎ 𝜆𝑙𝑟𝑙 , (𝑏)

0 ≤ �̄�ℎ ≤ 1, (𝑐)

where 𝑟ℎ and �̄�ℎ denote the original and adjusted opinions of the
subgroup 𝑆 𝐺ℎ, respectively, 𝜆ℎ and 𝑐ℎ denote its weight and unit
adjustment cost. 𝐶 𝐿ℎ denotes the consensus level of the subgroup 𝑆 𝐺ℎ
after the opinion adjustment, �̄� is the adjusted group opinion, and 𝜃 is
the consensus threshold. The predefined consensus threshold should be
adjusted according to the specific problem, such as using 0.9 for critical
decisions and 0.8 for urgent situations (Tang, Zhou, Liao, Xu, Fujita, &
Herrera, 2019).

In the above model, the constraint (𝑎) ensures that the subgroups
are able to meet the desired consensus level after adjustment. The
onstraint (𝑏) details the method of aggregating group opinions, and
he constraint (𝑐) limits the scope of opinion adjustment to ensure that
he adjusted opinions are within a reasonable range. In short, Model

determines the minimum adjustment cost that each subgroup needs
o incur in order to be consistent with the initial opinions of the other
ubgroups, provided that the consensus threshold is reached.

From the perspective of cooperative game theory, Model 1 can be
iewed as a strategy for optimizing the interests of subgroups, revealing
he minimum gains that each subgroup can achieve in the absence of
ooperation. Specifically, the threat point represents the adjustment
ost required for each subgroup to reach a consensus under conditions
f complete independence and no cooperation or compromise. The
6 
hreat point is a core concept in game theory, defined as the lowest ac-
eptable outcome that participants in a negotiation can independently
hoose, and has a significant impact on the negotiation process and
utcome (Zhang, Xiao, Bu, Yu, Niyato, & Han, 2018). Furthermore, for
he subgroup 𝑆 𝐺ℎ ∈ 𝑆1 that has already reached a consensus, it can
e easily deduced that the adjustment cost indicated by Model 1 is 0.
his indicates that these subgroups in 𝑆1 have maximized their own

nterests based on the achieving consensus.

heorem 4.1. Model 1 has a unique globally optimal solution.

roof. Firstly, as the constraints (𝑏) and (𝑐) are both linear constraints
nd the absolute value constraint (𝑎) can be equivalently transformed
o a linear constraint, the feasible domain of Model 1 forms a convex
et. Additionally, the objective function of Model 1 is strictly convex,
stablishing it as a convex programming model. Moreover, it is appar-
nt that �̄�ℎ = 𝑔 constitutes a solution of Model 1, demonstrating that
he feasible set of Model 1 is non-empty. Simultaneously, the objective
unction confirms that the lower bound of Model 1 is zero. Therefore,
ccording to the principles of convex optimization, it is deduced that
here exists a unique globally optimal solution for Model 1. □

.2. Group optimal consensus adjustment in cooperative situations

In a cooperative situation, information from all participants is aggre-
ated to a coordinator or decision-making body, which makes decisions
n a unified manner. The advantage of this mechanism is that it
nables global optimization, coordinates the interests of all parties and
voids wasted resources. The following model allows us to calculate
he minimum total cost required to achieve group consensus when all
ubgroups participate in communication and cooperation:

𝐌𝐨𝐝𝐞𝐥 𝟐 ∶

𝐦𝐢𝐧 𝑇 𝐶 =
∑

𝑆 𝐺ℎ∈𝑆2
𝑐ℎ ||𝑟ℎ − �̄�ℎ||

s.t.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐺 𝐶 𝐿 =
∑𝑘

ℎ=1 𝐶 𝐿ℎ∕𝑘 ≥ 𝜃 , (𝑎)

𝐶 𝐿ℎ = 1 − |

|

�̄�ℎ − �̄�|
|

, 𝑆 𝐺ℎ ∈ 𝑆2, (𝑏)

𝐶 𝐿𝑙 = 1 − |

|

𝑟𝑙 − �̄�|
|

, 𝑆 𝐺𝑙 ∈ 𝑆1, (𝑐)

�̄� =
∑

𝑆 𝐺ℎ∈𝑆2
𝜆ℎ �̄�ℎ +

∑

𝑆 𝐺𝑙∈𝑆1
𝜆𝑙𝑟𝑙 , (𝑑)

0 ≤ �̄�ℎ ≤ 1, 𝑆 𝐺ℎ ∈ 𝑆2, (𝑒)

where �̄�ℎ is the decision variable, constraint (𝑎) is used to calculate
he group consensus level, constraints (𝑏) and (𝑐) are used to calculate
he subgroup consensus level in the sets 𝑆1 and 𝑆2 after opinion
djustment, and the rest of the constraints are the same as in Model 1.

Under a centralized decision-making mechanism, all subgroups can
hare information, resources, and viewpoints through cooperation,
hereby achieving optimal decisions under a common goal. By calcu-
ating the minimum total consensus adjustment cost, we can achieve
verall optimization. From the perspective of cooperative game theory,
he objective of Model 2 is to maximize collective benefits. To be
pecific, all subgroups cooperate to minimize the total adjustment cost
equired for consensus.

heorem 4.2. Model 2 has a global optimal solution.

roof. Similar to the proof of Theorem 4.1, it can be easily shown
hat the feasible domain of Model 2 forms a convex set. Furthermore,
t is evident that the objective function of Model 2 is convex, thereby
dentifying it as a convex planning model. Additionally, it can be clearly
bserved that �̄�ℎ = 𝑔, ∀ 𝑆 𝐺ℎ ∈ 𝑆2 serves as a solution of Model 2,
emonstrating that the feasible set of Model 2 is non-empty. Therefore,
ased on the theory of convex optimization, we conclude that there
xists a globally optimal solution for Model 2. □
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It should be noted that the aforementioned model addresses the
issue of consensus adjustment from the perspective of group opti-

ization, which assumes that participants are willing to cooperate.
owever, if the negotiation results make the situation worse for some
articipants compared to acting independently, the assumption of sus-
ained cooperation becomes difficult to maintain, indicating that co-
peration is not always beneficial for all participants. Theoretically,
olutions that fall below the baseline should not be considered feasible
egotiation outcomes, as rational participants would prefer no agree-
ent over cooperation that is disadvantageous to them. This view is

consistent with the proposed hypothesis 1 that all participants need to
ain at least as much by cooperating as by acting independently.

Based on this, we propose an improved version of the MCCM to
ddress this challenge. Specifically, by setting the minimum adjustment
ost in Model 1 as a cost upper bound, it ensures that cooperation not
nly promotes the realization of collective goals, but also safeguards the
ctual benefits of each participant. The model is constructed as follows:

𝐌𝐨𝐝𝐞𝐥 𝟑 ∶

𝐦𝐢𝐧 𝑇 𝐶 =
∑

𝑆 𝐺ℎ∈𝑆2
𝑐ℎ ||𝑟ℎ − �̄�ℎ||

s.t.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐺 𝐶 𝐿 =
∑𝑘

ℎ=1 𝐶 𝐿ℎ∕𝑘 ≥ 𝜃 , (𝑎)

𝐶 𝐿ℎ = 1 − |

|

�̄�ℎ − �̄�|
|

, 𝑆 𝐺ℎ ∈ 𝑆2, (𝑏)

𝐶 𝐿𝑙 = 1 − |

|

𝑟𝑙 − �̄�|
|

, 𝑆 𝐺𝑙 ∈ 𝑆1, (𝑐)

�̄� =
∑

𝑆 𝐺ℎ∈𝑆2
𝜆ℎ �̄�ℎ +

∑

𝑆 𝐺𝑙∈𝑆1
𝜆𝑙𝑟𝑙 , (𝑑)

0 ≤ �̄�ℎ ≤ 1, 𝑆 𝐺ℎ ∈ 𝑆2, (𝑒)

𝑐ℎ ||𝑟ℎ − �̄�ℎ|| ≤ 𝑇 𝑃ℎ, 𝑆 𝐺ℎ ∈ 𝑆2, (𝑓 )

where �̄�ℎ is this decision variable and 𝑇 𝑃ℎ is the optimal objective
unction value for Model 1, and the rest of the constraints are the same
s in Model 2.

By introducing the constraint condition (𝑓 ),Model 3 designs a novel
ooperation mechanism. It aims to ensure that while pursuing collective

optimization goals, the interests of each participant are effectively
safeguarded, thereby addressing the issue in traditional models where
participants’ interests are often overlooked. Additionally, constraint
condition (𝑓 ) is the key premise to ensure that each party is willing to
cooperate, serving as the motivation for cooperation. However, we also
note that under the constraint of a high consensus threshold, Model 3

ay encounter infeasible solutions. This means that cooperation does
ot always benefit all participants. According to hypothesis 1, these
articipants will refuse to cooperate and choose selfish solutions. Based
n this, we introduce the following definition:

efinition 4.1. Suppose that the set of non-consensus subgroups is
denoted as 𝑆2, where the set of subgroups willing to cooperate is 𝑊 𝐶,
he non-cooperative set is 𝑁 𝐶 and 𝑁 𝐶 ∪ 𝑊 𝐶 = 𝑆2. Also, for the
ubgroup 𝑆 𝐺ℎ ∈ 𝑁 𝐶, the following condition must be satisfied for any
olution set of Model 2: 𝑐ℎ ||𝑟ℎ − �̄�ℎ|| > 𝑇 𝑃ℎ. Similarly, for the subgroup
 𝐺ℎ ∈ 𝑊 𝐶, the following condition must be satisfied for any solution
et of Model 2: 𝑐ℎ ||𝑟ℎ − �̄�ℎ|| ≤ 𝑇 𝑃ℎ.

According to Definition 4.1, if no consensus adjustment allocation
nder cooperative conditions can make any subgroup better off com-
ared to making decisions independently, these subgroups will reject
ooperation. At this point, the motivation for refusing to cooperate is
he individual’s dissatisfaction with his or her consensus adjustment.
his implies that cooperation cannot benefit the subgroups within the
et 𝑁 𝐶, leading to Model 3 having no solution. With this in mind,
e construct a cooperative and non-cooperative two-type MCCM as
ollows:

7 
𝐌𝐨𝐝𝐞𝐥 𝟒 ∶

𝐦𝐢𝐧 𝑇 𝐶∗ =
∑

𝑆 𝐺ℎ∈𝑊 𝐶𝑐ℎ ||𝑟ℎ − �̄�ℎ||

s.t.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐺 𝐶 𝐿 =
∑𝑘

ℎ=1 𝐶 𝐿ℎ∕𝑘 ≥ 𝜃 , (𝑎)

𝐶 𝐿ℎ = 1 − |

|

�̄�ℎ − �̄�|
|

, 𝑆 𝐺ℎ ∈ 𝑆2, (𝑏)

𝐶 𝐿𝑙 = 1 − |

|

𝑟𝑙 − �̄�|
|

, 𝑆 𝐺𝑙 ∈ 𝑆1, (𝑐)

�̄� =
∑

𝑆 𝐺𝑙∈𝑆1
𝜆𝑙𝑟𝑙 +

∑

𝑆 𝐺ℎ∈𝑆2
𝜆ℎ �̄�ℎ, (𝑑)

0 ≤ �̄�ℎ ≤ 1, 𝑆 𝐺ℎ ∈ 𝑆2, (𝑒)

𝑐ℎ ||𝑟ℎ − �̄�ℎ|| ≤ 𝑇 𝑃ℎ, 𝑆 𝐺ℎ ∈ 𝑊 𝐶 , (𝑓 )

where �̄�ℎ denote the adjusted opinions of the subgroups in the sets 𝑆2,
constraint (𝑓 ) is relaxed only for subgroups favouring cooperation, and
the rest of the constraints are the same as in Model 3.

Theorem 4.3. Suppose that 𝑇 𝐶∗ is the optimal objective function value
for Model 4, and 𝑇 𝑃ℎ is the optimal objective function value for Model 1,
then for any subgroup 𝑆 𝐺ℎ ∈ 𝑊 𝐶, there is 𝑇 𝑃ℎ ≥ 𝑐ℎ|𝑟ℎ − �̄�ℎ|.

Proof. First, based on the constraints (𝑒) and (𝑓 ), it can be demon-
strated that the objective function is bounded. Second, according to
Theorem 4.2 and Definition 4.1, we can prove the existence of at
least one feasible solution. Specifically, Theorem 4.2 indicates that
the constraints (𝑎) to (𝑒) can be satisfied, while Definition 4.1 further
ensures that the constraint (𝑓 ) holds. In summary, Model 4 has at least
one solution. Therefore, Theorem 4.3 is evidently valid. □

According to Theorem 4.3, it is easy to obtain the following
orollary 4.1.

orollary 4.1. Suppose that 𝑇 𝐶∗ is the optimal objective function value
or Model 4, and 𝑇 𝑃ℎ is the optimal objective function value of Model 1,
or the subgroup 𝑆 𝐺ℎ ∈ 𝑊 𝐶, then ∑

𝑆 𝐺ℎ∈𝑊 𝐶 𝑇 𝑃ℎ ≥ 𝑇 𝐶∗.

Thus, Theorem 4.3 and Corollary 4.1 confirm that consensus can be
reached at a lower cost via cooperation for some subgroups. However,
it is interesting to note that not all of the subgroups cooperate to bring
benefits, which responds to the third question raised earlier. It also lays
the foundation for cooperation in the subsequent construction of the
bargaining model. Given that there may be multiple optimal solutions
to Model 4, it becomes particularly important to ensure that all sub-
groups are treated fairly in the allocation process. Specifically, varying
assessments of potential benefits by subgroups may lead to perceptions
that the distribution in the minimum cost model does not align with
their expectations, thereby fostering a sense of unfairness. Therefore,
it is particularly critical to choose a strategy that pursues overall
optimization while balancing cost-effectiveness and participants’ sense
of fairness.

To clearly understand the distinctions between Model 1 and Model
4 and the cost differences required for different subgroups to reach
consensus, a simple example will be provided below.

Example 4.1. Suppose that the initial opinions of the five DMs are
𝑂 = {0.1, 0.2, 0.4, 0.5, 0.8}, and they have the same importance and
unit cost with a consensus threshold of 0.9. Under this setting, we use

odels 1 and 4 to derive the optimal adjusted opinions for different
cenarios, respectively, and the specific results are shown in Table 3.

Table 3 presents the results of Example 4.1 for Models 1 and 4.
he data shows that the adjustment cost for Model 4 is significantly

ower than that for Model 1, indicating that Model 4 is more cost-
ffective in achieving consensus. Moreover, Model 4 has multiple
ptimal solutions, all corresponding to the same objective function
alue. However, there are significant differences in the adjustment costs
or the DMs 𝑒1 and 𝑒2 across different solutions. Therefore, from a
airness perspective, adjusting based solely on the results of Model 4
ay lead to conflicts. This emphasizes the need to ensure fairness in

ost allocation in addition to the pursuit of cost minimization when
esigning consensus mechanisms.
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Table 3
The results for Models 1 and 4 in Example 4.1.

DM 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 Cost

Initial opinion 𝑂 0.1000 0.2000 0.4000 0.5000 0.8000 —
Model 1: �̄� 0.3500 0.3250 0.4000 0.5000 0.4250 0.7500
Model 4: �̄�1 0.2959 0.2541 0.4000 0.5000 0.5500 0.5000
Model 4: �̄�2 0.2750 0.2759 0.4000 0.5000 0.5500 0.5000
Model 4: �̄�3 0.3451 0.2049 0.4000 0.5000 0.5500 0.5000
i
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s
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i
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p

4.3. Subgroup optimal consensus adjustment in cooperative situations

AlthoughModels 1 and 4 achieve consensus cost minimization from
he perspectives of subgroup independent adjustment and subgroup
ollaborative adjustment, respectively, both mechanisms exhibit certain
imitations. Specifically, Model 1 focuses on maximizing the benefits of
ubgroups, which may result in an increase in overall adjustment costs.
n the other hand, while Model 4 reduces total costs, it overlooks the

airness of cost distribution. In light of these considerations, this study
roposes treating consensus adjustment as a cost cooperative game
roblem, aiming to identify a strategy that minimizes total costs while
nsuring equitable cost distribution among all participants.

As previously discussed, considering the potential benefits to par-
icipants before reaching an agreement is crucial for achieving optimal
ost allocation. As illustrated by Example 4.1, participants tend to reach
 group consensus at the lowest possible cost, which constitutes a
esirable outcome for agreement. Thus, when addressing a practical
roblem that necessitates simultaneous consideration of the proportion
f benefits allocated to each participant, considering the threat point
ersus the ideal point becomes essential, even though it has often been

overlooked in previous studies. Based on this understanding, the next
model will explore how subgroups achieve optimal adjustment in coop-
erative situations. To this end, we construct the following programming
model to compute the optimal consensus adjustment cost for subgroups
in cooperative situations:

𝐌𝐨𝐝𝐞𝐥 𝟓 ∶

𝐦𝐢𝐧 𝐼 𝑃ℎ = 𝑐ℎ ||𝑟ℎ − �̄�ℎ||

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐺 𝐶 𝐿 =
∑𝑘

ℎ=1 𝐶 𝐿ℎ∕𝑘 ≥ 𝜃 , (𝑎)

𝐶 𝐿ℎ = 1 − |

|

�̄�ℎ − �̄�|
|

, 𝑆 𝐺ℎ ∈ 𝑆2, (𝑏)

𝐶 𝐿𝑙 = 1 − |

|

𝑟𝑙 − �̄�|
|

, 𝑆 𝐺ℎ ∈ 𝑆1, (𝑐)

�̄� =
∑

𝑆 𝐺𝑙∈𝑆1
𝜆𝑙𝑟𝑙 +

∑

𝑆 𝐺ℎ∈𝑆2
𝜆ℎ �̄�ℎ, (𝑑)

0 ≤ �̄�ℎ ≤ 1, 𝑆 𝐺ℎ ∈ 𝑆2, (𝑒)

𝑐ℎ ||𝑟ℎ − �̄�ℎ|| ≤ 𝑇 𝑃ℎ, 𝑆 𝐺ℎ ∈ 𝑊 𝐶 , (𝑓 )

𝑇 𝐶∗ =
∑

𝑆 𝐺ℎ∈𝑊 𝐶𝑐ℎ ||𝑟ℎ − �̄�ℎ|| , (𝑔)

where �̄�ℎ is the decision variable and 𝑇 𝐶∗ is the optimal objective
function value for Model 4, and the rest of the constraints are the same
as in Model 4.

Theorem 4.4. Suppose that 𝑇 𝐶∗ is the optimal objective function value
for Model 4, and 𝐼 𝑃ℎ is the optimal objective function value for Model 5.
For any set of solutions in Model 4, for any subgroup 𝑆 𝐺ℎ ∈ 𝑊 𝐶, satisfy
𝐼 𝑃ℎ ≤ 𝑐ℎ|𝑟ℎ − �̄�ℎ|.

In light of Theorem 4.4, it is easy to obtain the following
orollary 4.2.

orollary 4.2. Suppose that 𝑇 𝐶∗ is the optimal objective function value
or Model 4, and 𝐼 𝑃ℎ is the optimal objective function value for Model 5,
here exists ∑𝑆 𝐺ℎ∈𝑊 𝐶 𝐼 𝑃ℎ ≤ 𝑇 𝐶∗.

The findings of Corollaries 4.1 and 4.2 suggest that participants
re entitled to maximize their own interests in both noncooperative
nd cooperative contexts. Consequently, the results of Corollaries 4.1
nd 4.2 establish upper and lower bounds for the interests of the
articipants. In other words, when considering fair distribution, the
8 
minimum and maximum interests of each participant must be taken
nto account.

To further illustrate this point, Table 4 gives the results of Model 5
n Example 4.1. The results show that the optimal and general solutions

derived from Model 5 are significantly different between DMs 𝑒1 and 𝑒2,
which further emphasizes the importance of the distribution of benefits.

5. Two bargaining consensus models based on cooperative game
under fairness concern

As mentioned previously, this study examines the optimal consensus
adjustment strategies implemented by subgroups in cooperative and
non-cooperative frameworks, with the aim of providing a reasonable
allocation method for multiple solutions of the Model 4. In this re-
gard, this study formally introduces two negotiation models: the NB
model and the KSB model, and proposes two new LSGDM consensus
adjustment methods based on these two models.

5.1. Concepts of NB and KSB

The development of bargaining models has been crucial in explain-
ing and predicting how parties acquire the final consensus through
negotiation within contemporary research fields of economics and man-
agement (Livne, 1989). Particularly, within the multi-party bargaining
framework, the traditional NB model and the KSB model have been
dapted to accommodate the complex dynamics of multiple partici-

pants (Luo, Zhou, & Lev, 2022; Monroy, Rubiales, & Mármol, 2017).
The aim of this study is to formalize the introduction of these models
into the LSGDM problems and to explore their application to consensus
adjustment allocation. The model attempts to find an equilibrium point
that maximizes the product of the parties’ negotiated outputs and their
relative gains relative to the threat point. In a multi-party negotiation
ituation, the NB model can be extended to the following general form:

efinition 5.1 (Nash, 1950). Assume that a multi-party negotiation
ncludes 𝑛 participants and the utility of each participant 𝑖 is repre-
ented by 𝑈𝑖. In the absence of any agreement, each participant can
uarantee a minimum utility of 𝐷𝑖, known as the noncooperative point
r threat point. The multi-party NB model aims to find a utility vector

𝑈 = (𝑈1, 𝑈2,… , 𝑈𝑛)𝑇 that maximizes the product of all participants’
utility gains relative to their threat point. In light of the axiomatic
definition of the NB solution (NBS), the Nash solution is the solution to
the following model:

𝑈∗ = 𝐦𝐚𝐱
𝑈𝑖>𝐷𝑖

𝑛
∏

𝑖=1

(

𝑈𝑖 −𝐷𝑖
)

. (5.1)

The NBS has been broadly applied in areas such as business negoti-
ations, environmental governance and supply chain management, due
o its tendency to produce solutions that are both easy to interpret and
nalyse. Nash characterized his solution by four axioms, inclusive of
ndependence of irrelevant alternatives (IIA). This axiom caused much
ontroversy in this context, as pointed out by Luce and Raiffa (1957),
age 120. In response to these critiques, scholars have proposed alter-

native bargaining solutions that replace IIA with monotonicity (as in

the Kalai–Smorodinsky solution), although other alternative solutions
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Table 4
The results for Model 5 in Example 4.1.

DM 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 Cost

Initial opinion 𝑂 0.1000 0.2000 0.4000 0.5000 0.8000 —
Model 5: �̄�1 0.1507 0.3993 0.4000 0.5000 0.5500 0.5000
Model 5: �̄�2 0.3500 0.2000 0.4000 0.5000 0.5500 0.5000
Model 5: �̄�3 0.2750 0.2750 0.4000 0.5000 0.5500 0.5000
Fig. 2. Demonstrations on NBS and KSBS.
retained IIA (one remarkable example is the egalitarian solution). In
particular, the solution proposed by Kalai and Smorodinsky (Kalai &
Smorodinsky, 1975) has been applied in a number of fields, but has
not yet been adopted in LSGDM.

Definition 5.2 (Kalai & Smorodinsky, 1975). Assume that a multi-party
negotiation includes 𝑛 participants and the utility of each participant 𝑖
is represented by 𝑈𝑖. In the absence of any agreement, each participant
can guarantee a minimum utility of 𝐷𝑖, known as the noncooperative
point or threat point. In addition, the maximum possible utility that
party 𝑖 can obtain with cooperation is defined as 𝑀𝑖. The multi-party
KSB model aims to find a utility vector 𝑈 = (𝑈1, 𝑈2,… , 𝑈𝑛)𝑇 that
satisfies the equality of proportions between the utility gains of all
participants, which is expressed as:
𝑈1 −𝐷1
𝑀1 −𝐷1

= ⋯ =
𝑈𝑛 −𝐷𝑛
𝑀𝑛 −𝐷𝑛

. (5.2)

By ensuring that the utility gain ratio of each party is equal, the
multi-party KSB model provides an effective mechanism to address po-
tential inequality issues. This model is particularly suitable for complex
negotiations involving numerous stakeholders. Its application facilitates
the formulation of more cooperative and equitable solutions in both bi-
lateral and multilateral negotiations, thereby increasing the likelihood
of reaching agreements acceptable to all parties involved. Next, we will
illustrate the differences in outcomes between these two models using
an example from the economic literature.

Example 5.1. Consider two bargaining problems 𝐴 and 𝐵 whose profit
distribution sets are convex packets 𝐴 = {(0, 0), (0, 0.5), (0.5, 0.5), (1, 0)}
and 𝐵 = {(0, 0), (0, 1), (1, 0)}, as shown in Fig. 2.

Clearly, Player 2 has better prospects in Problem 𝐵 than in Problem
𝐴. However, applying the NBS yields a negotiation result of (0.5,0.5)
in both cases. In short, Player 2 obtains higher profits in the KSB
solutions (KSBS) compared to Problem 𝐴 in Problem 𝐵 due to better
prospects. This suggests that compared to the NBS, the KSBS provides
a more realistic solution by considering the best prospects of each
party. Ideally, the negotiated solution should be based on a geometric
configuration of all possible trade prospects to ensure a fair distribution

of benefits.

9 
5.2. Consensus adjustment game model based on NB

As previously discussed, we have examined the non-uniqueness
issue in consensus adjustments within Model 4. Therefore, selecting a
fair consensus adjustment strategy naturally becomes the core problem
of this study. To address this, we transform the consensus adjustment
problem into a NB problem and utilize NB theory to develop a con-
sensus adjustment allocation model. This theory possesses several ideal
properties, including independence of irrelevant alternatives, invari-
ance to affine transformations, symmetry, and Pareto efficiency (Feng,
Li, & Shanthikumar, 2022), and is widely accepted as a profit distribu-
tion scheme. Inspired by the work of Meng et al. (2022), this study
adopts the cost reductions brought about by cooperation relative to
independent action as equal as possible as a fairness criterion for the NB
cooperation game. In other words, it is ensured that the cost reductions
of consensus adjustment for each subgroup relative to the threat point
should be as equal as possible. In this way, it can be ensured that all
parties make the same compromises or concessions in cooperation, thus
increasing the acceptance and recognition of the adjustment scheme.
This method aims to prevent a single participant or a few individuals
from bearing too much of the adjustment burden, and to avoid the
resulting dissatisfaction and possible failure of consensus. Therefore, we
construct the following NB consensus model based on the cooperative
game:

𝐌𝐨𝐝𝐞𝐥 𝟔 ∶

𝛺 = 𝐦𝐚𝐱
𝑇 𝑃ℎ≥𝛥ℎ

∏

𝑆 𝐺ℎ∈𝑊 𝐶
(

𝑇 𝑃ℎ − 𝛥ℎ
)

s.t.
⎧

⎪

⎨

⎪

⎩

𝛥ℎ = 𝑐ℎ ||𝑟ℎ − �̄�ℎ|| , (𝑎)

𝑇 𝐶∗ =
∑

𝑆 𝐺ℎ∈𝑊 𝐶𝛥ℎ, (𝑏)

The constraints in the 𝐌𝐨𝐝𝐞𝐥 𝟒, (c)

where �̄�ℎ and 𝛥ℎ are the decision variables, 𝑇 𝑃ℎ is the optimal objective
function value of Model 1 for the subgroup 𝑆 𝐺ℎ and 𝑇 𝐶∗ is the optimal
objective function value for Model 4.

As noted above, Model 6 employs the well-known Nash product
as the objective function, defining the negotiation breakdown point
as the minimum cost required for independent adjustment by each
subgroup. Furthermore, we assume that all subgroups in Model 6 have

equal bargaining power, which is only applicable to symmetric NB
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roblems (Binmore, Rubinstein, & Wolinsky, 1986). In fact, consider-
ing the heterogeneity among subgroups, it is necessary to revise this
assumption. To address this, we introduce the parameter 𝛿ℎ to relax
he original assumption. Based on this adjustment and accounting for
ifferences in bargaining power among subgroups, we can extend the
odel to the following general form:

𝐨𝐝𝐞𝐥 𝟕 ∶

𝛺 = 𝐦𝐚𝐱
𝑇 𝑃ℎ≥𝛥ℎ

∏

𝑆 𝐺ℎ∈𝑊 𝐶
(

𝑇 𝑃ℎ − 𝛥ℎ
)𝛿ℎ

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥ℎ = 𝑐ℎ ||𝑟ℎ − �̄�ℎ|| , (𝑎)

𝑇 𝐶∗ =
∑

𝑆 𝐺ℎ∈𝑊 𝐶𝛥ℎ, (𝑏)
∑

𝑆 𝐺ℎ∈𝑊 𝐶 𝛿ℎ = 1, (𝑐)

The constraints in the 𝐌𝐨𝐝𝐞𝐥 𝟒, (𝑑)

here �̄�ℎ and 𝛥ℎ are the decision variables, 𝛿ℎ ≥ 0, and the rest of the
onstraints are the same as in Model 6.

In practical implementation, each 𝛿ℎ can be adjusted according to
pecific circumstances to accurately reflect the actual bargaining power
f each negotiation participant. If all participants have equal bargaining
ower, Model 7 naturally simplifies to Model 6. This indicates that
odel 6 is a special case of Model 7 in the absence of differences in

argaining power. The asymmetric NB model provides a more flexible
nd realistic framework for multi-party negotiations involving different
argaining powers. Therefore, considering the initial consensus level

and the size of the subgroups, a method to calculate the bargaining
ower of subgroup is given as follows:

ℎ = (1 + |𝑆 𝐺ℎ|) 𝛽⋅𝐶 𝐿ℎ , (5.3)

where 𝛽 > 0 is the parameter used to modulate the effect of consensus
evel 𝐶 𝐿ℎ, |𝑆 𝐺ℎ| is the number of DMs within 𝑆 𝐺ℎ. Additionally, the

experiment by Rodríguez et al. (2018) suggests 𝛽 = 0.3, and 𝛿ℎ =
𝜏ℎ∕

∑

𝑆 𝐺ℎ∈𝑊 𝐶 𝜏ℎ.

5.3. Consensus adjustment game model based on KSB

In this section, we employ the KSB model, which aims to achieve
fairness through cooperative negotiation. The KSB model is designed
based on the principle of fair allocation, which ensures that all par-
ticipants receive the same proportional utility gain relative to their
threat and desirable points. Unlike the NB model, the KSB model seeks
a cooperative solution in which all participants receive proportionate
fair gains. Specifically, we use the minimum consensus adjustment cost
for each participant in the independent decision-making situation as
the base point (threat point) and the minimum adjustment cost in the
cooperative situation as the target point (ideal point). These two points
clarify each participant’s position in the utility space and its poten-
tial negotiation range. Subsequently, we construct a utility possibility
boundary representing all achievable combinations of utilities through
negotiation. On this boundary, the KSB model identifies a specific point
that ensures that the utility gains of all participants remain at the same
proportional difference between their ideal and threat points. Following
the above definition, the consensus adjustment model based on KSB can
be defined as follows:

𝐌𝐨𝐝𝐞𝐥 𝟖 ∶ 𝑇 𝑃ℎ−𝛥ℎ
𝑇 𝑃ℎ−𝐼 𝑃ℎ = 𝑍 , ∀ 𝑆 𝐺ℎ ∈ 𝑊 𝐶 ,

where 𝛥ℎ is the decision variable, 𝑍 is the intermediate variable, 𝑇 𝑃ℎ,
𝑇 𝐶∗ and 𝐼 𝑃ℎ are the optimal objective function values for Models 1, 4
nd 5, respectively.

In other words, the core of the KSB model is to ensure that the
benefits of cooperation are distributed fairly among all participants,
rather than merely maximizing the total gains. Given that the feasible
set in Model 4 is limited and discrete, and the requirements of Model
8 are overly stringent, it is not always possible to find a suitable
solution. To address this issue, we propose a compromise KSB model
y constructing the following model:
 m
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𝐌𝐨𝐝𝐞𝐥 𝟗 ∶

𝛩 = 𝐦𝐚𝐱 ∏

𝑆 𝐺ℎ∈𝑊 𝐶 ( 𝑇 𝑃ℎ−𝛥ℎ
𝑇 𝑃ℎ−𝐼 𝑃ℎ )

s.t.
⎧

⎪

⎨

⎪

⎩

𝛥ℎ = 𝑐ℎ ||𝑟ℎ − �̄�ℎ|| , (𝑎)

𝑇 𝐶∗ =
∑

𝑆 𝐺ℎ∈𝑊 𝐶𝛥ℎ, (𝑏)

The constraints in 𝐌𝐨𝐝𝐞𝐥 𝟒, (c)

where �̄�ℎ and 𝛥ℎ are the decision variables, 𝑇 𝑃ℎ, 𝑇 𝐶∗ and 𝐼 𝑃ℎ are the
optimal objective function values for Models 1, 4 and 5, respectively,
and 𝑇 𝑃ℎ ≥ 𝛥ℎ ≥ 𝐼 𝑃ℎ.

These two bargaining models construct a theoretical framework
aimed at analysing and explaining how negotiation can maximize
collective benefits and safeguard individual fairness while minimizing
costs in the process of reaching consensus. The NB model emphasizes
the worst-returns scenario, where the parties reach a consensus through
a compromise to the benefit of all the participants. The KSB model not
only takes into account the worst-returns scenarios of the participants,
but also considers the best deal scenario. In conclusion, these models
offer valuable guidance for understanding and optimizing the CRP,
helping to maximize cost-effectiveness and fairness.

Considering the case that there may be multiple optimal solutions
for Models 7 and 9, we provide the following method to select the
optimal solution from them:

𝐌𝐨𝐝𝐞𝐥 𝟏𝟎 ∶

𝛤 = 𝐀𝐫 𝐠 𝐦𝐚𝐱 𝐦𝐢𝐧
𝑆 𝐺ℎ∈𝑆 𝐺 (𝐶 𝐿ℎ)

s.t.
⎧

⎪

⎨

⎪

⎩

𝛥∗
ℎ = 𝑐ℎ ||𝑟ℎ − �̄�ℎ|| , (𝑎)

𝑇 𝐶∗ =
∑

𝑆 𝐺ℎ∈𝑊 𝐶𝛥∗
ℎ, (𝑏)

The constraints in 𝐌𝐨𝐝𝐞𝐥 𝟒, (c)

where �̄�ℎ is the decision variable, 𝛥∗
ℎ is the set of optimal solutions

obtained from Models 7 or 9.

5.4. Two new methods for LSGDM

In this section, two new LSGDM methods are proposed, namely one
is the consensus adjustment mechanisms based on NB and another is
based on KSB. Fig. 3 shows the specific flow, and Algorithms 2 and 3
describe their computation process in detail.
Algorithm 2: The first new LSGDM method: the consensus model
based on NB
Input: The initial evaluation value 𝑂 = {𝑜1, 𝑜2,⋯ , 𝑜𝑚}, the

adjacency matrix 𝑇 = (𝑡𝑘ℎ)𝑚×𝑚, the unit cost vector
𝑐 = {𝑐1, 𝑐2,⋯ , 𝑐𝑚}, the number of clusters 𝑘, the parameters
𝛼 , 𝑝 and the consensus threshold 𝜃.

Output: Output the final evaluation value of the alternatives.
Step 1: The DMs are clustered into 𝑘 subgroups using Algorithm 1,
denoted as 𝑆 𝐺 = {𝑆 𝐺1, 𝑆 𝐺2, ..., 𝑆 𝐺𝑘};
Step 2: Calculate the initial group consensus level GCL through
Eqs. (2.2)–(2.3);
Step 3: If the consensus requirement is met, go to Step 5;
Otherwise, turn to the next step;
Step 4: The sets 𝑆1 and 𝑆2 are determined based on the initial
subgroup consensus level, and then the optimal adjustment 𝑇 𝑃ℎ
for the subgroup in the noncooperative case and the optimal
adjustment 𝑇 𝐶∗ for the group in the cooperative case are
determined by Model 1 and Model 4;
Step 5: The bargaining power 𝛿ℎ of each subgroup 𝑆 𝐺ℎ is
calculated according to Eq. (5.3), and the optimal consensus
adjustment allocation is obtained by choosing to solve using either
Model 6 or Model 7;
Step 6: Output final consensus adjustment opinion;
Step 7: End.

In this study, we investigate the application of the NB model and the
SB model to LSGDM, focusing on the problem of consensus adjustment
llocation among multiple participants. Each of these two models has
nique advantages and applicability conditions in different decision-
aking environments. The NB model emphasizes the minimum utility
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Fig. 3. The workflow of the constructed LSGDM methods.
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Algorithm 3: The second new LSGDM method: the consensus model
based on KSB
Input: The initial evaluation value 𝑂 = {𝑜1, 𝑜2,⋯ , 𝑜𝑚}, the

adjacency matrix 𝑇 = (𝑡𝑘ℎ)𝑚×𝑚, the unit cost vector
𝑐 = {𝑐1, 𝑐2,⋯ , 𝑐𝑚}, the number of clusters 𝑘, the parameters
𝛼 , 𝑝 and the consensus threshold 𝜃.

Output: Output the final evaluation value of the alternatives.
Step 1: The same as Steps 1-3 in Algorithm 2;
Step 2: Based on the group optimal adjustment 𝑇 𝐶∗ of Model 4,
the optimal adjustment 𝐼 𝑃ℎ of each subgroup in the cooperative
scenario is determined according to Model 5;
Step 3: First use Model 8 to determine whether a solution exists, if
so move to Step 5; otherwise, go to the next step;
Step 4: Using Model 9 to find a compromise KSBS;
Step 5: Output final consensus adjustment opinion;
Step 6: End.

value of each party in the event of a negotiation failure and ensures
that each participant receives the maximum benefit from its threat
point. The model is able to effectively deal with power and resource
asymmetries among participants, allowing each party to obtain rea-
sonable utility gains even under unequal conditions. In contrast, the
KSB model provides a more equitable solution based on simultaneous
consideration of initial conditions and future prospects. The model
works to achieve absolute fairness in the decision-making process by
integrating threat points and ideal points. However, in complex and
multi-participant environments, the KSB model faces significant chal-
lenges that make finding ideal solutions difficult. As a result, although
the KSB model theoretically provides fairer solutions, its practical
application is limited. To address these challenges, this study proposes
a compromise KSB model that aims to alleviate its high demands on
solutions. Although this compromise may be inferior to the NB model
in some cases, it provides a new solution in complex environments.

In conclusion, both the NB and KSB models have unique advantages
and applicable conditions in addressing the complexities of LSGDM.
The NB model ensures that the benefits from cooperative relatively
independent actions are fairly distributed and excels in dealing with
unequal bargaining power. On the other hand, the KSB model, by
considering potential benefit spaces, is more suitable for decision-
making environments that require a high degree of fairness. Therefore,
depending on the specific decision-making needs, these two models can
be flexibly applied to achieve optimal outcomes.

6. Case study and parameter analysis

In this section, we apply the two proposed LSGDM models to
real-world decision-making scenarios to evaluate their applicability.
Additionally, we analyse the key parameters related to the proposed

methods to further validate their effectiveness and practicality.
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6.1. A numerical example

This section illustrates a practical application of the proposed
method using a dataset (Cantador, Brusilovsky, & Kuflik, 2011) from
the Last.fm social music website.1 This dataset encompasses users’
istening frequencies to artists and social network information derived
rom these interactions. The social network is constructed based on the
riend relationships on the Last.fm social music platform, which are
onsidered as trust relationships between users. Specifically, we assume
hat trust exists between users if they are friends on the platform. Thus,
 friend relationship corresponds to a trust value of 1, while the absence
f a friend relationship corresponds to a trust value of 0. During the
NA of the artist recommendation index, user biases may influence
he analysis results. For this case study, we select the listening data
nd social network information of 100 users related to artist ID 62 to
valuate the model’s effectiveness. Fig. 4(a) displays the initial social
etwork layout of these 100 users. The parameters for the experiment
re set as follows: 𝑚 = 100, 𝛼 = 2, 𝑝 = 5, 𝑘 = 6, with a unit cost 𝑐ℎ
f 1 for all subgroups, all DMs and subgroups are treated as equally
mportant.

Given the data distribution characteristics in the dataset, this study
mploys a mapping strategy that converts the frequency of a user’s
istens to an artist into a unit interval of [0,1]. This mapping strategy
erves as the foundation for developing the recommendation index,
nsuring uniformity and fairness in the evaluation process. The specific
quation used for this mapping is defined as follows:

𝑜ℎ =
𝑙 𝑜𝑔10(𝐿ℎ)

𝑙 𝑜𝑔10(max(𝐿1, 𝐿2,… , 𝐿𝑚))
, (6.1)

where 𝐿ℎ represents the number of listens, 𝑜ℎ represents the original
opinion of the DM 𝑒ℎ, and 𝑚 represents the total number of DMs.

To obtain the final score for the artist, we use the first LSGDM
method proposed to solve this problem, which are implemented as
follows:

• Step 1: By processing the listening data of 100 users for artist ID
62 through Eq. (6.1), we acquire an initial evaluation vector 𝑂
of DMs, and the specific results are presented in Table 5. Then,
Table 6 shows the initial community division results obtained by
the Louvain algorithm. Obviously, the subgroups that satisfy the
size requirement condition (|𝐶ℎ| ≥ ⌈100∕14⌉) are: 𝐶1, 𝐶3, 𝐶5,
𝐶7, 𝐶9, 𝐶11, 𝐶13. According to Eq. (2.1), we can calculate and
rank the degree centrality indices of the DMs in the above sub-
groups. Next, According to Eq. (3.1), the potential small groups
identified as meeting the criteria are: 𝐵1 = {𝑒5, 𝑒6, 𝑒8, 𝑒12, 𝑒14},
𝐵2 = {𝑒3, 𝑒15, 𝑒17, 𝑒21, 𝑒34}, 𝐵3 = {𝑒10, 𝑒42, 𝑒45, 𝑒49, 𝑒61}, 𝐵4 =
{𝑒7, 𝑒9, 𝑒11, 𝑒31, 𝑒78}, 𝐵5 = {𝑒26, 𝑒27, 𝑒28, 𝑒33, 𝑒68}, 𝐵6 = {𝑒20, 𝑒52, 𝑒53,
𝑒59, 𝑒62}, 𝐵7 = {𝑒13, 𝑒22, 𝑒72, 𝑒74, 𝑒85}, which corresponds to the
bolded DMs in Table 6. By using potential small groups as known

1 https://www.last.fm

https://www.last.fm
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Fig. 4. The two-stage semi-supervised clustering process.
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labels, in the second stage we can obtain the final clustering
results using the semi-supervised FCM algorithm as shown in
Table 7 and Fig. 4(b). It is important to note that some nodes
within the community, although aggregated together due to sim-
ilarity of opinions, are not directly connected due to lack of trust
relationships. Meanwhile, the connections between communities
are hidden in order to clearly show the community structure.

• Step 2: Let the consensus threshold 𝜃 = 0.95, the initial group
consensus level is calculated according to Eqs. (2.2)–(2.3), and
since 𝐺 𝐶 𝐿 = 0.8608 < 𝜃, the consensus feedback adjustment pro-
cess is entered. In light of the consensus level of each subgroup,
it is determined that 𝑊 𝐶 = {𝑆 𝐺2, 𝑆 𝐺3, 𝑆 𝐺4, 𝑆 𝐺5, 𝑆 𝐺6}, and then
the optimal adjustment cost 𝑇 𝑃ℎ for the subgroup in the non-
cooperative case and the optimal adjustment cost 𝑇 𝐶∗ for the
group in the cooperative case are determined by Models 1 and
4: 𝑇 𝑃2 = 0.1118, 𝑇 𝑃3 = 0.2077, 𝑇 𝑃4 = 0.2255, 𝑇 𝑃5 = 0.0195, 𝑇 𝑃6 =
0.0939, 𝑇 𝐶∗ = 0.5350.

• Step 3: The optimal consensus adjustment for each subgroup in
the case of reaching a cooperation can be calculated according to
Model 5: 𝐼 𝑃2 = 0, 𝐼 𝑃3 = 0.0844, 𝐼 𝑃4 = 0.1025, 𝐼 𝑃5 = 0, 𝐼 𝑃6 =
0. Then, according to Eq. (5.3), the negotiating power of the
subgroup can be calculated as: 𝛿2 = 0.2163, 𝛿3 = 0.1917, 𝛿4 =
0.1815, 𝛿5 = 0.2087, 𝛿6 = 0.2018. Based on the above results, the op-
timal consensus adjustment allocation is obtained by using Model
7: 𝛥2 = 0.0842, 𝛥3 = 0.1815, 𝛥4 = 0.2019, 𝛥5 = 0.0001, 𝛥6 = 0.0673.
Output final consensus opinion: �̄� = {0.6004, 0.5779, 0.6783, 0.6007,
0.7030, 0.6977}.

.2. The sensitivity analyses for the clustering parameter p

In this study, we designed a two-stage trust constrained semi-
upervised clustering algorithm that utilizes a small amount of labelled
ata to guide and supervise the clustering process. Additionally, this
ethod introduces an adjustable parameter 𝑝 to control the amount of

upervision, thereby regulating the influence of prior information on
he clustering constraints. In order to further investigate the specific
ffects of different DMs sizes and the parameter 𝑝 on the clustering
ffect, we do the following experiment to give some references for
he choice of 𝑝. The parameters of this experiment are set as follows:
∈ {20, 50, 100}, 𝑝 ∈ ({2, 5}, {3, 6}, {4, 7}), 𝑘 = 5, 𝛼 = 2, 𝑡 = 100. The

ccuracy is calculated by comparing the actual clustering results with

he known labels, and the distribution of these results is shown in Fig. 5.

12 
The experimental results indicate that as the value of 𝑝 increases,
lustering accuracy significantly improves. A smaller 𝑝 value implies
rioritizing DMs with higher degree centrality as labelled data. These
Ms, who typically have higher connectivity within the network, are
sually positioned at the core of the group. This ensures their impor-
ance and representativeness in the group, thereby enhancing clustering
ccuracy. However, when 𝑝 values are higher, accuracy may decline
ue to the redistribution caused by differences in DMs’ opinions. In
ummary, a lower 𝑝 value ensures that closely connected DMs within
he community are prioritized for initial clustering, while a higher 𝑝
alue may allow for more labelled data, where unstable clustering can
e corrected by unknown labels. Therefore, it is reasonable to choose an
ppropriate 𝑝 value based on the accuracy and reliability of the labels,
nd opting for a lower 𝑝 value is more cautious when information is
ncertain.

.3. The sensitivity analyses for the clustering parameter 𝛼

In this section, we further analyse another important clustering
arameter 𝛼, and investigate the effect of different parameter values of
on clustering. The parameters of this experiment are set as follows:
∈ {20, 50, 100}, 𝛼 ∈ {0.3, 0.6, 1}, 𝑘 = 5, 𝑝 = 5, 𝑡 = 100. Similar to

he previous experiment, the results of the experiment with different
arameters are given in Fig. 6.

As instructed by the objective function, the parameter 𝛼 controls
he weight of the label information in the clustering process, thus
nfluencing the updating of the cluster centres and the adjustment of
he affiliation matrix. In general, a smaller value of 𝛼 implies a lower
eighting of the label information, which may lead to the clustering

esults being more influenced by the distribution of the data itself,
hile a larger value of 𝛼 enhances the role of the label information

n the clustering and helps to steer the clustering process to be more in
ine with the a priori distribution of the labels. In addition, as shown in
ig. 6, the clustering accuracy exhibits different trends with increasing
 values for different numbers of DMs 𝑚. This indicates that there are
ifferences in the optimal values of the regularization parameter 𝛼 on
atasets of different sizes.

Based on the experimental results, a higher value of 𝛼 can enhance
he importance of supervised information, ensuring that labelled sam-
les are correctly classified. However, as the sample size increases,
he clustering accuracy gradually decreases, indicating that clustering
ccuracy is closely related to the number of labelled samples and the
ample size. Typically, the parameter 𝛼 is proportional to the ratio of
he sample size to the number of labelled samples. Based on this empir-
cal observation, when we aim to prevent labelled samples from being
eassigned and to effectively supervise the clustering process, a larger
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Table 5
Initial opinions of the DMs.

DM 𝑜𝑘 DM 𝑜𝑘 DM 𝑜𝑘 DM 𝑜𝑘 DM 𝑜𝑘
𝑒1 0.7705 𝑒21 0.6346 𝑒41 0.9137 𝑒61 0.4686 𝑒81 0.4197
𝑒2 0.6897 𝑒22 0.1068 𝑒42 0.8277 𝑒62 0.9695 𝑒82 0.7068
𝑒3 0.6905 𝑒23 0.7912 𝑒43 0.7064 𝑒63 0.8446 𝑒83 0.8102
𝑒4 0.8427 𝑒24 0.7825 𝑒44 0.8263 𝑒64 0.5879 𝑒84 0.9709
𝑒5 0.8163 𝑒25 0.5027 𝑒45 0.6874 𝑒65 0.7432 𝑒85 0.5815
𝑒6 0.5348 𝑒26 0.5471 𝑒46 0.8813 𝑒66 0.6057 𝑒86 0.5891
𝑒7 0.8779 𝑒27 0.5131 𝑒47 0.6078 𝑒67 0.6408 𝑒87 0.2416
𝑒8 0.4561 𝑒28 0.4342 𝑒48 0.7682 𝑒68 0.5432 𝑒88 0.5266
𝑒9 0.6545 𝑒29 0.5198 𝑒49 0.5131 𝑒69 0.3399 𝑒89 0.9290
𝑒10 0.5471 𝑒30 0.7298 𝑒50 0.7470 𝑒70 0.8033 𝑒90 0.6174
𝑒11 0.7136 𝑒31 0.8388 𝑒51 0.5492 𝑒71 0.4477 𝑒91 0.4909
𝑒12 0.7092 𝑒32 0.8382 𝑒52 0.8084 𝑒72 0.3562 𝑒92 0.5641
𝑒13 0.6388 𝑒33 0.4477 𝑒53 0.5516 𝑒73 0.4732 𝑒93 0.3701
𝑒14 0.4769 𝑒34 0.6698 𝑒54 0.5961 𝑒74 0.4116 𝑒94 0.6864
𝑒15 0.5805 𝑒35 0.4579 𝑒55 0.7972 𝑒75 0.4732 𝑒95 0.5151
𝑒16 0.8353 𝑒36 0.4028 𝑒56 0.6755 𝑒76 0.4506 𝑒96 0.4417
𝑒17 1.0000 𝑒37 0.6274 𝑒57 0.7295 𝑒77 0.6271 𝑒97 0.5131
𝑒18 0.6550 𝑒38 0.8596 𝑒58 0.5283 𝑒78 0.6326 𝑒98 0.9269
𝑒19 0.5994 𝑒39 0.7442 𝑒59 0.9497 𝑒79 0.5678 𝑒99 0.4525
𝑒20 0.8417 𝑒40 0.4427 𝑒60 0.6335 𝑒80 0.4184 𝑒100 0.4116
Table 6
The first stage initial community division results.

Subgroup Member Subgroup Member

𝐶1 𝒆𝟓, 𝒆𝟔, 𝒆𝟖, 𝒆𝟏𝟐, 𝒆𝟏𝟒, 𝑒16, 𝑒18, 𝑒25, 𝑒29, 𝑒35, 𝑒36, 𝑒37, 𝑒92, 𝑒96, 𝑒97 𝐶2 𝑒24, 𝑒82
𝐶3 𝒆𝟑, 𝒆𝟏𝟓, 𝒆𝟏𝟕, 𝒆𝟐𝟏, 𝒆𝟑𝟒, 𝑒41, 𝑒44, 𝑒54, 𝑒56, 𝑒58, 𝑒65, 𝑒66, 𝑒67, 𝑒76 𝐶4 𝑒79, 𝑒88
𝐶5 𝒆𝟏𝟎, 𝑒30, 𝒆𝟒𝟐, 𝒆𝟒𝟓, 𝑒46, 𝑒47, 𝒆𝟒𝟗, 𝑒55, 𝒆𝟔𝟏, 𝑒63, 𝑒75, 𝑒99 𝐶6 𝑒51, 𝑒60, 𝑒70
𝐶7 𝒆𝟕, 𝒆𝟗, 𝒆𝟏𝟏, 𝒆𝟑𝟏, 𝑒39, 𝑒50, 𝑒64, 𝑒69, 𝑒77, 𝒆𝟕𝟖, 𝑒81, 𝑒87 𝐶8 𝑒83, 𝑒86, 𝑒94
𝐶9 𝑒4, 𝒆𝟐𝟔, 𝒆𝟐𝟕, 𝒆𝟐𝟖, 𝒆𝟑𝟑, 𝑒40, 𝒆𝟔𝟖, 𝑒71, 𝑒100 𝐶10 𝑒32, 𝑒43, 𝑒98
𝐶11 𝒆𝟐𝟎, 𝒆𝟓𝟐, 𝒆𝟓𝟑, 𝑒57, 𝒆𝟓𝟗, 𝒆𝟔𝟐, 𝑒80, 𝑒84 𝐶12 𝑒1, 𝑒23, 𝑒38, 𝑒48, 𝑒89
𝐶13 𝒆𝟏𝟑, 𝒆𝟐𝟐, 𝒆𝟕𝟐, 𝑒73, 𝒆𝟕𝟒, 𝒆𝟖𝟓, 𝑒90 𝐶14 𝑒2, 𝑒19, 𝑒91, 𝑒93, 𝑒95
Table 7
Final clustering results and relevant indicators.

Subgroup Member 𝐶 𝐿ℎ 𝑟ℎ
𝑆 𝐺1 𝑒5, 𝑒6, 𝑒8, 𝑒12, 𝑒14, 𝑒19, 𝑒37, 𝑒47, 𝑒51, 𝑒54, 𝑒60, 𝑒64, 𝑒66, 𝑒67, 𝑒77, 𝑒79, 𝑒86, 𝑒90, 𝑒92 0.9636 0.6004
𝑆 𝐺2 𝑒10, 𝑒25, 𝑒26, 𝑒27, 𝑒28, 𝑒29, 𝑒33, 𝑒35, 𝑒49, 𝑒58, 𝑒61, 𝑒68, 𝑒71, 𝑒73, 𝑒75, 𝑒76, 𝑒88, 𝑒91, 𝑒95, 𝑒97, 𝑒99 0.8568 0.4936
𝑆 𝐺3 𝑒4, 𝑒16, 𝑒20, 𝑒32, 𝑒38, 𝑒41, 𝑒42, 𝑒44, 𝑒46, 𝑒52, 𝑒53, 𝑒59, 𝑒62, 𝑒63, 𝑒84, 𝑒89, 𝑒98 0.7769 0.8598
𝑆 𝐺4 𝑒13, 𝑒22, 𝑒36, 𝑒40, 𝑒69, 𝑒72, 𝑒74, 𝑒80, 𝑒81, 𝑒85, 𝑒87, 𝑒93, 𝑒96, 𝑒100 0.7621 0.3988
𝑆 𝐺5 𝑒2, 𝑒3, 𝑒15, 𝑒17, 𝑒18, 𝑒21, 𝑒30, 𝑒34, 𝑒43, 𝑒45, 𝑒56, 𝑒57, 𝑒82, 𝑒94 0.9338 0.7030
𝑆 𝐺6 𝑒1, 𝑒7, 𝑒9, 𝑒11, 𝑒23, 𝑒24, 𝑒31, 𝑒39, 𝑒48, 𝑒50, 𝑒55, 𝑒65, 𝑒70, 𝑒78, 𝑒83 0.8718 0.7650
Fig. 5. Sensitivity experiments for the parameter 𝑝.
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value can be selected. Conversely, if we intend for labelled samples
o serve merely as a guide and allow for reassignment, a smaller 𝛼
alue can be chosen. Therefore, for datasets of different scales and char-
cteristics, determining the value of through pre-experiments before
mplementation is a critical step in improving clustering performance.

.4. The sensitivity analyses for the consensus threshold 𝜃

The decision results in the case study are derived for a consensus
hreshold of 0.95. However, when different consensus thresholds are
13 
et, the final consensus opinion and the cost required will be different.
n this experiment, we aim to analyse the possible decision costs asso-
iated with different consensus thresholds, as a reference to the choice
f 𝜃. The experimental parameters are set as follows: 𝑚 ∈ {20, 50, 100},

𝜃 ∈ {0.85, 0.90, 0.95}, 𝑘 = 5, 𝑝 = 5, 𝑡 = 100. The experimental results are
reflected in Fig. 7.

As can be easily observed in Fig. 7, the total cost shows an increas-
ing trend as the consensus threshold 𝜃 increases for DMs sizes 𝑚 of 20,
50 and 100 respectively. This means that the cost required to reach

a higher degree of consensus increases with the consensus threshold,
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Fig. 6. Sensitivity experiments for the parameter 𝛼.
Fig. 7. Sensitivity experiments for the parameter 𝜃.
when the number of DMs is fixed. Therefore, depending on the urgency
of the problem and the available resources, a reasonable consensus
threshold is critical to controlling the cost of decision-making. In occa-
sions where resources are limited or rapid decision-making is required,
consideration may be given to selecting a lower consensus threshold
to reduce costs; conversely, in important and adequately resourced
situations, it may be more appropriate to select a higher consensus
threshold to ensure the quality of decision-making.

7. Comparative study and simulation analysis

In this section, the performance and adaptability of two new LS-
GDM methods for clustering and consensus are evaluated through
detailed experiments and analyses. The results show that these methods
ave unique advantages and potential applications in solving LSGDM

problems.

7.1. Comparison of clustering methods

In what follows, to exhibit the merits and effectiveness of the
established clustering method more clearly, we compare the established

ethod with the traditional FCM clustering method (Cannon et al.,
986). Specifically, the accuracy of 100 simulation experiments is
sed as the performance measure by setting different regularization

parameters 𝛼 ∈ {0.2, 0.5, 3}. These different parameters are chosen to
eflect the low, medium and high influence of the regularization term

in the proposed clustering method.
As shown in Fig. 8, at the low value of 𝛼, the regularization term

acts as a kind of bootstrap, assisting in adjusting the affiliation of
the data points without directly dominating the formation of clusters.
This guiding role allows the algorithm to slightly incorporate a priori
knowledge while maintaining a certain level of adaptivity and explo-
ration. In contrast, when the 𝛼 value is high, the regularization term
14 
exerts a direct supervisory effect on the clustering results, compulsorily
pushing the data points towards a predetermined clustering structure,
which somewhat reduces the algorithm’s adaptability but improves the
accuracy of conforming to a priori knowledge.

In practical large-scale networks, sparsity is a common feature,
meaning the number of existing edges is much smaller than the max-
imum possible number of edges. For example, a May 2011 survey of
the Facebook friend-relationship network showed that it contained 721
million active users and 68.7 billion edges, with a sparsity of about
0.3 × 10−7, suggesting that real-life social network environments are
very sparse (Striga & Podobnik, 2018). In light of this, we propose a
two-stage trust-constrained semi-supervised FCM method. To verify the
effectiveness of this method in dealing with sparse social networks, we
design a series of experiments to compare the performance of different
methods in sparse networks. Table 8 summarizes the performance of
each method under different sparsity conditions by comparing our
method with three common clustering methods.

Based on the experimental results, the main advantages of the
clustering method proposed in this study can be summarized as follows:

(1) The proposed method is able to stabilize the aggregation of
DMs into fewer and more consistent clusters under different sparsity
conditions, avoiding the generation of clusters of isolated DMs that
lead to failure in dimensionality reduction. In contrast, two classical
community detection methods perform poorly in these aspects, which
proves the reliability and stability of the method in complex networks.

(2) The proposed method significantly improves the quality of
clustering results by considering both evaluation information and trust
information. By fully utilizing trust relationships as a reliable resource
and a priori knowledge, our method provides a more comprehensive
picture of DMs’ relationships and opinions.

(3) This clustering method exhibits high flexibility, allowing for
a balance between supervisory information and clustering results,
thereby achieving higher quality outcomes. Larger parameters can
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Fig. 8. Performance analysis of the proposed clustering method.
able 8
erformance comparison under different sparsity conditions.
Number of
edges

Clustering
method

Evaluation
information

Trust
information

Number of
clusters

Number of clusters
with less than 2 DMs

Average number of
edges within clusters

3000

Louvain × ✓ 373 25 1.7507
Label propagation × ✓ 26 25 114.9615
FCM ✓ × 5 0 126.2000
The proposed ✓ ✓ 5 0 127.4000

2000

Louvain × ✓ 415 70 1.4410
Label propagation × ✓ 74 70 25.1081
FCM ✓ × 5 0 83.0000
The proposed ✓ ✓ 5 0 84.4000

1000

Louvain × ✓ 529 206 0.8922
Label propagation × ✓ 280 206 2.7071
FCM ✓ × 5 0 44.4000
The proposed ✓ ✓ 5 0 46.4000

1 ‘‘×’’ denotes the factors not considered by the method, ‘‘✓’’ denotes the factors considered by the method.
m
c
b
t
w
t
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utilize modular optimization to identify community structures, while
maller parameters are better suited for capturing the overall structure.

In summary, the designed clustering algorithm is ideal and effective
to extend the application range of LSGDM. Certainly, this algorithm
has some limitations. Therefore, future research can gather the follow-
ing directions: (1) Exploring the development of clustering algorithms
based on other types of prior knowledge (e.g., pairwise constraints) to
enhance the adaptability and generality of the algorithm. (2) Investi-
gating how to adaptively determine several parameters in the proposed
clustering method is another meaningful work.

7.2. Simulation experiments of the proposed two new methods

Many methods have been proposed to address the LSGDM problem,
with cost and fairness being crucial evaluation metrics. Since the two
new methods proposed in this study are both based on the minimum
cost model, this section focuses on comparing their performance in
terms of fairness. First, we analyse the relationship between the NBS
and the threat point. Subsequently, we compare the KSBS with the
threat point and the ideal point. The experimental parameters were
set as: 𝑚 = 100, 𝛼 = 0.6, 𝑘 = 7, 𝑝 = 3, 𝜃 = 0.95, and 30 repeated
simulations were conducted. The results are shown in Figs. 9 and 10.
This comparison helps to reveal the advantages of the two proposed
LSGDM methods in terms of fairness.

In this experiment, we select three of the subgroups involved in the
negotiation for visualization and analysis. Firstly, it can be observed
that the negotiated solutions obtained in the cooperative condition are
lower than the costs required for each subgroup to make decisions
independently, which is considered to be the basis for the cooperation.
Furthermore, by looking at the three subgraphs in Fig. 9, it can be noted
that there is a consistency in the gap between the threat points and
the NBS. This suggests that the model developed successfully achieves
the goal of fair negotiation, with all the cooperative subgroups making
 m
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similar concessions relative to their respective threat points. Obviously,
the model can also achieve fair and effective negotiation in some
asymmetric negotiations.

Unlike the NB model, the KSB model focuses more on the fairness
and symmetry of the negotiation outcome. As shown in Fig. 10, the
model emphasizes on finding a balance between the threat point and
the ideal point to ensure that all parties obtain relatively satisfactory
utility. Therefore, it is particularly suitable for negotiation scenarios
where roles are equal and proportional gains are pursued. For exam-
ple, in wage negotiations, the KSB model ensures that workers and
employers are relatively satisfied with the wage level by evaluating the
potential benefits of workers joining or leaving the firm, leading to a
fairer outcome.

7.3. Performance analysis of the proposed two new methods

With the advancement of social media and e-democracy, more and
ore DMs are able to participate in the decision-making process, espe-

ially when dealing with LSGDM questions, where broad participation
ecomes a necessity. Therefore, it is important for the current research
o take note of this by proposing LSGDM methods suitable for dealing
ith problems involving a large number of DMs instead of being limited

o only 11 DMs or 20 DMs in the traditional definition.
By virtue of the above considerations, in order to confirm the

lexibility of the proposed new method, we next conduct simulation
xperiments with 100, 500 and 2000, 10000 DMs, respectively. The
umber of clusters is assumed to be set to 𝑘 = 6, the consensus threshold
s preset to 0.95, and the initial evaluation information and adjacency
atrix are randomly generated according to the size of DMs. The final

esults are presented in Table 9, which gives the time and cost derived
or different number of DMs and the final evaluation opinions.

As shown in Table 9, as the number of DMs involved in the decision-

aking process increases, the consensus model proposed in this study is
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Fig. 9. Simulation experiments of the first new method.
Fig. 10. Simulation experiments of the second new method.
Table 9
Simulation analysis results for processing DMs of different sizes.

Simulation experiments Consensus model Time cost Final opinion Cost

Simulation experiments for
LSGDM with 100 DMs

NB-LSGDM 7.6515 s (0.6206, 0.5452, 0.6041, 0.5797, 0.4288, 0.5304)𝑇 16.0013
KSB-LSGDM 8.0158 s (0.6206, 0.5452, 0.6041, 0.6965, 0.5457, 0.5304)𝑇 16.0013

Simulation experiments for
LSGDM with 500 DMs

NB-LSGDM 19 min 41 s (0.4669, 0.3804, 0.5239, 0.5544, 0.4188, 0.4876)𝑇 96.4938
KSB-LSGDM 21 min 28 s (0.4765, 0.3573, 0.5109, 0.5406, 0.4487, 0.5310)𝑇 96.4938

Simulation experiments for
LSGDM with 2000 DMs

NB-LSGDM 8 h and 21 min (0.4325, 0.4175, 0.4929, 0.5626, 0.5282, 0.4337)𝑇 395.0093
KSB-LSGDM 8 h and 49 min (0.4908, 0.4560, 0.6284, 0.5426, 0.5105, 0.4347)𝑇 395.0093

Simulation experiments for
LSGDM with 10000 DMs

NB-LSGDM 23 h and 54 min (0.5035, 0.5363, 0.5707, 0.4298, 0.4430, 0.4377)𝑇 2000.0886
KSB-LSGDM 24 h and 12 min (0.5927, 0.5187, 0.5519, 0.4661, 0.5013, 0.3960)𝑇 2000.0886
a
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able to achieve a significant level of consensus in a limited time with a
ow adjustment cost. This result highlights the efficiency and reliability
f the newly proposed LSGDM method dealing with a large number of
Ms involved, proving its applicability scalable to tens of thousands of
xperts. In particular, it is noted that the simulation experiments are
erformed via MATLAB R2022a on a computer configured with a 12th
en Intel(R) Core(TM) i5-12500 processor operating at 3.00 GHz.

.4. Summary and discussion

In this section, we summarize and compare the advantages and
haracteristics of different consensus methods. As shown in Table 10,
his study makes a comparison with some of the latest studies. Fur-
hermore, to clearly delineate our study from the existing literature,
he relevant studies have been categorized into three types: LSGDM
onsensus methods based on feedback iteration mechanisms (FIM-
SGDM), LSGDM consensus methods employing optimization strate-
ies (OS-LSGDM), and LSGDM consensus methods from a game the-
ry perspective (GT-LSGDM). Specifically, the research by Chao et al.

2021), Li et al. (2022), Guo, Zhang, Gong, Kou, and Xu (2024), F

16 
nd Shen et al. (2024) falls under FIM-LSGDM. For OS-LSGDM, the
ethods developed by Zhang et al. (2022), Rodríguez et al. (2022), Qin,
ang, and Liang (2023), and Zhao, Guo, Xu, and Wu (2024) are

ncluded. Lastly, the GT-LSGDM category includes the works of Tang,
iao, and Wu (2023), Meng, Tang, and An (2023), Meng et al. (2024),
s well as the contributions of this study, which focus on a game theory
o LSGDM. Through this analysis, we derive the following results:
(1) In terms of clustering studies: In this study, we propose a two-

tage trust-constrained semi-supervised clustering learning method that
ffectively utilizes trust information to assist clustering. By introduc-
ng a regularization term, we overcome the limitations of traditional
ommunity detection algorithms and enhance their applicability in
eal-world scenarios. To the best of our knowledge, this is the first time
hat a semi-supervised clustering algorithm considering sparse social
etworks has been applied in LSGDM. This represents a significant
dvancement in the field of LSGDM clustering. Notably, comparative
nalysis demonstrates substantial performance improvements, making
his method more suitable for addressing complex LSGDM problems.
(2) In terms of consensus design: As previously mentioned, both
IM-LSGDM and OS-LSGDM exhibit their respective strengths and
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able 10
omparison of different LSGDM methods.
Types References Year of

publication
Known
labels

Sparse social
network

Minimum
cost

Fairness
concern

Non-cooperation
behaviour

Super large
scale DMs

FIM-LSGDM

Chao et al. 2021 × × × × ✓ ×
Li et al. 2022 × × × × × ×
Guo, Zhang, et al. 2024 × × ✓ ✓ × ×
Shen et al. 2024 × × × × × ×

OS-LSGDM

Zhang et al. 2022 × × ✓ ✓ × ×
Rodríguez et al. 2022 × × ✓ × × ×
Qin et al. 2023 × × ✓ × × ×
Zhao et al. 2024 × × ✓ × × ×

GT-LSGDM

Tang et al. 2023 × × ✓ ✓ × ×
Meng, Gong, and Pedrycz 2023 × × ✓ ✓ × ✓

Meng et al. 2024 × × ✓ ✓ × ×
This paper – ✓ ✓ ✓ ✓ ✓ ✓

1 ‘‘×’’ denotes the factors not considered by the method, ‘‘✓’’ denotes the factors considered by the method.
weaknesses in addressing LSGDM problems. To overcome the limi-
tations of traditional strategies, we propose two bargaining methods
ased on cooperative game theory in this study. Specifically, this study
ocuses on addressing the cost-related drawbacks of the FIM-LSGDM
ethod and improving the fairness shortcomings of the OS-LSGDM
ethod. In particular, we developed a two-type MCCM that inte-

rates both cooperative and non-cooperative elements, taking into
account the potential selfish behaviour of participants. By incorporat-
ing participants’ self-interest tendencies and potential non-cooperative
behaviour, this method ensures the effectiveness and reliability of
achieving consensus.

(3) In terms of methods testing: To demonstrate the exact imple-
mentation of the proposed methods, contemporary research tends to
be limited to case studies involving 20–50 DMs. This limited scope is
insufficient to demonstrate the effectiveness of the method in larger
and more complex situations. Therefore, we consider it important to
conduct additional simulations or tests after the case studies to validate
the method’s ability to manage the challenges of Super LSGDM. Unfor-
tunately, these necessary experiments are rare in the current literature.
Additionally, the constructed method is time-efficient compared to the
study by Meng, Tang, and An (2023). The time savings increase as the
number of DMs increases. In essence, this study introduces an efficient
and reliable method for LSGDM that is efficient, fair and cost-effective.

The LSGDM problem in social network environments is complex
because it involves a large number of DMs, frequent interactive be-
haviours and significant cost requirements. In this environment, the
structural information of social networks and human behaviour have
important impacts on the clustering process, but this area has not been
sufficiently researched. With this in mind, this study introduces the con-
cepts of NB and KSB to construct two novel LSGDM methods based on
cooperative games. These methods combine the dynamic characteristics
of social networks, non-cooperative behaviours, and game theory prin-
ciples. In summary, the proposed methods demonstrate their scientific
validity and practicality in real LSGDM environments. Nevertheless,
there are some limitations to be acknowledged. Specifically, we do not
consider the effect of trust relationship on the CRP, which may limit
the performance of the proposed method to some extent, thus affecting
the actual consensus adjustment and selection.

8. Summary of managerial implications

In this study, we explore how to design fair consensus adjustment
strategies based on individual and group interests in different scenarios,
and analyse the effects of non-cooperative and cooperative behaviours
on individual decision-making. Based on the previous analyses, this
section further discusses the academic value and practical implications
of these two LSGDM methods.

(1) With the rapid development of information technology, GDM

has been able to be conducted on online platforms, allowing a large

17 
number of DMS to participate simultaneously. However, a common
feature of large-scale networks is sparsity, meaning that the actual
number of connections in the network is far less than the maximum
possible number of connections. To address this challenge, this study
proposes a two-stage trust-constrained semi-supervised learning mech-
anism that significantly optimizes information utilization in LSGDM,
especially for dealing with sparse and incomplete data in social net-
works. This mechanism has wide applicability in practical applications.
For example, in recommendation systems, the mechanism can make
use of sparse trust relationships and interaction data between users to
generate more personalized and accurate recommendations, improving
user satisfaction and system efficiency.

(2) In modern society, as the public’s demand for high-quality
collective decision-making increases, LSGDM methods have gradually
become a research hotspot. In studies related to LSGDM, the integra-
tion of SNA, machine learning methods, and optimization algorithms
has been extensively investigated. In this study, we introduce two
new negotiation methods to achieve fairness and cost minimization
in CRP from a cooperative game theory perspective. Notably, these
concepts have not been fully investigated in LSGDM, although they
have been widely used in other domains. For example, in the process
of public policy making, these methods can effectively find the balance
point of multi-party interests, thus increasing public participation and
satisfaction.

(3) From the perspective of implementer, this study is based on
the principle of global minimum cost, aiming to achieve consensus
through the optimization of adjustment cost distribution. By comparing
the adjustment costs in independent and centralized decision-making
environments, we have developed a non-cooperative and coopera-
tive two-type MCCM, which facilitates more efficient cooperation and
consensus. Therefore, this study not only provides effective tools for op-
timizing resource allocation and improving decision-making efficiency
but also helps implementers maintain flexibility and adaptability in
dynamic decision-making environments.

(4) From the perspective of the participants, this study aims to
explore a strategy that ensures fair cost allocation based on the princi-
ple of maximum fairness. By considering the participants’ negotiation
ideal points and threat points, we have developed two new LSGDM
negotiation methods. These methods not only enhance fairness in the
decision-making process, but also effectively reduce conflicts arising
from uneven cost distribution. In practical negotiations, this can pre-
vent excessive bias towards one party’s interests, thereby contributing
to more stable and enduring agreements.

9. Conclusions

The proliferation of the internet has not only propelled a paradigm
shift in decision-making but also heightened the demands for fairness
and efficiency in these processes. With the increase in the number of
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articipants, LSGDM methods have demonstrated unique advantages
in addressing complex decision questions, thus becoming an important
research topic in the field of decision-making. In this study, we have in-
troduced two novel LSGDM methods, whose superiority and reliability
have been validated on real datasets from a music platform. The main
contributions of this study are as follows:

(1) To address the potential issue of network sparsity caused by
the participation of a large number of DMs in social networks, we
have developed a two-stage semi-supervised FCM clustering method
with trust constraints. This method effectively alleviates the impact of
data sparsity on clustering outcomes and improves the validity of the
clustering results.

(2) From the perspective of cooperative game theory, we have
analysed the optimal consensus adjustment strategies for participants
under both cooperative and non-cooperative conditions. In doing so,
we have also accounted for potential selfish behaviours to ensure the
acceptability of the decision outcomes.

(3) The research results indicate that cooperation does not always
bring the expected benefits to participants. Therefore, by analysing
the outcomes in various scenarios, we can predict the actions that
participants are likely to take, providing valuable insights for the
decision-making process.

(4) To address the issue of fair distribution in global optimal con-
sensus adjustment, we have developed two LSGDM consensus methods
based on bargaining. These methods ensure fair decision adjustments
in situations involving multiple participants.

Future work will focus on further expanding the application and
theoretical exploration of the current methods. We plan to conduct
in-depth research in the following areas:

(1) We will explore various social relationships within social net-
works, such as cooperative, competitive, and power relationships, and
study game mechanisms based on these relationships to better under-
stand their role in decision-making processes.

(2) We will focus on analysing the optimal strategy choices of
participants in non-cooperative games and examine the realization
of Nash equilibrium, further enhancing the theoretical foundation of
decision models.

(3) We plan to apply these methods to more complex real-world
scenarios, such as emergency decision-making, the green economy, and
competitive supply chains, to validate their broad applicability and
practical value in diverse decision-making environments.
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