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Abstract—Linguistic Group Decision-Making (LiGDM) aims
at solving decision situations involving human decision-makers
(DMs) whose opinions are modeled by using linguistic informa-
tion. To achieve agreed solutions that increase DMs’ satisfaction
towards the collective solution, Linguistic Consensus Reaching
Processes (LiCRPs) have been developed. These LiCRPs aim at
suggesting DMs to change their original opinions to increase
the group consensus degree, computed by a certain consensus
measure. In recent years, these LiCRPs have been a prolific
research line, and consequently numerous proposals have been
introduced in the specialized literature. However, it has been
pointed out the non-existence of objective metrics to compare
these models and decide which one presents the best perfor-
mance for each LiGDM problem. Therefore, this paper aims at
introducing a metric to evaluate the performance of LiCRPs that
takes into account the resulting consensus degree and the cost
of modifying DMs’ initial opinions. Such a metric is based on
a linguistic Comprehensive Minimum Cost Consensus (CMCC)
model based on ELICIT (Extended Comparative Linguistic
Expressions with Symbolic Translation) information that models
DMs’ hesitancy and provides accurate Computing with Words
processes. Additionally, the linguistic CMCC optimization model
is linearized to speed up the computational model and improve
its accuracy.

Index Terms—Computing with words, ELICIT information,
Fuzzy linguistic approach, Linguistic cost metric, Minimum cost
consensus

I. INTRODUCTION

In Group Decision-Making (GDM), a group of DMs faces
a decision situation in which they provide their preferences to
select the best alternative as a solution to the decision problem.
Even though the participation of several DMs allows the
consideration of several points of view in the decision process,
it often implies the emergence of disagreements among them,
which should be properly managed to avoid unsatisfactory
results. Consensus Reaching Processes (CRPs) were designed
to soften such discrepancies and drive the group toward
an agreed solution [1]-[3]. Classically, a desired consensus
threshold is fixed a priori, then a discussion process is carried
out in which a moderator suggests the DMs to modify their
preferences in order to increase the group consensus degree.
A CRP is usually an iterative process which is repeated for
several rounds until either the consensus degree surpasses
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the consensus threshold or the number of rounds exceeds a
maximum limit [2].

Real-world GDM problems and their CRPs are generally
presented in uncertain contexts characterized by the absence
of objective information, which increases the complexity of the
decision situation. Under these circumstances, the DMs may
have difficulties in providing their opinions by using numerical
assessments. To offer more realistic and suitable frameworks
for DMs to express their preferences according to their natural
way of thinking, the use of the fuzzy linguistic approach and
linguistic variables [4] has increased its popularity in recent
years. When DMs provide their opinions through linguistic
assessments, we talk about LiGDM [5] and LiCRPs [6]-[8].

Since achieving linguistic agreed solutions is essential in
many real-world decision situations [9], [10], the interest
of researchers has been aroused, leading to many LiCRP
proposals in the specialized literature [1]. Although a priori
having many proposals could make easier the resolution of
LiGDM problems, the bibliographic analysis developed by
Garcia-Zamora et al. [1] pointed out that there is an evident
lack of objective metrics to compare the performance of
different LiCRPs and discern which one presents a better
performance to deal with a certain LiGDM problem. The
main consequence of this situation is that the authors justify
the alleged well-performance of their proposals through the
resolution of simple illustrative examples, which could easily
be biased to obtain good results [1]. In this regard, authors
have used different measures to compare consensus proposals
such as the number of rounds necessary to reach the consensus
threshold [11], [12], the trust among experts [11] or the
consensus degree [2], [13]. However, these aspects could
not be representative of the quality of the models because
they do not provide enough information about their global
performance, and, consequently, authors could show them
in the most convenient way. For instance, a fast consensus
model in terms of number of rounds may present several
drawbacks related to the achieved consensus degree or the
changes performed in the original preferences, which could
have been excessively modified. In addition, these measures
may allow comparing models in a specific case study, but they
do not offer a global vision of the performance of the model
when different DMs’ opinions are used.

Therefore, the main goal of this paper is proposing the first
linguistic metric to objectively compare linguistic consensus
models and show which one presents the best performance
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Fig. 1. A scheme of the proposed metric

in the resolution of a LiGDM problem. The proposed metric
compares the results of the LiCRP with an ideal scenario
in which the consensus threshold is achieved by making as
few changes as possible to DMs’ original opinions (see Fig.
1). This paper uses the CMCC [14], [15] models, which are
automatic CRPs, to determine such ideal results but extending
them to deal with linguistic information. Consequently, we
raise the following research questions.

+ RQI1: How to define CMCC models in a linguistic envi-
ronment?

o RQ2: How to evaluate objectively the performance of
LiCRPs?

To answer these questions, we first propose a linguistic
CMCC model for ELICIT information [5], a recently proposed
linguistic modelling approach that guarantees precise compu-
tations with linguistic information [4]. ELICIT information
hybridizes the 2-tuple linguistic approach [16] and Hesitant
Fuzzy Linguistic Term Sets (HFLTS) [17] by introducing
a Computing with Words (CW) [18], [19] framework that
guarantees precise computations with hesitant expressions
without losing interpretability during the operational process
[5]. These ELICIT-CMCC models inherit the properties of
classic CMCC models [14] for numeric assessments, thus
they provide modified DMs’ preferences which preserve as
much as possible the initial opinions and, in turn, guaran-
tee the predefined consensus threshold. In addition, ELICIT-
CMCC models follow the CW methodology [18], [19], i.e.,
linguistic results are obtained from linguistic inputs. Since
such optimization models do not only require the use of many
variables, but also the use of nonlinear constraints involving
the absolute value, this proposal also includes a linearized
version of the proposed ELICIT-CMCC models to speed up the
computational model and improve the accuracy of the solution
for the decision situation. Finally, these novel linguistic CMCC
models are used as the basis to define a linguistic cost metric to
evaluate LiCRPs that is based on two indicators to determine
the quality of a consensus model: (i) the consensus degree
achieved and (ii) the minimum changes necessary to obtain
an agreed solution. The former is essential to ensure that
the consensus process has been carried out successfully, i.e.,
it would be nonsense to score a consensus model that does
not achieve the desired level of consensus with a high score
[12], [13]. The latter guarantees that the original opinions of
the DMs are not modified beyond the strictly necessary to
reach the consensus threshold [14]. Therefore, a LiCRP that
performs unnecessary changes on DMs’ opinions to reach the
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consensus will receive a low mark.
To summarize, the main novelties of this proposal are:

e« CMCC models for linguistic information are proposed
following a CW approach.

¢ Such models are then linearized to accelerate computa-
tional cost, even with dealing with hundreds or thousands
of DMs, and improve the precision of the results.

o From the linearized ELICIT-CMCC model, it is proposed
a linguistic cost metric to objectively evaluate the perfor-
mance of LiCRPs.

The reminder of this proposal is as follows. Section II
includes some preliminary notions required to better under-
stand this proposal related to LiGDM, 2-tuple and ELICIT
linguistic representation schemes and MCC models. In Section
III CMCC models for ELICIT information are proposed and
then linearized. Here, it is also provided a brief analysis
regarding the feasibility of such linear models when dealing
with decision situations in which hundreds or thousands of
DMs take part. Afterwards, Section IV introduces a linguistic
cost metric based on the previous CMCC models and a couple
of CRPs are evaluated to illustrate its working. Section V
shows the CW nature of the ELICIT-CMCC models through
the resolution of a LiGDM problem, and Section V-C includes
a comparative analysis between the novel linguistic CMCC
model for ELICIT information and other proposals. Finally,
Section VI concludes the paper.

II. BACKGROUND

This section introduces a revision of the basic notions
related to the proposal. First, the basic concepts of LiGDM are
revised. Afterwards, the linguistic 2-tuple model and ELICIT
linguistic representation model are reviewed, and some nota-
tions are fixed to simplify their understanding. Finally, LiCRPs
and MCC models are revised.

A. Linguistic Group Decision-Making

Decision processes are inherent in human beings’ daily life.
These decision situations consist of making the best possible
choice among several possible solutions to a certain problem.
Some decision problems are simple to solve and may involve
just one individual. However, other decision problems are
more complex and require several DMs, who may contribute
with different points of view and knowledge. Formally, a GDM
problem is modeled as a decision situation in which several
individuals or DMs E = {ej,ea,....,e;n}, m € N, have to
decide which alternative from a set X = {zy,22,....,2y},
n € N, is the best solution to a problem [7], [20].

In addition, the complexity of GDM problems increases
when the available information is not objective, but vague
and imprecise. In such contexts, the stakeholders must address
the decision situation from a subjective point of view by
using qualitative assessments. In this regard, modeling DMs’
opinions properly becomes crucial to managing the uncer-
tainty inherent in these situations. Although some proposals
translate qualitative information to a numerical scale, the
goal of LiGDM is to model the uncertainty using linguistic
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expressions close to the natural way of human thinking (see
Fig. 2).

This proposal uses the fuzzy linguistic approach [4] based
on fuzzy sets theory [21], [22] to model uncertainty in LiGDM.
This approach represents the linguistic information using
linguistic variables [4], which usually model the information
through parametric membership functions with triangular or
trapezoidal graphical representation, among others (see Fig.
3).

The resolution of LiGDM problems implies to carry out
computations with linguistic information. In this sense, the
CW approach aims to provide linguistic solutions to problems
formulated with linguistic expressions that emulate human
thinking. There are several CW proposals in the literature
[1] such as the linguistic model based on the fuzzy relation
proposed by Tang and Zheng [23], linguistic distribution
assessment proposed by Dong et al. [24] or the fuzzy set
approach to treat determinacy and consistency of linguistic
terms introduced by Ma et al. [25]. In particular, this proposal
considers that the linguistic information is modelled by the
2-tuple linguistic model [16] and the ELICIT information
[5], which highlight because they allow modelling uncertainty
according to the fuzzy linguistic approach [22] without losing
information or interpretability.

B. 2-tuple linguistic model

The 2-tuple linguistic model [16] aimed to overcome the
lack of precision in classical linguistic computational ap-
proaches through a continuous fuzzy representation of the
linguistic information and a computational model capable of
carrying out simple symbolic precise computations without
approximations, obtaining accurate linguistic results according
to the CW scheme.

A 2-tuple linguistic value is a tuple (s;,a) € S := S x
[—0.5,0.5], where s; is a linguistic term that belongs to a
certain linguistic term set S = {so, s1, ... 4} (for a fixed even

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
ownloaded on October 14,2022 at 09:49:11 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: L Martinez.

result = (s5, o)

Fig. 4. Symbolic translation

number g € N) and « is the so-called symbolic translation,
i.e., a numerical value that represents the shifting of s; fuzzy
membership function (see Fig. 4). Note that for a linguistic
2-tuple value (s;, ) € S, the possible values for the symbolic
translation « are:

[—0.5,0.5) Zf S; € {817827...,857,1}
a € <10,0.5) if s; = So
[—0.5, 0] if si=54

The key characteristic of 2-tuple linguistic expressions is
the fact that they can be translated into a numerical quantity
x € [0, g], which simplifies the computations:

Proposition 1. [16] Let S = {so,...s,} be a linguistic term
set. Then, the function Ag' :'S — [0, g] defined by

Agl(si,a) =i+a, ¥ (s;,a) €S
is a bijection whose inverse Ag : [0,g] — S is given by
As(x) = (Sround(a), © — round(z)) V = € [0, g],

where round(-) is the function that assigns the closest integer
number i € {0,...,g}.

Remark 1. Note that any linguistic term s; € S can be repre-
sented as a 2-tuple linguistic value by considering (s;,0) € S.

C. ELICIT information

The 2-tuple linguistic framework follows a CW scheme to
carry out computations, obtaining precise results that are easy
to understand. However, it presents an important drawback
regarding the lack of expressiveness, because the linguistic 2-
tuple values are not able to model the DMs’ hesitancy between
several linguistic terms like HFLTS [17] do. Labella et al.
[5] proposed the use of ELICIT information to address this
limitation by introducing a linguistic approach that preserves
the accuracy and understandability of the 2-tuple linguistic
model and improves the expressiveness by hybridizing it with
HFLTS.

Formally, ELICIT information is denoted here by an ex-
pression [S;, 5], ,, Where 5;,5; € S,i < j are two 2-tuple
linguistic values. In addition, ELICIT values also consider two
parameters 1, y2 which guarantee that no information is lost
during the computations with these expressions. It should be
noted that any Trapezoidal Fuzzy Number (TrFN) [21], [22]
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Fig. 5. Example of ELICIT linguistic expressions.

can be unequivocally represented as an ELICIT value (see Fig.
35).

Remark 2. A TrFN is a function T = T'(a,b,¢,d) : [0,1] —
[0,1] of the form

0 if0<z<a

—2  jfa<zxz<b

b—a
T(x) = 1 fo<z<c Vzel01]
Z:i fe<z<d

0 ifd<z<1

for certain 0 < a < b < ¢ < d < 1. For the sake of clarity,
the set of all TrFNs on the interval [0, 1] will be denoted by

T={T:[0,1 —[0,1] : T is a TrFN}.

Proposition 2. Let S be the set of all possible ELICIT values.
Then the mapping ¢ given by:

¢C:T— S
T(a, b,c, d) — [51;52]71’72

where

1
51 =Ag(gb) 71 =a-— Inax{b 92,0}

1
5o = Ag(ge) 2 =d— min {CJr > 1}
g
is a bijection whose inverse (' is defined by:
¢t ST
[51,?2]71’72 — 77(0,7 b, C, d)

and allows computing the fuzzy representation of an ELICIT
expression as follows:

A_1§ _ 1 A_1,
a =~ + max &70 ’b:@,
g g
A_l Sm A_l Sm +l
027’9 (S L)7d:'yg+min{S( ) 971 .
g g

Remark 3. [t must be highlighted that the notation
[51,52]v1 v, is used for the sake of clarity, but the reader
should keep in mind that, in spite of its formal nature, this
notation resembles a linguistic expression. In other words,
ELICIT information can be used to represent the hesitancy
between several linguistic terms and perform precise compu-
tations on them by providing a linguistic result.
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The ELICIT computational model follows a CW approach
that computes the fuzzy representation of the respective lin-
guistic expressions, whose results are lately retranslated to
ELICIT information. From a theoretical point of view, ELICIT
expressions are generated by a context-free grammar which
models comparative linguistic structures close to human lan-
guage such as at least bad, at most fast or between expensive
and rather expensive [5]. Thus, this context-free grammar
together with a linguistic term set, for instance,

S = {Much Worse (MW), Worse (W), Slightly Worse (SW)
Equal (E), Slightly Better (SB), Better (B), Much Better (MB)}

can model linguistic expressions such as, at least (W, 0.2)°-2,

at most (W,0.1)%1 or between (E,0)~% and (SB,0.32)°.

Remark 4. Note that any linguistic term s; € S can be repre-
sented as the ELICIT expression (s;,0)0 = [(si,0), (si,0)]oo-
In the same way, an HFLTS {s;, s;41,...,8;}, © < j, can be
translated to the ELICIT value [(s;,0), (s;,0)]o0.

To aggregate ELICIT values, Labella et al. [5], proposed
the use of the fuzzy weighted average operator A : 7™ — T
defined by

ATy, To, ... Ty) =
m m m m

(Z wkT,?, Z wkT,f, Z wles, Z wkTg),

k=1 k=1 k=1 k=1
where T} denotes the ¢-th ¢ € {a,b,c,d} coordinate of the
TrFN Ty k= 1,2, ...,m and wy,wo, ...,wpm, > 0, D700 wi =
1 are the weights for the DMs.

A comparison measure to order ELICIT values based on the
method presented by Abbasbandy and Hajjari in [26] was also
proposed. This method translates the fuzzy representation of
the ELICIT values, given by a TrFN, into a numerical value
called magnitude, which is defined by:

a+5b+5c+d
12 '

To compare two ELICIT values, it suffices to compute the
respective magnitudes. According to Labella et al. [5], the
higher the magnitude, the larger the ELICIT value.

Furthermore, to measure the distance between two ELICIT
values, Labella et al. [20] proposed using the geometric
distance [27] between their respective associated TrFNs, § :
T x T — [0,1] defined by

Mag([si’ Sj]’)’h’ﬁ) = Mag(T(av b, c, d)) =

1
6(T1,Ty) = 1(\01 —ag| + (b1 — ba| + |1 — ca| + |d1 — da)

where 71 = (a1,b1,¢1,d1), and T = (az, ba, c2,d2). Note
that, even though the geometric distances were originally
proposed as a parametric family [27], here we consider just
the distance J because it is defined in terms of absolute values
rather than powers and this facilitates the linearization of the
optimization models we aim at proposing in the following
section.

The use of ELICIT information can be adapted in classical
linguistic preference structures. In the following, we consider
that DMs’ opinions are modelled by using ELICIT Preference
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Relations (EPRs), i.e. matrices of ELICIT values whose asso-
ciated TrFNs are additive reciprocal matrices of TrFNs.

Remark 5. Let us define the set of matrices whose items are
TrFN:

Mnxn(T) = {(T”)nxn
We will say that T € M« (T) is additive reciprocal [28] if

for any i,j5 € {1,2,..,n}, where TU[t], t = 1,2,3,4
represents the t-th coordinate of the TrFN T%. Furthermore,
we will use the notation My, x,,(T)* to denote the set of TrFN
matrices that are additive reciprocal.

Therefore, EPRs allow the generalization of other com-
monly used preference structures based on linguistic pairwise
comparison matrices that rely on triangular or TrFNs such as
Linguistic Preference Relations (LPRs) [29] or Hesitant Fuzzy
Linguistic Preference Relations (HFLPRs) [30]. For example,
the HFLPR on the linguistic term set S given by:

FE W Bt SWand E
B E SB
Bt E and SB SW FE

may be expressed as the EPR

(E,0)0 (W,0)0  [(SW,0), (£,0)]o0
(B,0)o (E,0)0 (SB,0)
[(E,0),(SB,0)lopp (SW,0)g (E,0)

D. Linguistic Consensus Reaching Processes

In order to address GDM making problems, several rules
have been proposed in the classical literature, such as the
majority rule, the minority rule, unanimity, or the Borda
count [31], [32]. However, even using these rules, some DMs
may feel unsatisfied with the solution chosen by the group
because their opinions have not been considered as much as
they expected. This situation may especially be undesired in
certain real-world problems which require a concrete level of
agreement among the DMs.

To soften these disagreements, CRPs have been developed
to guide DMs towards an agreed solution [7], [14], [20].
Usually in a CRP, a moderator or automatic moderator process
suggests the DMs how to modify their opinions to lead the
group to a greater agreement through different discussion
rounds. Due to the increasing necessity of LiGDM, CRPs have
also been adapted to manage linguistic information, emerging
LiCRPs. The general scheme of a LiCRP follows the scheme
of CRPs but includes the management of linguistic information
and presents the following phases [2]

1) Gathering preferences. DMs’ opinions are elicited by

using linguistic information.

2) Determining consensus degree. In each round of discus-

sion, the current consensus degree 1 € [0, 1] in the group
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T eTV1<i<nl<j<n}.

is derived to evaluate the evolution of the consensus
process.

3) Consensus control. After the discussion, the moderator
computes if the group has reached a certain consensus
threshold (up € [0,1]). If so, the CRP stops and the
exploitation process starts. If not, the discussion process
continues for another round. In any case, if a predefined
maximum number of rounds MaxzRounds € N is
exceeded, the CRP stops.

4) Recommendation process. In case of the desired con-
sensus threshold iy is not achieved, those DMs whose
opinions are furthest from the rest of the group are
identified and modified if necessary.

5) Exploitation. After the desired consensus threshold is
reached, the consensual modified opinions are aggre-
gated in order to derive the group collective opinion.

Over the years, researchers have proposed many consensus
models to support CRPs [15], [33]. For this reason, Palomares
et al. [2] proposed a taxonomy to categorize them based on
two characteristics related to consensus models:

o Type of recommendation process to modify DMs’ opin-
ions.

— Feedback mechanism. The moderator asks the DMs
if they want to change or not their preferences [7],
[20].

— Automatic changes. DMs’ opinions are automatically
modified according to a certain algorithm without
asking the DMs [15], [33].

e Type of consensus measure to derive the consensus
degree.

— Consensus measure of class 1. The consensus degree
among the DMs is computed by comparing the DMs’
preferences with the collective opinion [15], [34],
[35].

— Consensus measure of class 2. The consensus degree
among the DMs is computed by comparing the DMs’
preferences with each other [15], [20], [36].

E. Comprehensive Minimum Cost Consensus

Ben-Arieh and Easton [33] proposed MCC models to study
the cost of changing DMs’ preferences in a consensus pro-
cess. These models are automatic CRPs (without feedback
mechanism) which minimize the cost of changing DMs’
original preferences by assuring that a maximum absolute
deviation (¢ €]0, 1]) between the individual assessments and
the collective opinion is not surpassed. Formally, for the initial
values of the preferences (01, 09, ..., 0,,) € R and a cost vector
(c1,¢2,...sCm) € RT the proposed CRPs was defined by:

min cilor —o
&, cxloe = ol (MCC)

st o —0|<ek=1,2,...,m.

where (01,...,0,,) are the adjusted opinions of the DMs, ©
represents the group collective opinion computed by using a
weighted average operator and € is the maximum acceptable
distance of each DM to the collective opinion.
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Lately, Zhang et al. [37] studied the influence of the
aggregation operator used to derive the collective opinion on
the solution of the optimization problem. Consequently, they
proposed a generalized version of MCC as follows

m
min Y ¢i|or — okl

k%:F(al . Om) (MCC:AO)
St{ lor —o| <e,k=1,2,...,m.

where 0 is now calculated using a different aggregation
operator F': R™ — R .

Even though these proposals allow translating a CRP situa-
tion into a mathematical programming problem, the constraint
defined by ¢ is quite simple and does not guarantee that
a certain consensus threshold po € [0,1] is achieved by
the group. This drawback is solved by the CMCC models
introduced by Labella et al. [14]. These models include the use
of another constraint to control such a consensus threshold.

m
min Z Ci|5i — 0i|
i=1

0=F(01,...,0m) (CMCC)
st.q |0:—0<ei=12,...,m
consensus(01,...,0n) > lo-

where consensus(-) represents the desired consensus mea-
sure.

III. ELICIT-CMCC MODELS FOR LIGDM

Keeping in mind that our main goal is to define an objective
metric for measuring the performance of different LiCRPs,
it is essential to compute some ideal values for the DMs’
modified preferences. To obtain such optimal values, we
follow the CMCC philosophy [14], which assumes that the
best possible values for such modified opinions are those
that, by satisfying the consensus threshold, are closest to their
original preferences.

Even though MCC and CMCC models are focused on
numerical assessments [14], [15], [33], [37], some proposals
introduce extensions of the MCC models to a fuzzy environ-
ment. Nevertheless, the extended models either neglect the CW
approach [38] or are not able to model hesitancy [16], [39].
Due to ELICIT information allows carrying out computations
with linguistic expressions which model hesitancy without
loss of information, this section extends the numeric CMCC
models [14] to deal with ELICIT information and obtain an
optimal adjustment consensus model for the CW approach.

The general scheme of this proposal is as follows: let us
consider a LiGDM problem in which E = {ej,ea,...,em}
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ELICIT
Solution

Retrans
-lation

DMs have to decide in a consensual way which alternative
X = {x1,22,...,2,} is the best solution for a concrete
problem. To do so, each DM provides a HFLPR [30], which
is expressed in terms of ELICIT information as an EPR.
The ELICIT information contained in these matrices is then
expressed as the corresponding TrFNs by using the mapping
¢! (see Prop. 2). Such TrFNs are used as inputs for the
ELICIT-CMCC model, whose output provides the agreed
preferences which are closest to the original opinions given
by the DMs. Finally, the modified preferences obtained of
solving the optimization problem, represented by TrFNs, are
retranslated into ELICIT information by using the mapping (.
(see Fig. 6).

Let O1, 03, ..., Oy € My, (T)* be the additive reciprocal
matrices of TrFNs corresponding to the translation via the
mapping (! of DMs’ original preferences expressed in form
of EPRs and let 71, T, ..., T,y € My,x(T)* be the respective
modified DMs’ opinions. The cost function and the consensus
measures for these values are modeled by using the distance
¢ revised in Section II-C. Consequently, the classical distance
measure between DMs’ opinions and the collective opinion
(0 < € < 1) and the consensus threshold used in CMCC
models (0 < pp < 1) are adapted to the ELICIT-CMCC
models as follows:

e ELICIT-CMCC model considering a consensus measure
of class 1:

~ min
T, T

DI LICIENC/D
€T =1 i<y
T = A(T}7, Ty, ..., Th),1<i<j<n,
st ST TY)<el1<i<j<nk=1,2.,m,
1= % S0 Y wid (T T > pao,
(ELICIT-CMCC:1)

e ELICIT-CMCC model considering a consensus measure
of class 2:

~ min
T, T

>3 e, o)
€T k=1 i<
TV = AT, Ty, ..\ Thi),1 <i<j<n,
st ST TY)<el1<i<j<nk=12.,m,
1= % Yt Diej BT, T) 2 o,
(ELICIT-CMCC:2)

where ¢/ € [0,1)(31, i< ¢/ = 1) models the cost of
moving the DM e;,’s preference of the alternative x; over x;,
W1, Wa, ..., Wy, € [0,1] (304w = 1) are the weights for
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the DMs, N = ”(” 1)

average operator.

,and A: 7™ — T is a fuzzy weighted

Remark 6. To adapt these linguistic models to return triangu-
lar fuzzy numbers, the condition T”[ ] < T”[ | < T7[3]
T,7[4] should be replaced by T[1] < TJ[2] = T} [3]
T,zj [4].

INIA

It should be highlighted that both the inputs and the outputs
of these models are represented by using linguistic information
(EPRs), following a CW scheme which facilitates the under-
standability of the results by the involved DMs (RQ1).

Note that the resolution of the previous consensus models
requires numerous variables and constraints of a nonlinear op-
timization problem, which may lead to a high time-consuming
[7]. To overcome this drawback, we introduce below linearized
versions of both ELICIT-CMCC:1 and ELICIT-CMCC:2. For
the sake of clarity, the domains of the constraints in the models
below use the notation Z := [a, b]NN for any pair a < b € N.

Theorem 1 (Linear ELICIT-CMCC:1). Let O}’ [t] be the t-th
coordinate (t = 1,2,3,4) of the TrFN O, which represents
the initial rating about the alternative x; over x; provided
by the DM ey, In the same way, T}’ [t] t = 1,2, 3,4 denotes
the corresponding modified opinions. Then, the model ELICIT-
CMCC:1 is linearized as follows:

mn IS S

e[01]4k 1i<yj t=1
0<vl[] <L keI iely ' jell, t eI}
“1<ul < LkeIriel} " jell, te T}

][t] T”[t] OZJ[f]kezm,z’ezn—ljeI:;l,tezf
> ult keI ie ™ j eI, t €T}
[t]>—u1[ﬂ keIt ieIy ' jeTrh, t €T}

Tw[t] ST [t i e YT j €T t € T}
ogz”[_t_]§1 keIl iceIy ' jeIr,,t €I}
—1<ylM<LkeIrie} jeIl, tel}
yk ) =T/ Tk eI ie L} j eIy, t € I}
27 [t >y [t), keI”',zGI{L_17jtefH,teIl
’[t] —ylth keI ie I} j eIy, te T}
T,;J[l] < T,;J[Q] <STIB <TPM,keIrieIr ™ j e,
4Zt L2 <e keI, i€y LieIr,
4NZk 1Zz<7wkZz 12K It > o
(L-ELICIT-CMCC:1)

s.t.

where ¢/ € (0,111, Doicy ¢/ = 1) model the cost of
moving the DM ey,’s preference of the alternative x; over x;,
W1, W2, ..., Wy, € [0,1] (341, wi, = 1) are the weights for the
DMs, N = % and wi,ws, ...,wm € [0,1] 7L, wr = 1)
are the weights for a fuzzy weighted average operator.

Theorem 2 (Linear ELICIT-CMCC:2). Let O} [t] be the t-th
coordinate (t = 1,2,3,4) of the TrFN Ozj which represents
the initial rating about the alternative x; over x; provided by
the DM ey. In the same way, T,ij [t] t = 1,2,3,4 denotes the
for the corresponding modified opinions. Then, the linearized
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version of the model ELICIT-CMCC:2 is given by:

m

m1n 4 ZZ Zt [t]

k=11i<j t=1

0<v”[2‘]<1 kezpriery ™t ]EI’H,tEIl
—1<u“[]<1 ke ieIp! Z{}H,tell
uk[f] T[] — O;j[]kelmyezﬂ JEIN, teT}
J[t]>u [t] kezpricIpt Jezl';l,teﬂ

[t]> —ultl, keI ie Iy j TP t €I}
T It = ZZ':lwkT- H
0< [t <1ieZf ™ jelr, tel}
—1<y”[f]<1 keIpieI} ', jeIr, tel}

vt =T - Tl keI icT} jeTr teT
st 8 0[] >yl [t]kelmieI"]]eIH,teI]
J[t] —yl keI ie eI t €T}
T ] _r”[ | < T8 < T/ keI ie I}t j e IR,
4Ef1 H<5AEIIJGIH717‘€I&1
0<qp [t]<1 ker ' ileIr ieIy!
—1<pdlt) <L ke ],leI’”lzeI ,]EIH,teL
Pl =Tt — T,U[t],keI{”*%leI;ﬂNeI J eI, teTE
agltl > plt ke I L e I i € I ,]eZH te1
qm[t]> —piltl, ke ! leIk}H,eI LjeIr  telf
— 17 Dty Ty SEE L 43l = po,
(L-ELICIT-CMCC:2)

€T teTh

where ¢/ € [0, 1}(Ek 1 ZK] = 1) model the cost of
moving the DM ey, ’s preference of the alternative x; over x;,
wi, Wa, .. € [0,1] (X, wi, = 1) are the weights for the
DMs, N = M and wy,ws, ...,wm € [0,1] (X, wp = 1)
are the welghts for a fuzzy weighted average operator.

Proof. The proof of these results are provided in Appendix
A. O

This linear formulation of the ELICIT-CMCC models al-
lows to considerably accelerate the resolution of the optimiza-
tion problem and improve the accuracy of the results provided
by computational solvers. Indeed, the linear formulation also
allows applying these models in large-scale GDM problems
[1], [40], namely, decision situations in which hundreds or
thousands of DMs may take part. In this regard, we have
tested the performance of the proposal in such contexts under
randomly-generated initial preferences. The simulations have
considered n = 4, pp = 0.8 and € = 0.2 and have been carried
out by using the solver Clp for the programming language
Julia 1.6 [41] on the cloud service Google Colaboratory [42]
(2.20GHz Intel(R) Xeon(R) CPU and 13 GB RAM). These
simulations have shown that the model ELICIT-CMCC:1 is
able to deal with problems involving hundreds of DMs in a few
seconds and just needs around four minutes to solve problems
with 2000 DMs. However, since the volume of constraints
and variables required to linearize ELICIT-CMCC:2 is much
higher, the latter requires around 26 minutes to solve problems
in which 200 DMs are considered.

Remark 7. Note that, according to the literature review
carried out by Garcia-Zamora et al. in [1], most of the existing
large-scale CRPs are evaluated by using GDM problems
involving just 20 or 50 DMs.

IV. A LINGUISTIC COST METRIC BASED ON

ELICIT-CMCC

The high prevalence of LiGDM problems in society has
attracted the attention of researchers, who have proposed
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many LiCRPs based on the fuzzy linguistic approach [7],
[20]. However, this large number of proposals implies a
considerable problematic related to choose the most suitable
consensus model for solving a certain LiGDM problem. Even
though several authors carry out a comparative analysis with
other proposals in order to show their advantages, the lack
of objective metrics prevents from categorically claiming that
one model is better than another. In addition, this absence of
metrics harms the research in the area, since there is no filter
to evaluate the novel CRPs from a performance point of view
[1].

Hereafter, it is introduced a linguistic metric based on
the ELICIT-CMCC models presented in the previous section.
This linguistic metric aims at measuring the performance
of those LiCRPs which model the linguistic information by
means of linguistic variables with a triangular or trapezoidal
membership function representation because they can be easily
written in terms of ELICIT information. As in the previous
section, here it is considered a LiGDM problem in which m
DMs want to reach a consensus about which alternative, from
a set of n, is the most suitable one with a consensus threshold
o € [07 1[

To do so, their judgements, which are elicited by using
linguistic expressions and pairwise comparisons, are first trans-
lated into TrFNs. If two TrFN matrices 7, T” which are addi-
tive reciprocal are given, the distance between them is com-
puted by using the function v : M, xn (T)* X Muysn(T)* —
[0, 1] defined by:

u(T,T') =

Z 8(T9 T

7<]

e S =T
where (5 is the geometric distance between TrFNs defined

in Section II-C and T%[t], 7" [t] t = 1,2, 3,4 denote the ¢-th

coordinates of the TrFNs T and T"" respectively.

Let O = {01,02,...,0,} C Mpxn(T)* be the TrFN
matrices corresponding to the initial values of DMs’ pref-
erences for the aforementioned LiGDM problem, and let
T = ifl,Tg, o T b C Mysen (T)* be the set of modified
agreed preferences obtained as output from a certain LiCRP. In
the same way, the set 70 = {T7, ..., T%} € Myxn(T)* de-
notes the optimal solution obtained for the consensus threshold
(o by using either the model ELICIT-CMCC:1 if the LiCRP
uses a consensus measure of class 1 or ELICIT-CMCC:2 if
the LiCRP uses a consensus measure of class 2. From these
TrFN matrices, the mean distance between the outputs of the
corresponding consensus models and the original preferences
are computed:

| v (T T) € Man(T)* X Mnxn(T)*

Z (Tx, O) € [0,1]

Z v(TP,0) € [0,1]

Note that these values strongly depend on the original values of
the DMs’ preferences, but a such dependency is not reflected
in the notation for the sake of simplicity.

© 2022 IEEE. Personal use is permitted, but re|
Authorized licensed use limited to: L Martinez.
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Fig. 7. Sketch of the graph of ®¢.25,0.75.

To analyze the performance of the LiCRP, the distance
d computed from the corresponding modified preferences is
compared to the distance dy computed by using the ELICIT-
CMCC model, which provides the preferences that require the
lowest changes to reach the consensus threshold py (when
e=1).

To compare these values, we use the metric @4, ., : [0, 1] X
[0,1] = [-1, o] given by:
(alfag)x+¥y+a2 0<y<pmo
0
1 po <y <1
q)do,uo(xvy) = 0<z<dy
(7:{::28)%(0!4 — agt po <y <1
(F=52) (a5 — au)) + o6 do<x<1

Vx,y € [0,1], where 0 < a1 < ag < az3 < ay < a5 <
ag are some parameters to configure the scale. In this regard,
we propose the use of the default values a; = 0.0, =
0.3,a3 = 0.5,a4 = 0.5, a5 = 0.6, g = 1.0, which guarantee
that the function ®g4, ,,, is valuated in the interval [0, 1]. For
such values, the graph shown in Fig. 7 is obtained when the
distance between the minimal solution to the ELICIT-CMCC
optimization problem and the original preferences is dy = 0.25
and the consensus threshold is po = 0.75.

Note that this metric provides a numeric rating in a [0, 1]
scale which is higher when the performance of the analyzed
LiCRP is better. Consequently, to objectively evaluate the
performance of a LiCRP in a certain LiGDM problem, it
suffices to compute the value of ®g, ., (d, 1), where d is the
distance between the original preferences and the modified
opinions provided as output of the evaluated LiCRP and p is
the consensus degree of such modified preferences.

Remark 8. It should be highlighted that changing the values
of the parameters a1, Qa, ..., g imply a change of the scale in
which the marks of the CRPs are given, but the better CRPs
will still receive the higher marks.

Let us analyze the geometrical interpretation of the value

(I)doyﬂo (dv N):
e 0 < < pyp. In this case, the consensus degree p obtained
by the LiCRP is worse than the consensus threshold .

ublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
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TABLE I
LABELLA ET AL. [20] SIMULATIONS RESULTS FOR po = 0.8.
Simulations S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average
do 0.07 0.09 0.08 0.04 0.09 0.09 0.1 0.09 0.08 0.06 0.08
d 0.09 0.13 0.09 0.06 0.13 0.12 0.16 0.15 0.1 0.07 0.11
o 0.81 0.83 0.8 0.81 0.83 0.8 0.83 0.82 0.81 0.8 0.81
Dy uol(d, ) | 0.855 | 0.831 | 0.876 | 0.875 | 0.841 | 0.852 | 0.811 | 0.803 | 0.863 | 0.886 0.849
TABLE 11
RODRIGUEZ ET AL. [7] SIMULATIONS RESULTS FOR g = 0.8.
Simulations S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average
do 0.06 0.12 0.04 0.1 0.06 0.09 0.04 | 0.06 0.11 0.05 0.07
d 0.14 0.16 0.07 0.19 0.11 0.15 0.07 0.15 0.15 0.13 0.13
m 0.85 0.81 0.82 0.82 0.82 0.82 0.82 0.88 0.8 0.86 0.82
Pgg,ug(d,pn) | 0788 | 0.815 | 0.846 [ 0.77 | 0.813 [ 0.802 | 0.848 | 0.79 [ 0.816 | 0.795 0.808

In this case, the worst scenario is @4, ,,,(1,0) = @1 and

the best ones are those close to the pair (0, i), which

receives a value close to as. o is the value assigned to

the pairs close to (0,0).

e o < p < 1. 1In the case in which the LiCRP reaches the
consensus threshold, it is necessary to differentiate two
scenarios:

- 0 < d < dy. This case is unfeasible in practice
because to achieve the consensus threshold p the
minimum distance required is dy. Therefore, the
metric assigns —1 to the values in this region.
dop < d < 1. In this case, the LiCRP achieves the
consensus threshold g, but the distance d between
the modified preferences and the original ones may
not be close to the optimal distance dy. The best
pairs are those in which the distance d is equal to the
optimal, and therefore the metric receives the value
ag. If the LiCRP reaches the consensus threshold but
makes unnecessary changes (d close to 1), the metric
returns values close to a4. The value as is obtained
when the distance is maximal, but the consensus
level is close to 1.

The metric ®g4, ,, allows testing the performance of a
model by comparing it with the optimal modified preferences
obtained from the ELICIT-CMCC models (RQ2). However,
the value of &7 (d, 1) highly depends on the original values
of the preferences given by the DMs O = {O1,Oa,...,Op }.
To provide fair comparisons, the value of this metric should
be computed for different LiGDM problems. To do that,
the consensus model should be tested under several contexts
O',02,...,0" in order to better evaluate its performance, thus
obtaining an average value @, = 13" | Dy o (d°, 11%),
where df is the minimum value of the cost function for the
initial preferences O°, dj; is the value of the cost function
for the preferences modified by the LiCRP and p® the cor-
responding consensus degree. Therefore, we propose solving
the same LiGDM problem for several randomized preferences
and computing the average value of the metric.

For instance, this metric has been used to evaluate the
performance of two LiCRPs: the consensus model for ELICIT
information introduced by Labella et al. [20] and the model
proposed by Rodriguez et al. [7] for large scale dealing with
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Comparative Linguistic Expressions (CLEs). To do so, 10
simulations with random preferences have been carried out
in both models. In each simulation, five DMs have to decide
which alternative within a collection of four possible choices
is the best one from a consensual point of view. The consensus
threshold has been established in o = 0.8 and the maximum
number of allowed rounds is MaxRounds = 5.

The results of both models are respectively shown in Tables
I and II. Whereas the average value of our metric for the
Labella et al. model is 0.849, the Rodriguez et al. model
obtained an average mark of 0.808. Although both models
usually reach the consensus threshold 1y = 0.8, the Rodriguez
et al. model has shown a slightly worse performance because it
changes DMs’ initial opinions more than Labella et al. model,
i.e. the average value d — d is larger for the Rodriguez et al.
model.

Finally, in order to perform a comparative analysis of this
metric with other proposals, a search in Web of Science of the
topics “metric” and “Consensus Reaching Process” reveals that
there is only one proper related paper proposed by Labella et
al. [14]. Even though, such work also considers as input the
cost of modifying experts’ opinions, the metric here proposed
includes the following novelties regarding the one in [14]:

« The proposed metric in this paper is capable to deal with
flexible comparative linguistic information, which allows
applying the metric in LiCRPs that require the modeling
of decision makers’ hesitancy with expressions closer to
their way of thinking.

o It can be used to rate consensus models for large-scale
LiGDM problems due to the linearization of the ELICIT-
CMCC model.

o Whereas the Labella et al. metric [14] assigns the same
value to models with similar cost, the proposed metric
assigns the metric value according to not only the cost
but also the consensus degree reached by the consensus
model. Consequently, the mathematical definition of the
proposed metric is completely different to the one given
in [14] (see Fig. 7) to ensure that the models are evaluated
according to different scenarios that are determined by the
consensus threshold and the minimum feasible cost.

¢ The metric proposed in [14] is valuated in [-1,1], where
0 is the best scenario in terms of cost and 1 and -1 are
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bad scenarios with different meanings. On the contrary,
the metric here introduced returns a value in a 0-1 scale
that increases according to the quality of the evaluated
model. This new metric, even though it is formally more
complex, simplifies the comparison process because the
higher the value of the metric, the better the quality of
the model.

V. APPLYING THE LICRP METRIC TO LIGDM PROBLEMS

Here, the performance of both the ELICIT-CMCC models
and the proposed linguistic cost metric are shown. First, in
Section V-A, an illustrative LiGDM problem is introduced.
Afterwards, Section V-B solves such a LiGDM problem by
using the CW ELICIT-CMCC:2 model. Finally, in Section
V-C, two LiCRPs proposed in the literature [7], [20] are used
to solve the same LiGDM problem in order to compare their
performances through the linguistic cost metric. Since the
purpose of this section is not solving a real-world problem, but
showing how to use our proposals, we consider a toy problem
with 5 DMs to simplify the process.

A. llustrative LiGDM problem description

The LiGDM problem we aim at solving consists of a group
of five friends m = 5 who want to decide in a consensual
way (to avoid none of them feel unsatisfied with the chosen
alternative) which movie franchise is the most preferred by
the group to do a marathon. The possible alternatives are x; :
Avengers, xo : Harry Potter, x5 : Star Wars and x4 : The
Lord of the Rings. In order to facilitate the decision process,
they are asked to provide linguistic assessments by comparing
the alternatives to each other. Since they may doubt in their
preferences, we use HFLPRs to model their opinions. The
linguistic expression domain is as follows.

S = {Much Worse (MW), Worse (W), Slightly Worse (SW)

Equal (E), Slightly Better (SB), Better (B), Much Better (MB)} .

The initial values provided by the three DMs are compiled
in Appendix B.A.

B. Solving the LiGDM problem with ELICIT-CMCC models

Here, the resolution of the illustrative LiGDM problem
using the ELICIT-CMCC:2 model is carried out. First, the
HFLPRs provided by the DMs (see Appendix B.A) are rewrit-
ten as EPRs (Appendix B.B) and then expressed as TrFNs by
using the mapping (~! (Appendix B.C).

To obtain the results of the linearized optimization problem,
we have used the programming language Julia [41], concretely
the package Clp which allows solving linear optimization
problems. For a consensus threshold established as o = 0.8
and a maximal distance between DMs and the collective
opinion € = 0.2, the optimal agreed preferences obtained for
the ELICIT-CMCC:2 model are shown in Appendix B.D, and
their translation into ELICIT values are in B.E.

From the collective values, the ELICIT expressions corre-
sponding to the dominance degree [43], [44] of each alterna-
tive over the others are computed by using the fuzzy weighted
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TABLE III
DOMINANCES AND MAGNITUDES FOR DETERMINING THE RANKING OF
EACH ALTERNATIVE

Alternative ELICIT expression Magnitude
1 Bt (SW, —0.33)0-002 gnd (SW,0.01)~9-992 | 0.30620
zo Bt (E,0.28)%-919 and (SB,0.17)~9:032 0.61935
x3 Bt (SB,—0.34)%993 gnd (B, —0.13)70:053 0.70694
T4 Bt (SW, —0.15)9-925 gnd (E,—0.5)0-035 0.36750

average. For each one of such dominances, the respective value
of its magnitude [5] (see Section II-C) is computed in order to
determine the ranking of the alternatives. Both the dominances
and their magnitudes are summarized in Table III.

Therefore, the ranking of the alternatives is: x3 > x2 >
x4 > x1. In other words, choosing the alternative x3 : Star
Wars is the best option from a consensual point of view, which
requires the lowest cost.

C. Comparative Analysis

This section is devoted to compare the performance of two
different LiCRPs to the ELICIT-CMCC approach when facing
the problem described in the previous section. To do so, several
aspects of these models are analyzed, such as the value of the
metric ®,, or the number of rounds required to reach the
desired consensus under different scenarios.

The selected consensus models for this comparative analysis
are the consensus model for ELICIT information introduced
by Labella et al. [20] and the consensus model that deals with
CLEs proposed by Rodriguez et al. [7]. Both proposals have
solved the problem previously introduced under two different
scenarios:

1) Scenario 1: gy = 0.8 and MaxRounds = 5 (Table IV).
2) Scenario 2: pug = 0.9 and MaxRounds = 5 (Table V).

In addition, the value for the parameter ¢ used in the ELICIT-
CMCC:2 is set as € = 0.2. This model is also evaluated under
the two aforementioned consensus situations.

In the first scenario, the Labella et al. model [20] achieves
a consensus degree ;1 = 0.81 in 1 discussion round, and the
Rodriguez et al. [7] model achieves a consensus degree of
© = 0.85 in 2 discussion rounds. Regarding the maximal
distance between DMs and collective opinion, note that the
condition ¢ < 0.2 guarantees such a maximal distance in
ELICIT-CMCC:2 (see Table 1V). However, such distance is
much higher in both Labella et al. and Rodriguez et al. models,
which can be appreciated in Fig. 8.

In the second scenario, the consensus degree obtained by
Labella et al. model is ;1 = 0.91 in 5 rounds and the obtained
by Rodriguez et al. model is ¢ = 0.92 in 3 rounds. In this
scenario, the distance between modified preferences and the
collective opinion is lower than before for the Labella et al.
model (0.12), but still higher than ¢ = 0.2 for the Rodriguez
et al. (see Table V and Fig. 8).

As expected, the costs obtained in ELICIT-CMCC:2 (0.06
and 0.12) are lower than the costs of both Labella et al.
[20] (0.08 and 0.15) and Rodriguez et al. [7] (0.14 and
0.17) models. In this regard, the ELICIT:CMCC:2 stands out
because of its efficiency.
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TABLE IV
COMPARATIVE RESULTS OF LABELLA ET AL. [20], RODRIGUEZ ET AL. [7]
AND ELICIT-CMCC:2 FOR pg = 0.8 AND dp = 0.06

Consensus Consensus Distance to Cost Rounds Metric
model degree (u) | collective () Required | (Pay.ug)
ELICIT-CMCC:2 0.8 0.2 0.06 - 0.939
Labella et al. [20] 0.81 0.44 0.08 1 0.875
Rodriguez et al. [7] 0.85 0.4 0.14 2 0.801
TABLE V

COMPARATIVE RESULTS OF LABELLA ET AL. [20], RODRIGUEZ ET AL. [7]
AND ELICIT-CMCC:2 FOR pg = 0.9 AND dp = 0.12

Consensus Consensus Distance to Cost Rounds Metric
model degree () | collective (g) Required | (Pay.ug)
ELICIT-CMCC:2 0.9 0.2 0.12 - 1.0
Labella et al. [20] 0.91 0.12 0.15 5 0.843
Rodriguez et al. [7] 0.92 0.37 0.17 3 0.815

Regarding the marks provided by our metric for these three
approaches, in the ;9 = 0.8 scenario, Labella et al. CRP gets
a score of 0.875 whereas Rodriguez et al. proposal obtains
a score equal to 0.801. The performance of both models to
solve this specific LIGDM problem in terms of “extra cost”
could be considered “good” but far from the optimal modified
preferences provided by the ELICIT-CMCC model, whose
mark is 0.939.

In the po = 0.9 case, the Labella et al. model is still
better than the Rodriguez et al. approach, but their marks
are closer than in the previous scenario (0.843 and 0.815,
respectively). Meanwhile, the ELICIT-CMCC:2 proposal gets
an approximate mark of 1, which means that, for these values
of the initial preferences, the solutions for the optimization
problems corresponding to ¢ = 1, which provides the ideal
modified preferences used in the metric, and € = 0.2, which is
the value used to derive the agreed solution in this illustrative
example, are very close.

To sum up, the marks provided by the cost metric are quite
simple and intuitive and allow evaluating properly the perfor-
mance of LiCRPs, because it compares the output provided
by the LiCRPs with the one provided by the ELICIT-CMCC
model in terms of cost and consensus degree achieved.

Initial preferences ELICIT-CMCC:2, u=0.8, €=0.2

ELICI:I'l—CMCCQu, p=0.9, 1E:O.2

.
.

-2 -1 0 1 2 -2 -1 0 1 2
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VI. CONCLUSIONS

This paper proposes a cost metric for LiCRPs, which takes
into account both the cost of modifying the original DMs’
preferences and the final consensus degree obtained by the
group.

The definition of such a metric relies on ELICIT-CMCC
models, a novel extension of CMCC models to manage
linguistic information. The use of ELICIT information guar-
antees the manipulation of linguistic values without losing
information in the process and assuring the interpretability
of the results. Concretely, the output obtained from ELICIT-
CMCC models present the following properties:

« It is expressed in a linguistic domain.

« It minimizes the cost of moving DMs’ preferences.

« It guarantees a maximal absolute deviation € between the

modified opinions and the collective one.

« The obtained consensus degree is equal or greater than a

predefined consensus threshold .

In order to improve the computational performance of
these ELICIT-CMCC models, we have also proposed the
corresponding linearized version, which additionally grants
more precise solutions when it is implemented in a computer
solver. Furthermore, the performance of these linear ELICIT-
CMCC in GDM problems involving hundreds or thousands of
DMs have been briefly discussed.

The inherent features of the previous models have also
allowed us to address one of the most recurrent limitations in
the LiCRPs literature, the lack of metrics capable to evaluate
the performance of these processes. In this sense, the proposed
linguistic cost metric compares the optimal cost necessary
to reach the desired consensus threshold, which is obtained
from solving an ELICIT-CMCC model (ELICIT-CMCC:1 or
ELICIT-CMCC:2), with the changes made by the LiCRP. In
addition, if the resulting consensus degree after the LiCRP is
lower than the desired consensus threshold, the metric will
rate such LiCRP with a low mark. This metric has also been
used to evaluate the performance of two linguistic consensus
models already defined in the specialized literature [7], [20]
to show its implementation in practice.

Labella et al., u=0.8 Rodriguez et al., u=0.8

Expert 1
Expert 2
Expert 3
Expert 4
1 Expert 5

Collective

-1 0 1 2
Rodriguez et al., p=0.9

Expert 1
Expert 2
Expert 3
Expert 4
1 Expert 5

Collective

-2 -1 0 1 2

Graphical visualization regarding the DMs’ preferences in the different simulations and consensus models.
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Finally, we have developed a comparative analysis that
reveals that ELICIT-CMCC models are much better in terms
of efficiency (lower cost and better values for i and €) than
two LiCRPs [7], [20].

To summarize, the main contributions of this paper are:

o Linguistic CMCC models for LiGDM based on ELICIT
information which follow a CW approach.

o Linearization of the ELICIT-CMCC models to improve
their performance and expand their use to LiCRP with
many DMs.

o A linguistic cost metric to evaluate LiCRPs.

As future works, we will analyze some formal aspects such
as the use of other linguistic preference structures to propose
ELICIT-CMCC, instead of pairwise comparison matrices, such
as utility linguistic vectors. Furthermore, it will be studied the
impact of using different aggregation operators to compute the
collective opinion to improve the scope of ELICIT-CMCC,
as well as the use of different weighting mechanisms to
determine experts’ importance [45]. In addition, the influence
of the parameters p and € in the resolution of the GDM
problem should be discussed. From the application point of
view, ELICIT-CMCC will be used to solve real-world decision
problems with hundreds or thousands of DMs. Last but not
least, the proposed metric must be applied to the evaluation
of novel proposed LiCRPs to draw conclusions about their
capability.
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