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In decision making, a widely used methodology to manage unbalanced fuzzy linguistic informa-
tion is the linguistic hierarchy (LH), which relies on a linguistic symbolic computational model
based on ordinal 2-tuple linguistic representation. However, the ordinal 2-tuple linguistic approach
does not exploit all advantages of Zadeh’s fuzzy linguistic approach to model uncertainty because
the membership function shapes are ignored. Furthermore, the LH methodology is an indirect
approach that relies on the uniform distribution of symmetric linguistic assessments. These draw-
backs are overcome by applying a fuzzy methodology based on the implementation of the type-1
ordered weighted average (T1OWA) operator. The T1OWA operator is not a symbolic opera-
tor and it allows to directly aggregate membership functions, which in practice means that the
T1OWA methodology is suitable for both balanced and unbalanced linguistic contexts and with
heterogeneous membership functions. Furthermore, the final output of the T1OWA methodology
is always fuzzy and defined in the same domain of the original unbalanced fuzzy linguistic labels,
which facilitates its interpretation via a visual joint representation. A case study is presented where
the T1OWA operator methodology is used to assess the creditworthiness of European bonds based
on real credit risk ratings of individual Eurozone member states modeled as unbalanced fuzzy
linguistic labels. C© 2017 Wiley Periodicals, Inc.

1. INTRODUCTION

In most decision-making processes, there exists uncertainty concerning
the suitability of each one of the alternatives to choose from. Mathematically,
uncertainty has been tackled using precise numeric assessment values or using
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linguistic assessment values in both its representation and measurement. The
second approach, though, happens when experts’ sensations and feelings pervade
the decision-making problem.

The fuzzy linguistic methodology, introduced by Zadeh in his seminal paper,1

has proved to be useful in providing a mathematical structured framework to deal
with decision-making problems with vagueness and imprecise pervading the in-
formation available, that is, when precise numeric assessments are not available
but linguistic assessments are instead. For these type of decision-making prob-
lems, traditionally categorized as unstructured, can indeed be applied an structured
methodology based on the implementation of Zadeh’s concept of linguistic variable
and its semantics to describe the meaning of each one of the elements of the consid-
ered universe of discourse, which is done using fuzzy sets membership functions. An
important aspect to be taken into consideration within a linguistic methodology is
the cardinality of the corresponding linguistic term set,2 as the higher the cardinality
is, the higher the uncertainty discrimination among the elements of the universe of
discourse is achieved.

It is a common practice in decision-making problems with linguistic assess-
ments to assume linguistic term sets (LTS) with uniform distribution of symmetric
linguistic assessment on the discourse domain. Clearly this approach may be ap-
propriate to problems where the distinction of uncertainty is proportional and equal
among the set of linguistic terms, but not where this may not be the case. A typical
example of this latter case is given in Ref. 3 for describing the UK educational
grading system (see Figure 1). Clearly, the right-hand side of the scale has more
terms than the left-hand side and consequently a triangular fuzzy set representation
of the semantic of each assessment can only be captured with nonuniform distribu-
tion of nonsymmetric linguistic labels, which in the literature has been named as
unbalanced linguistic representation of information.3–5

A methodology proposed in the literature and widely used to address decision-
making problems with unbalanced linguistic information is the linguistic hierarchy
(LH) methodology introduced in Ref. 6 and later applied to improve the preci-
sion in processes of computing with words in multigranular linguistic contexts in

Figure 1. Semantic representation of the UK educational grading system.
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Refs. 7–11. The aggregation of unbalanced linguistic information using the LH
methodology was presented in Ref. 3. In summary, the LH methodology consists
of building a representation structure with several levels, each one representing a
different granularity set of uniform and symmetric linguistic terms that keeps the
precedent level modal points in order to achieve a smooth transition between suc-
cessive levels. Transformation functions are introduced to map linguistic labels of
a level to linguistic labels at a different level without loss of information. Doing
this, the unbalanced linguistic labels are mapped with its appropriate symmetric
linguistic labels within the structure, and are transformed to a common domain with
maximum granularity, which ultimately are aggregated using the 2-tuple linguistic
computational model. Thus, the LH methodology deals with unbalanced linguistic
information using an indirect approach via the already common and known uniform
distribution of symmetric linguistic assessment on the universe of discourse.

The LH methodology relies on a linguistic symbolic computational model
based on ordinal scales and indexes, the 2-tuple linguistic representation, and there-
fore it does not exploit the advantages of Zadeh’s fuzzy linguistic approach. To avoid
this issue, an alternative approach to process unbalanced linguistic information is
possible by using the type-1 ordered weighted average (T1OWA) operator,12 which
was developed applying Zadeh’s extension principle to Yager’s OWA operator.13 The
T1OWA operator is not a symbolic operator; it allows to directly aggregate the whole
linguistic terms because its computation involves the whole membership functions
of the fuzzy sets used to appropriately represent the meaning of the linguistic terms,
which in practice means that it can be suitable for both balanced and unbalanced
linguistic contexts and with heterogeneous types of membership shapes (triangular,
trapezoidal, Gaussian, etc.). As a consequence, the output of the T1OWA operator is
of the same type than the linguistic terms, that is, a fuzzy set on the same universe of
discourse. The T1OWA operator has been successfully applied to aggregate fuzzy
linguistic information with fuzzy linguistic weights14,15 and to address consensus
reaching processes in multigranular fuzzy linguistic contexts.16,17 Thus, the T1OWA
operator is most appropriate to be implemented in decision-making problems where
uncertainty is linked to fuzzy set theory rather than probability theory,18–20 and in
particular to contexts with unbalanced fuzzy linguistic information. This is the focus
of the present paper, which aims to present a T1OWA-based methodology to deal
with decision-making problems with unbalanced fuzzy linguistic information by
using as example the study of credit risk on a potential Eurobonds rating based on
real credit risks of Eurozone member states as opposed to previous effort based on
mock examples.14

Credit risk evaluation of corporations or the debt issuance of a state or gov-
ernment is usually carried out by rating agencies, with the three big ones being
Standard & Poor’s (S&P), Moody’s, and Fitch Group. Each agency utilizes its own
methodology and criteria to measure the creditworthiness of corporations evaluated
and its own scale based on a combination of letters, numbers, and/or positive and
negative signs to assess the overall credit risk level of the corporation or state. Rating
agencies rely on economic experts, mathematical models, or a combination of both
to arrive at their final credit risk assessment. Financial information is obtained from
both public and private institutions as well as from experts with great knowledge and
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experience. Although rating agencies work with information that is quite precise, it
is obvious that there also exit economic factors outside their control that generate
uncertainty regarding their recommendations and evaluations. The uncertainty that
arises when experts analyze all the available economic information may make more
difficult the precise assessment of credit risk. Indeed, credit risk assessments tend
to include intuitions and feelings of experts that emanate from the mentioned uncer-
tainty. Thus, there are well-founded grounds to support the use of fuzzy linguistic
approaches in this context. The information can be associated with unbalanced
linguistic labels whose meanings can be represented using fuzzy set membership
functions.

The structure of the rest of the paper is as follows. Section 2 reviews succinctly
the basic concept of a linguistic variable, its semantics, as well as the 2-tuple LH
methodology. Section 3 presents a new fuzzy alternative to manage unbalanced
fuzzy linguistic information based on the T1OWA operator. A detailed description
of its expression for aggregating fuzzy sets is given in Section 3.2, while Section
3.3 presents an example of aggregation of unbalanced linguistic labels using the
T1OWA operator and applied to assess the creditworthiness of European bonds
based on real credit risk ratings of individual Eurozone member states. The paper
concludes with Section 4 where conclusions are drawn.

2. UNBALANCED LINGUISTIC LABELS: THE INDIRECT ORDINAL
2-TUPLE LH APPROACH

In his seminal paper published in 1996,21 Zadeh explicitly stated that the
rationale for computing with words (CWW) might be supported by a necessity
when numbers are not able to be used to quantify the imprecision of the information
available, or by a tolerance of imprecision that allows for words instead of numbers,
which might be costly to get. Later in Ref. 22 an additional rationale was added
when words are simply used to summarize numerical information.

In CWW, the words are modeled into well-defined mathematical objects, which
in turn are manipulated with sound mathematical computational tools. Indeed, words
in CWW are considered labels of fuzzy sets with specified membership functions,
which are computationally manipulated using fuzzy arithmetics, that is traditional
mathematical arithmetics transformed via the extension principle.

Linguistic variables are employed extensively in applications of fuzzy logic,
and they are formally represented as a 5-tuple 〈L, T (L), U, S, M〉1, where (i) L is
the name of the variable, (ii) T (L) is a finite term set of (primary) labels or words
(a collection of linguistic values), (iii) U is a universe of discourse or base variable,
(iv) S is the syntactic rule that generates the terms in T (L), and (v) M is a semantic
rule that associates with each linguistic value X its meaning M(X) : U → [0, 1].
Usually, T (L) is denoted as L when there is no risk of confusion. A “compatibility
function”1 or semantic rule associates with each element of the base variable its
compatibility with each linguistic value. This interpretation of the meaning of a
linguistic label coincides with that of a fuzzy set, and as mentioned above linguistic
labels are formally represented as fuzzy subsets of their base variable.
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A very popular approach to represent and aggregate linguistic information is
using a linguistic symbolic computational model based on indexes,23–25 which is
based on an ordinal interpretation of the linguistic label meaning. In Ref. 26, a more
general symbolic approach was introduced: the 2–tuple linguistic model, which up
to now has been used as the LH methodology computational model for unbalanced
linguistic information. Sections 3.2 and 3.3 will present a fuzzy computational
approach to unbalanced linguistic information based on the T1OWA operator.

2.1. Ordinal Linguistic Representation Using the 2-Tuple Linguistic Model

This linguistic model adds the concept of symbolic translation to the symbolic
representation model based on indexes, which is used to represent the output of sym-
bolic aggregation operators by means of a pair of values called linguistic 2–tuple:
(si, αi), with si being one of the original linguistic terms (i.e., si ∈ S = {s0, ..., sg})
and αi ∈ [−.5, .5) is the symbolic translation. The aim of this representation struc-
ture is to achieve that the symbolic aggregation output is identical to the one obtained
using the symbolic representation model based on indexes while at the same time
preventing loss of information by making use of information previously discarded
by such symbolic representation model.

Formally, let β ∈ [0, g] be the result of a symbolic aggregation of the indexes of
a set of labels in an LTS S = {s0, ..., sg}, and i = round(β) ∈ {0, . . . , g}. The value
αi = β − i ∈ [−0.5, 0.5) is called a symbolic translation, and the pair of values
(si, αi) is called the 2–tuple linguistic representation model. Thus, the following
isomorphism can be established between the 2-tuple set associated with S, 〈S〉 =
S × [−0.5, 0.5), and the closed interval [0, g]:

�(β) = (si, α), with

{
i = round(β),
α = β − i.

The inverse function is �−1(si, α) = i + α, and the corresponding symbolic com-
putational model was presented in Ref. 27.

2.2. The Ordinal 2-Tuple Linguistic Hierarchy

An LH may be seen as a hierarchy structure of different levels of LTS with
different granularity, which are denoted as l(t,n(t)) with t representing the LH level
and n(t) the granularity of the linguistic term set at that level. Assumptions are that
the cardinality of all LTS is odd, and graphically are represented using symmetrical
and uniform distributed triangular membership functions on the domain [0,1] as
Figure 2 shows. Both the process to build an LH and its computational model are
explained below.
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Figure 2. LH with four levels of granularity 3, 5, 9, and 17, respectively.

2.2.1. Building Linguistic Hierarchies

The granularity of each linguistic term set is increased from one level (t) to the
next (t+1) using the following expression7 and as illustrated in Figure 2:

l(t, n(t)) → l(t + 1, 2 · n(t) − 1).

An issue associated with this approach is that the granularity of levels increases
very rapidly, which has been partially resolved applying the least common multiple
approach to all granularities of the LH as it was proposed in Refs. 28,29.

2.2.2. Computational Model

The LH computational model is based on the following symbolic 2-tuple
transformation,7

T F t
t ′ : l(t, n(t)) −→ l(t ′, n(t ′))

T F t
t ′(s

n(t)
i , αn(t)) = �

(
�−1(sn(t)

i , αn(t)) · (n(t ′) − 1)

n(t) − 1

)
.
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The aim of such transformation function is that linguistic terms, independently
of its shape and semantic, can be mapped to a unique expression domain, and
consequently be amenable to be manipulated with the 2-tuples computational model.
Obviously, this approach disregard the membership functions and so linguistic labels
are modeled via their corresponding symbolic ordinal 2-tuple representations and
not treated as fuzzy sets.

Unbalanced linguistic information is managed within the LH methodology and
2-tuple computational model by first dividing the unbalanced linguistic term set into
three term subsets, the one containing all labels below the central one (left lateral
set), the one containing all the labels above the central one (right lateral set) and the
one containing the central label (central set). In a second step, the granularities of
the left lateral set and the right lateral set are compared against the (half) granularity
value for each LH level so that the closest symmetrical and uniform distributed LH
labels is found to represent the unbalanced linguistic information. After this mapping
has been completed, the symbolic aggregation based on the 2-tuple computational
model is applied to process the information, with its output being finally retranslated
into the original unbalanced linguistic term set.

3. UNBALANCED FUZZY LINGUISTIC LABELS: THE DIRECT
T1OWA APPROACH

In this section, a fuzzy approach to manage unbalanced fuzzy linguistic infor-
mation will be presented based on the use of the T1OWA operator. The advantages of
using this route are as follows: (i) it is fuzzy and not ordinal because the membership
function characterizing the fuzzy linguistic labels is fully used in the computation
process; (ii) the shape of the membership function is not restricted to be triangular
type but could be of any type; (iii) there is no need to translate and retranslate
unbalanced information using an indirect balanced framework, that is, it is a direct
cardinal approach to dealing with unbalanced information compared to the indirect
ordinal 2-tuple LH methodology; (iv) the final output will be a fuzzy set on the same
domain than the original unbalanced fuzzy linguistic labels and it can be interpreted
easily when compared with them graphically. If necessary, a defuzzification process
could be applied, for example by computing the centroid of the solution fuzzy set
or using the 2-tuple representation model. Anyway, it is proved that an equivalent
set of values to the corresponding 2-tuple representation approach is obtained.

3.1. Fuzzy Linguistic Representation Model

The representation of linguistic information using fuzzy numbers, that is, con-
vex normal fuzzy subsets of the real line, is commonly referred to as the cardinal
representation in contrast to the ordinal representation covered above. In this frame-
work, a linguistic label is characterized by a membership function on the unit interval
[0,1] that maps each value in [0,1] to a degree of performance representing its com-
patibility with the linguistic assessment,1 examples of which are shown in Figure 1.
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It is not difficult to see that there exists a one-to-one mapping between the
ordinal approach based on the 2-tuple representation of a term set of linguistic
labels and the set of centroid elements of the fuzzy numbers used in the cardinal
representation of the same term set of linguistic labels.30 Indeed, denoting the
centroid of the linguistic term sh ∈ S by v(sh), the semantic of the linguistic labels
underlies a ranking relation that implies v(lh) > v(lk) when h > k. Without loss of
generality, it can be assumed that v(s0) = 0 and v(sg) = 1, otherwise the centroids
are replaced by the values v(sh) − v(s0)

v(sg) − v(s0) . Denoting the symbolic 2-tuple representation

of sh by ah = �−1((sh, 0)), the mapping

δ (ah) = v(lh), (1)

is the restriction of a continuous and strictly increasing function δ : [0, s] −→ [0, 1]
such that δ(0) = 0 and δ(s) = 1, that is, a bijective function δ exists and it can be
used to derive the ordinal 2-tuple representation of a linguistic term set from the
set of centroids of the fuzzy numbers used in a cardinal representation of the same
linguistic term set. Obviously, it is not possible to derive a cardinal representation
of a linguistic term set from an ordinal 2-tuple representation model. Furthermore,
the type of membership function used in the cardinal representation model is not
restricted to triangular type but could be trapezoidal or Gaussian type, that is, it could
be of any type as long as it is convex and normal verifying that v(lh) > v(lk) when
h > k. Thus, the cardinal fuzzy approach to linguistic information representation is
general, flexible, and appropriate to capture uncertainty, which is not the case with
the ordinal approach.

3.2. The T1OWA Operator

In contrast to Yager’s OWA operator13 that is able to aggregate crisp numbers
with crisp weights, the T1OWA operator was introduced in Ref. 12 to directly
aggregate fuzzy sets with uncertainty weights. Thus, given a set {A1, . . . , An} of
type-1 fuzzy sets on R that are to be aggregated using the set of type-1 fuzzy weights
sets defined on the domain of discourse [0,1], {W 1, . . . , Wn}, the T1OWA operator
output is a fuzzy set Y :

�(A1, . . . , An) = Y

with membership function

μY (y) = sup∑n
k=1 w̄iaσ (i)=y

wi∈U,ai∈X,

(
μW 1 (w1) ∧ · · · ∧ μWn(wn) ∧ μA1 (a1) ∧ · · · ∧ μAn(an)

)
(2)

where w̄i = wi∑n
i=1 wi

; σ is a permutation function such that aσ (i) ≥ aσ (i+1), ∀i =
1, · · · , n − 1.

International Journal of Intelligent Systems DOI 10.1002/int
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Expression (2) has been proved to be too expensive from a computational
point of view, which inevitably implied that its practical application in real world
decision-making problems was curtailed. This issue, however, was overcome with
the development of a fast approach to T1OWA operations based on the horizontal
representation of a fuzzy sets via their corresponding family of crisp α-level sets, in
what it is known as the representation theorem of fuzzy sets.1

For each α ∈ [0, 1], the α-level T1OWA operator to aggregates the α-level sets{
A1

α, · · · , An
α

}
with α-level weight sets

{
W 1

α , . . . , Wn
α

}
is given as:

�α

(
A1

α, · · · , An
α

) =

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

wiaσ (i)

n∑
i=1

wi

∣∣∣∣wi ∈ Wi
α, ai ∈ Ai

α, ∀i

⎫⎪⎪⎬
⎪⎪⎭ , (3)

where Wi
α = {w|μWi

(w) ≥ α}, Ai
α = {x|μAi

(x) ≥ α}, and σ is a permutation func-
tion such that aσ (i) ≥ aσ (i+1), ∀ i = 1, · · · , n − 1.

According to the representation theorem of type-1 fuzzy sets, the following
type-1, fuzzy set on R can be constructed:

G = ∪
0<α≤1

α�α

(
A1

α, · · · , An
α

)
(4)

with membership function

μG(x) = ∨
α:x∈�α(A1

α,··· ,An
α)α

α (5)

Fuzzy sets Y and G, which apparently seem to be different, were proved
in Ref. 14 to have the same membership functions and consequently are equal.
This fundamental result is known as the Representation Theorem of Type-1 OWA
Operators. Furthermore, this α-level approach was proved to be much faster than
(2),14 which implies that T1OWA aggregation are possible to be carried out in real-
time decision-making problems. In particular, when the linguistic weights and the
aggregated sets are fuzzy number, the α-level T1OWA operator produces closed
intervals14 and the computation of the T1OWA operator output according to (4),
G, reduces to compute the left end-points and right end-points of closed intervals,
which was solved in Ref. 14.a

3.3. Eurobonds Credit Risk Rating: Unbalanced Fuzzy Modeling and
Aggregation Based on the T1OWA Operator

In this section, we present an example to evaluate credit risk of a potential
issuance of European bonds. The aim of this example is not to carry out a rigorous

aAn R package of the T1OWA is available at http://www.tech.dmu.ac.uk/�chiclana/
type1owaR/.
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study about the Eurobonds creditworthiness but to show as the combination of
the unbalanced fuzzy linguistic approach with the T1OWA functionality can be
successfully applied to model the uncertainty of real problems.

During the hardest and most difficult years of the present economic crisis,
that is, 2010 and 2011, the European Commission and the European Central Bank
considered the possibility of financing the public debt of Eurozone member states
with a centralized common issuance of sovereign bonds among the Member States
of the euro area, which are known as Eurobonds. As such, in November 2011 the
European Commission published the European Commission Green Paper on the
Feasibility on Introducing Stability Bounds to stimulate a political debate on the
joint issuance of debt in the euro area to tackle the debt crisis, reduce the pressure on
the debt issuances of some of the Eurozone member states, and enhance economic
stability. Of the three approaches to the joint issuance of debt in the euro area, one
considered that each Eurozone member state would cover part of their individual
financing needs with national debt and the rest with Eurobonds. In this way, countries
should tap financial markets on their own and consequently it could be possible to
compare the credit rating of each member state with respect to the Eurobonds credit
rating. The arrangement on how to guarantee Eurobonds between the state members
was not made explicit on the green paper, although it seems reasonable to assume
that each of the member states would be responsible for an amount proportional to
their corresponding economy size within the global economic context. In any case,
the proper assessment of the Eurobonds credit risk would be a crucial aspect to
guarantee its success.

Potential investors considering their participation in debt issuances take into
account the main credit rating information provided by agencies, such as Standard
& Poor’s, Moody’s, or Fitch Group, that evaluate the capacity to meet financial
obligations in full and on time of the corporations, states, or governments that issue
the debt. Each agency utilizes its own methodology and criteria to evaluate the
creditworthiness of corporations and produces a specific quality ranking, with a
combination of letters and positive and negative symbols to represent the agency’s
final rating evaluation. In this paper, a case study is presented where the T1OWA
operator is used to assess the creditworthiness of European bonds based on current
and real credit risk ratings of individual Eurozone member states modeled as unbal-
anced fuzzy linguistic labels. To do this, S&P ratings,b its major rating descriptors
shown in Table I, are used.

Some of the ratings in Table I are followed by a plus (+) or minus (−) sign
to show relative standing within the major rating categories, which provides a finer
discrimination or granularity. This is fully illustrated in Figure 3, where a mapping
of the three big rating agencies rating scores is provided, which clearly illustrates
their similarities.

S&P agency states that their opinions and assessments regarding the credit
quality of a corporation are not to be interpreted as exact measurements of the
chances that a particular debt issue will default, but as a relative estimation of

b Available information at http://www.standardandpoors.com/en_US/web/guest/ratings/
ratings-criteria.
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Table I. S&P major rating score descriptions.

Rating score Semantic meaning

AAA Extremely strong capacity to meet financial commitments
AA Very strong capacity to meet financial commitments
A Strong capacity to meet financial commitments, but somewhat susceptible to adverse

economic conditions and changes in circumstances
BBB Adequate capacity to meet financial commitments, but more subject to adverse economic

conditions
BB Less vulnerable in the near-term but faces major ongoing uncertainties to adverse

business, financial and economic conditions
B More vulnerable to adverse business, financial, and economic conditions but currently has

the capacity to meet financial commitments
CCC Currently vulnerable and dependent on favorable business, financial, and economic

conditions to meet financial commitments
CC Currently highly vulnerable
C Currently highly vulnerable obligations and other defined circumstances
D Payment default on financial commitments

the creditworthiness of a debt issuer within a dynamic risk context. Consequently,
uncertainty due to the dynamic nature of risk is unavoidable, and the meaning
of rating scores could be modeled appropriately using fuzzy sets with unsharp
boundaries overlapping contiguous scores, that is, the fuzzy linguistic approach
methodology is suitable to model agencies’ ratings within this complex economic
context.

The first issue to address when modeling S&P credit risk ratings using the fuzzy
linguistic approach is to set the base variable domain. As mentioned before, this is
normally set as being the unit interval [0,1], and as there is no evidence to suggest
the contrary, it is adopted in what follows. In the document Guide to credit rating
essentials,31 S&P ratings are firstly divided in two main groups: (i) Investment Grade
(IG) comprising ratings between AAA and BBB representing “relatively high levels
of creditworthiness and credit quality,” and (ii) Speculative Grade (SG) comprising
ratings from BB to D to reflect “debt securities where the issuer currently has the
ability to repay but faces significant uncertainties.” Accordingly, the domain [0,1]
is also first divided in two equal parts, with [0,0.5] for the SG term set, SG =
{D, C, CC, CCC−, CCC, CCC+, B−, B, B+, BB−, BB, BB+} and [0.5,1]
for the IG term set, IG = {BBB − BBB, BBB+, A−, A, A+, AA−, AA,
AA+, AAA}.

The second issue to address in the fuzzy linguistic methodology is whether
to implement a balanced or unbalanced distribution of the labels. In the case study
of our interest, we observe that the complete set of credit ratings LT S = SG ∪ IG
consists of two subsets of different cardinality, and consequently their complete
distribution within the domain [0,1] cannot be balanced or and/or symmetrical as
they also have an even cardinality, and no mid-term label would exist. Additionally,
as Figure 3 clearly illustrates, some of major categories described in Table I have
different granularities. This asymmetric distribution of credit ratings is clearly
appropriate to be modeled via unbalanced LTS.
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Figure 3. Rating agencies’ rating scores.

Using triangular membership functions to characterize fuzzy linguistic terms,
Figure 4 depicts possible distributions of credit ratings for SG and IG categories,
while Figure 5 depicts the complete unbalanced distribution of the complete set of
credit ratings LTS. Clearly, different unbalanced representations are possible both
in using different membership function types and different distributions of the credit
ratings within their respective underlying domains.

A final issue to address in the proposed framework involves the determination
of relative weights of all individual Eurozone member state sovereign debts that
appropriately reflect their contribution in the aggregation process to derive the
overall evaluation of creditworthiness and credit quality of European bonds issuance.
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Table II. Credit rating and economy relative size for EU-28 counties.

State S&P rating GDP (million euros) Relative weight (% )

Austria AA+ 322,594.6 2.39
Belgium AA 395,262.0 2.92
Bulgaria BB+ 41,047.9 0.30
Croatia BB 43,561.5 0.32
Cyprus B+ 18,118.9 0.13
Czech Republic AA 157,284.8 1.16
Denmark AAA 252,938.9 1.87
Estonia AA 18,738.8 0.14
Finland AA+ 201,995.0 1.49
France AA 2,113,687.0 15.63
Germany AAA 2,809,480.0 20.78
Greece B 182,438.3 1.35
Hungary BB+ 100,536.5 0.74
Ireland A 174,791.3 1.29
Italy BBB 1,609,462.2 11.90
Latvia A 23,265.0 0.17
Lithuania A 34,955.6 0.26
Luxembourg AAA 45,288.1 0.33
Malta BBB+ 7,571.4 0.06
The Netherlands AA+ 642,851.0 4.75
Poland A 395,962.4 2.93
Portugal BB 171,211.1 1.27
Romania BBB 144,282.2 1.07
Slovakia A 73,593.2 0.54
Slovenia A 36,144.0 0.27
Spain BBB 1,049,181.0 7.76
Sweden AAA 436,342.4 3.23
United Kingdom AAA 2,017,193.8 14.92

It would not be correct to assign all sovereign debt issuances the same weight, mainly
because individual member states contribution to European economy is not equal but
related to their size in terms of gross domestic product at market prices (GDP) among
others criteria. Thus, the normalized GDP value will reflect individual member states
credit rating contribution to the overall European credit rating. Thus, the higher the
GDP, the higher the weight in the aggregation process. Table II provides the relevant
economic information, taken from Eurostat and S&P for the year 2013, of each one
of the current 28 European Union countries.

The T1OWA operator result is shown in Figure 6 as a red dashed line in
relation to the original set of 22 credit rating labels. Thus, the application of the
T1OWA operator returns an output of the same type and with the same domain of
the original information, which facilitates the decision making. In this case study,
it is clearly that the T1OWA output overlaps in its majority with credit rating AA
and also in part with credit rating AA-. In summary, the credit risk quality of
potential European bonds in 2013 is within the general class IG; in particular, it
is closest to AA and consequently it could had been considered as quite good and
positive.
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Figure 6. Aggregation result.

4. CONCLUSIONS

A fuzzy approach to directly fuse unbalanced linguistic information based on
the T1OWA operator has been presented. In comparison to the existing approach to
unbalanced linguistic information, the ordinal 2-tuple LH methodology, it is worth
noting the following: (i) it allows for a soft interpretation of the linguistic informa-
tion, implements, and makes use of the whole membership functions characterizing
the linguistic label as fuzzy sets; (ii) the shape of the membership function is not
restricted to be triangular type; (iii) there is no need to translate and retranslate
unbalanced information as the 2-tuple LH methodology does; (iv) the final output
is always fuzzy and defined in the same domain than the original unbalanced fuzzy
linguistic labels, which facilitates its interpretation via their visual joint representa-
tion; (v) defuzzification could be applied if necessary, and indeed this process will
always derive in an equivalent result to the 2-tuple LH methodology. The application
of the T1OWA unbalanced fuzzy linguistic methodology has been illustrated in the
evaluation of the creditworthiness and credit risk quality of a potential issuance
of bonds at European Community level, which were the focus of many discussion
within the EU during the hardest and most difficult years of the present economic
crisis and that were known as Eurobonds. In the future, the T1OWA approach here
presented will be compared with alternative linguistic tools that could be useful to
manage unbalanced linguistic information, an example of which might derive from
the work presented in Ref. 32.
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