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Abstract: Lot of activities carried out in the enterprise implies Group Decision Making processes. In Group Decision
Making is difficult that all experts have an exact knowledge about the problem. At the begining, Group
Decision Making problems manage uncertainty with real values within a predefined range, soon interval valued
approaches were proposed and more recently fuzzy-interval valued and linguistic approaches have obtained
successfull results. In this paper, we shall deal with Group Decision Making problems in which the experts can
express their knowledge over the alternatives using different types of information: numerical, interval valued,
fuzzy-interval valued or the linguistic one, that is calledHeterogeneous Information. The main problem to
deal with heterogeneous information is:how to aggregate it?. The aim of the contribution is to develop an
aggregation method able to combine all different types of information in the decision process. To do so, we
shall use the the linguistic 2-tuple representation model.

1 Introduction

In the enterprise processes, there exist a wide range
of activities that can involve imprecision and vague
information. In this contribution, we focus in Group
Decision Making (GDM) problems that consist of a
decision situation in which two or more individuals
express their preferences over some set of alternatives
to obtain a solution (an alternative or set of alterna-
tives). It is supposed there is a finite set of alterna-
tivesX = fx1; :::; xng n � 2, as well as a finite set
of expertsE = fe1; :::; emg m � 2. In the fuzzy
context, the resolution process starts from, a set of
fuzzy preference relations where each expertek pro-
vides his/her preferences onX , i.e.Pek

(xi; xj) = pk
ij

the degree of preference of alternativex i over xj ,
to obtain a solution either from the individual pref-
erence relations, without constructing a social pref-
erence relation, or by computing first a social fuzzy
preference relation and then using it to find a solu-
tion (Kacprzyk and Fredizzi, 1986). Any of the above
approaches, called direct and indirect approaches re-
spectively, the resolution process for reaching a solu-
tion of the GDM problems is composed by two phases
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(Roubens, 1997):

1. Aggregation phase: that combines the expert pref-
erences, and

2. Exploitation one: that obtains a solution set of al-
ternatives from a preference relation.

The nature of the preference values ,pk
ij

, provided
by the experts depends on the knowledge of the ex-
perts over the alternatives. This knowledge is not pre-
cise and usually present uncertainty. Early this un-
certainty were expressed in the preference values by
means of real values assessed in a predefined range
(Kacprzyk and Fredizzi, 1986; Yager, 1988), soon an-
other approaches based on interval valued (Kundu,
1997; Kuchta, 2000; T´eno and Mareschal, 1998),
fuzzy-interval valued (Atanassov, 1999; Szmidt and
Kacprzyk, 1996) and linguistic one (Buckley, 1984;
Delgado et al., 1993) were proposed.

The most of the proposals for solving GDM prob-
lems are focused in cases where all the experts pro-
vide their preferences in an unique way, either real
values, or interval values, or fuzzy-interval values, or
linguistic labels. But not always, all the experts in-
volve in the GDM problem can express their prefer-
ences in the same way, it could be each one express
his/her preferences with different types of informa-
tion: real values, interval-valued, fuzzy-interval val-
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ues, linguistic labels, that we shall call asHetero-
geneous Information. Hence, we say that the GDM
problem is defined in a heterogeneous context.

The main difficulty for dealing with GDM prob-
lems defined in a heterogenous context is how to ag-
gregate the preferences?. Because of, there not exist
operators or processes for combining that type of in-
formation.

The linguistic 2-tuple model (Herrera and
Martı́nez, 1999b) has shown itself as a good choice
to manage non-homogeneous information in ag-
gregation processes (Herrera and Mart´ınez, 1999a;
Herrera and Mart´ınez, 2000). According to the
ideas expressed in those papers, we propose an
improved aggregation process that is able to manage
preferences expressed by means ofnumercial values,
linguistic labels, interval-valuedand Intuitionis-
tic Fuzzy Sets. This aggregation process will be
developed according to the following scheme:

1. The heterogeneous information is unified by means
of fuzzy sets on a specific domain, called Basic
Linguistic Term Set (BLTS).

2. The fuzzy sets will be aggregated by means of an
aggregation operator to obtain collective preference
fuzzy sets.

3. These collective fuzzy sets will be transformed into
linguistic 2-tuples.

Once the heterogeneous information has been ag-
gregated and expressed by means of linguistic 2-
tuples, the exploitation step of the GDM process (rank
alternatives) is easy to carry out for obtaining a solu-
tion set of alternative/s.

In order to do that, this paper is structured as
follows: in Section 2 we shall review different ap-
proaches to express the preferences in the decision
making problems and the linguistic 2-tuple represen-
tation model; in Section 3 we shall propose an ag-
gregation process for combining heterogeneous infor-
mation; in Section 4 we shall present an example of
a GDM problem defined in a heterogeneous context
and finally, some concluding remarks are pointed out.

2 Preliminaries

In decision making problems the experts express their
preferences depending on their knowledge over the al-
ternatives by means of preference relations. In this
section, we shall review different approaches that we
can find in the literature to express those preferences.
And afterwards, we shall review the 2-tuple linguis-
tic representation model, that plays a key role in the
aggregation process proposed in this contribution.

2.1 Approaches for Modelling
Preferences

2.1.1 Fuzzy Binary Relations

A (fuzzy) binary relationR on X is defined as
a fuzzy subset of the direct productX � X with
values in[0; 1], i.e, R : X � X ! [0; 1], where,
R(xi; xj) = pij , denotes the degree to whichxiRxj .
Particularly, in preference analysis,pij , denotes the
degree to which an alternativexi is preferred to al-
ternativexj (Kacprzyk and Fredizzi, 1986; Yager,
1988).

2.1.2 Interval-valued Relations

The approaches based on fuzzy binary relations had
serious problems, in particular it has been argued that
the most of experts are unable to make a fair estima-
tion of the inaccuracy of their judgements, making far
larger estimation errors that the boundaries accepted
by them as feasible (de M´antaras and God´o, 1997).

An approach to overcome this problem is to add
some flexibility to the uncertainty representation
problem by means of interval-valued relations:

R : X �X ! }([0; 1]):

WhereR(xi; xj) = pij denotes the interval-valued
preference degree of the alternativex i over xj .
In these approaches (Kundu, 1997; Kuchta, 2000;
Téno and Mareschal, 1998), the preferences pro-
vided by the experts consist of interval values as-
sessed in}([0; 1]), where the preference is expressed
as[a; a]ij ; with a � a.

2.1.3 Intuitionistic Fuzzy Sets

The Intuitionistic Fuzzy Sets (IFS) (Atanassov,
1999; Szmidt and Kacprzyk, 1996) are a tool based
on fuzzy sets used to represent uncertainty.

Definition 1. (Atanassov, 1999)An IFSA in E is
defined as an object of the following form:

A = f< x; �a(x); �A(x) > =x 2 Eg

where the function:

�A(x) : E ! [0; 1]

and,
�A(x) : E ! [0; 1]

define the degree of membership and the degree of
non-membership of the elementx 2 E, respectively.
And for everyx 2 E:

0 � �A(x) + �A(x) � 1
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Definition 2. (Atanassov, 1999)The value of,

�A(x) = 1� �A(x) � �A(x)

is called the degree of non-determinacy (or uncer-
tainty) of the elementx 2 E to the IFSA.

In (Kreinovich et al., 1999) is showed that an IFS is
equivalent to an interval composed by two real num-
bers.Therefore, in this contribution when we shall
deal indistinctly with IFS or interval-valued prefer-
ences.

2.1.4 Linguistic Approach

Usually, we work in a quantitative setting, where
the information is expressed by means of numerical
values. However, many aspects of different activities
in the real world cannot be assessed in a quantitative
form, but rather in a qualitative one, i.e., with vague or
imprecise knowledge. In that case a better approach
may be to use linguistic assessments instead of nu-
merical values. The fuzzy linguistic approach repre-
sents qualitative aspects as linguistic values by means
of linguistic variables (Zadeh, 1975). This approach
is adequate in some situations where the information
may be unquantifiable due to its nature, and thus, it
may be stated only in linguistic terms.

We have to choose the appropriate linguistic de-
scriptors for the term set and their semantics. In order
to accomplish this objective, an important aspect to
analyse is the”granularity of uncertainty”, i.e., the
level of discrimination among different counts of un-
certainty. Typical values of cardinality used in the lin-
guistic models are odd ones, such as 7 or 9, where the
mid term represents an assessment of ”approximately
0.5”, and with the rest of the terms being placed sym-
metrically around it (Bonissone and Decker, 1986).

One possibility of generating the linguistic term set
consists of directly supplying the term set by consid-
ering all terms distributed on a scale on which a total
order is defined. For example, a set of seven termsS,
could be given as follows:

fs0 : N; s1 : V L; s2 : L; s3 : M; s4 : H; s5 : V H; s6 : Pg:

Usually, in these cases, it is required that in the lin-
guistic term set there exist:

1. A negation operator: Neg(si) = sj such thatj =

g-i (g+1 is the cardinality).

2. si � sj () i � j. Therefore, there exists amin
and amaxoperator.

The semantics of the linguistic terms is given by
fuzzy numbers defined in the [0,1] interval. A way
to characterize a fuzzy number is to use a represen-
tation based on parameters of its membership func-
tion (Bonissone and Decker, 1986). The linguis-
tic assessments given by the users are just approxi-
mate ones, some authors consider that linear trape-

zoidal membership functions are good enough to cap-
ture the vagueness of those linguistic assessments.
The parametric representation is achieved by the 4-
tuple (a; b; d; c), whereb andd indicate the interval
in which the membership value is 1, witha andc in-
dicating the left and right limits of the definition do-
main of the trapezoidal membership function (Bonis-
sone and Decker, 1986). A particular case of this type
of representation are the linguistic assessments whose
membership functions are triangular, i.e.,b = d, then
we represent this type of membership functions by a
3-tuple (a; b; c). An example may be the following
(Figure 1) :

N = (0; 0; :17) V L = (0; :17; :33)
L = (:17; :33; :5) M = (:33; :5; :67)
H = (:5; :67; :83) V H = (:67; :83; 1)
P = (:83; 1; 1):

N VL L M H VH P

0 0.17 0.33 0.5 0.67 0.83 1

Figure 1: A set of seven linguistic terms with its semantics

Other authors use a non-trapezoidal representation,
e.g., Gaussian functions (Bordogna and Passi, 1993).

2.2 The 2-tuple Linguistic
Representation Model

In this subsection we review the 2-tuple linguis-
tic representation model, presented in (Herrera and
Martı́nez, 1999b), that we shall use to manage the
heterogeneous information, therefore it plays a cen-
tral role in the aim of this contribution.

This linguistic model takes as a basis the symbolic
model and in addition defines the concept of Sym-
bolic Translation and uses it to represent the linguis-
tic information by means of a pair of values called
linguistic 2-tuple,(s; �), wheres is a linguistic term
and� is a numeric value representing the symbolic
translation.

Definition 3. Let� be the result of an aggregation of
the indexes of a set of labels assessed in a linguistic
term setS, i.e., the result of a symbolic aggregation
operation.� 2 [0; g], beingg + 1 the cardinality of
S. Let i = round(�) and� = � � i be two values,
such that,i 2 [0; g] and� 2 [�:5; :5) then� is called
a Symbolic Translation.
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This model defines a set of transformation functions
between numeric values and linguistic 2-tuples.

Definition 4. LetS = fs0; :::; sgg be a linguistic term
set and� 2 [0; g] a value representing the result of a
symbolic aggregation operation, then the 2-tuple that
expresses the equivalent information to� is obtained
with the following function:

� : [0; g] �! S � [�0:5; 0:5)

�(�) = (si; �); with

�
si i = round(�)

� = � � i � 2 [�:5; :5)

whereround(�) is the usualroundoperation,si has
the closest index label to ”�” and ” �” is the value of
the symbolic translation.

Proposition 1.Let S = fs0; :::; sgg be a linguistic
term set and(si; �) be a 2-tuple. There is always a
�
�1 function, such that, from a 2-tuple it returns its

equivalent numerical value� 2 [0; g] � R.

Proof. It is trivial, we consider the following func-
tion:

�
�1

: S � [�:5; :5) �! [0; g]
�
�1

(si; �) = i+ � = �

Remark: From definitions 2 and 3 and from proposi-
tion 1, it is obvious that the conversion of a linguistic
term into a linguistic 2-tuple consist of adding a value
0 as symbolic translation:si 2 S =) (si; 0)

Toghether with the 2-tuple representation model
was developed a computational technique to operate
with the 2-tuples without loss of information (Herrera
and Mart´ınez, 1999b).

3 Aggregation Process for a
Heterogeneous GDM problem

In this section we present our purpose to carry out the
aggregation phaseof a decision making process in a
GDM problem defined in a heterogeneous context.

A GDM problem defined in a heterogeneous
context has a finite set of alternatives,X =

fx1; x2; : : : ; xng (n � 2), as well as a finite set of
expertsE = fe1; e2; : : : ; emg (m � 2). Each ex-
pert,ek 2 E; provides his/her preferences onX using
preference relations. We focus in GDM problems in
which the preference relations provided by the experts
can be:

1. Fuzzy preference relations (Kacprzyk and Fredizzi,
1986),P n

ek
: X�X ! [0; 1], whereP n

ek
(xi; xj) =

pk
ij

denotes the preference degree of the alternative
xi overxj provided by the expertek.

2. Interval-valued preference relation (T´eno and
Mareschal, 1998),P I

ek
: X�X ! }([0; 1]), where

P I

ek
(xi; xj) = pk

ij
denotes the interval-valued pref-

erence degree of the alternativexi overxj provided

by the expertek. These relations can be obtained
from preferences provided by experts using IFS.

3. Linguistic preference relation assessed in a pre-
established label set (Herrera et al., 1995),S =

fs0; : : : ; sgg, PS

ek
: X � X ! S, where

PS

ek
(xi; xj) = pk

ij
denotes the preference degree of

the alternativexi over xj linguistically expressed
provided by the expertek.

Following, we present our proposal for combin-
ing this heterogeneous information. This aggregation
process is composed by the following phases:

1. Making the information uniform.The heteroge-
neous information will be unified into a specific lin-
guistic domain, which is aBasic Linguistic Term
Set (BLTS). Each numerical, interval-valued and
linguistic performance value is expressed by means
of a fuzzy set on the BLTS,F (ST ). The process is
carried out in the following order:

(a) Transforming numerical values in[0; 1] into
F (ST ).

(b) Transforming linguistic terms intoF (ST ).

(c) Transforming interval-valued intoF (ST ).

2. Aggregating individual performance values.For
each alternative, a collective performance value is
obtained aggregating the above fuzzy sets on the
BLTS, that represents the individual performance
values assigned by the experts according to his/her
preference. Therefore, each collective performance
value is a new fuzzy set on the specific linguistic
domain, the BLTS.

It is clear that the information must be unified to be
manageable. The fuzzy sets are useful to unify and
aggregate the information at the beggining, but in
processes of decision making (exploitation phase)
that the preference values must be ranked are not
a good solution. In (Herrera and Mart´ınez, 1999a;
Herrera and Mart´ınez, 2000) were shown that the
conversion of the fuzzy sets into linguistic 2-tuple
provides good results.

3. Transforming fuzzy sets into linguistic 2-tuples.
The collective performance values (fuzzy sets)
are transformed into linguistic 2-tuples in the
BLTS. Obtaining a collective preference relation
expressed by means of linguistic 2-tuples.

Following we shall show in deep each step of the
different phases of the aggregation process.

3.1 Making the information uniform

Firstly, the heterogeneous information is unified in
an unique expression domain, the BLTS. Before to
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unify the heterogeneous information, we have to de-
cide how to choose the BLTS,ST . We study the lin-
guistic term setS that belongs to the definition con-
text of the GDM problem. If:

1. S is a fuzzy partition(Ruspini, 1969),

2. and the membership functions of its terms are tri-
angular,i.e.,si = (ai; bi; ci)

then we selectS as BLTS, due to the fact that, these
conditions are necessary and sufficient for the trans-
formation between values in[0; 1] and 2-tuples, being
them carried out without loss of information (Herrera
and Mart´ınez, 2000).

If the linguistic term setS, used in the definition
context of the problem, does not satisfy the above
conditions then we shall choose as BLTS a term set
with a larger number of terms than the number of
terms that a person is able to discriminate (normally
11 or 13, see (Bonissone and Decker, 1986)) and sat-
isfies the above conditions. We choose the BLTS with
15 terms symmetrically distributed, with the follow-
ing semantics (graphically, Figure 2).

s0 (0,0,0.07) s1 (0,0.07,0.14)
s2 (0.07,0.14,0.21) s3 (0.14,0.21,0.28)
s4 (0.21,0.28,0.35) s5 (0.28,0.35,0.42)
s6 (0.35,0.42,0.5) s7 (0.42,0.5,0.58)
s8 (0.5,0.58,0.65) s9 (0.58,0.65,0.72)
s10 (0.65,0.72,0.79) s11 (0.72,0.79,0.86)
s12 (0.79,0.86,0.93) s13 (0.86,0.93,1)
s14 (0.93,1,1)

0  1 2 3 4  5 6 7 8 9 10 11 12 13 14s s s s s s s s s s s s s s s

Figure 2: A BLTS with 15 terms symmetrically distributed

Once we have chosen the BLTS we shall define the
transformation functions that unify the heterogeneous
information by means of fuzzy sets over the BLTS,
denoted asF (ST ).

3.1.1 Transforming numerical values
in [0; 1] into F (ST ).

Let F (ST ) be the set of fuzzy sets inST =

fs0; : : : ; sgg, we shall transform a numerical value
# 2 [0; 1] into a fuzzy set inF (ST ) computing the

membership value of# in the membership functions
associated with the linguistic terms ofST .

Definition 5. (Herrera and Martı́nez, 2000) The
function� transforms a numerical value into a fuzzy
set inST :

� : [0; 1]! F (ST )

�(#) = f(s0; 
0); :::; (sg ; 
g)g; si 2 ST and 
i 2 [0; 1]


i = �si(#) =

8>><
>>:

0; if # =2 Support(�si(x))
#�ai

bi�ai
; if ai � # � bi

1; if bi � # � di
ci�#

ci�di
; if di � # � ci

Remark: We consider membership functions,�si
(�),

for linguistic labels,si 2 ST , that achieved by a para-
metric function(ai; bi; di; ci). A particular case are
the linguistic assessments whose membership func-
tions a triangular, i.e.,bi = di.

3.1.2 Transforming linguistic terms
in S into F (ST ).

Definition 6.(Herrera and Martı́nez, 1999a) Let
S = fl0; : : : ; lpg andST = fs0; : : : ; sgg be two lin-
guistic term sets, such that,g � p: Then, a multi-
granularity transformation function,�SST , is defined
as:

�SST : A! F (ST )

�SST (li) = f(ck; 

i

k
) = k 2 f0; :::; ggg; 8li 2 S


i
k
= maxy minf�li(y); �ck (y)g

whereF (ST ) is the set of fuzzy sets defined inST ,
and�li(�) and�ck(�) are the membership functions
of the fuzzy sets associated with the termsli andck,
respectively.

Therefore, the result of�SST for any linguistic
value ofS is a fuzzy set defined in the BLTS,ST .

3.1.3 Transforming interval-valued
into F (ST ):

Let I = [i; i] be an interval-valued in[0; 1], to carry
out this transformation we assume that the interval-
valued has a representation, inspired in the member-
ship function of fuzzy sets (Kuchta, 2000), as follows:

�I(#) =

8<
:

0; if # < i

1; if i � # � i

0; if i < #

where# is a value in[0; 1]: In Figure 3 can be ob-
served the graphical representation of an interval.
Definition 7. Let ST = fs0; : : : ; sgg be a BLTS.
Then, the function�IST transforms a interval-valued
I in [0; 1] into a fuzzy set inST .
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Pek =

0
B@

pk
11

= f(s0; 

11

k0
); : : : ; (sg ; 


11

kg
)g � � � pk

1n
= f(s0; 


1n

k0
); : : : ; (sg ; 


1n

kg
)g

... � � �
...

pk
n1

= f(s0; 

n1

k0
); : : : ; (sg ; 


n1

kg
)g � � � pk

nn
= f(s0; 


nn

k0
); : : : ; (sg ; 


nn

kg
)g

1
CA

Table 1: Preference Relation of Fuzzy Sets

�IST : I ! F (ST )

�IST (I) = f(ck; 

i

k
) = k 2 f0; :::; ggg;


i
k
= maxy minf�I(y); �ck(y)g

whereF (ST ) is the set of fuzzy sets defined inST ,
and �I(�) and �ck(�) are the membership functions
associated with the interval-valuedI and termsck,
respectively.

i i

1

0 1

Figure 3: Membership function ofI = [i; i]

3.2 Aggregating individual
performance values

Using the above transformation functions we express
the input information by means of fuzzy sets on the
BLTS, ST = fs0; : : : ; sgg; i.e, we have the input in-
formation in an unique expression domain. Now we
use an aggregation function for combining the fuzzy
sets on the BLTS to obtain a collective performance
for each alternative that will be a fuzzy set on the
BLTS.

For the heterogeneous GDM problem, the prefer-
ence relations are expressed by means of fuzzy sets
on the BLTS as can be seen in Table 1, wherepk

ij

is the preference degree of the alternativex i overxj
provides by the expertek.

We shall represent each fuzzy set,pk
ij

, as rk
ij

=

(

ij

k0
; : : : ; 


ij

kg
) being the values ofrk

ij
their respec-

tive membership degrees. Then, the collective perfor-
mance value of the preference relation according to all
preference relations provided by expertsfr k

ij
;8ekg is

obtained aggregating these fuzzy sets. This collective
performance value, denotedr ij ; is a new fuzzy set de-
fined inST , i.e.,

rij = (

ij

0
; : : : ; 
ij

g
)

characterized by the following membership function:


ij
v
= f(


ij

1v
; : : : ; 


ij

kv
);

wheref is an “aggregation operator” andk is the
number of experts.

3.3 Transforming Fuzzy Sets into
2-tuple

In this phase we transform the fuzzy sets on the BLTS
into linguistic 2-tuples over the BLTS. In (Herrera
and Mart´ınez, 1999a) was presented a function� that
transforms a fuzzy set in a linguistic term set into a
numerical value in the interval of granularity ofST ,
[0; g]:

� : F (ST )! [0; g]

�(�(#)) = �(f(sj ; 
j); j : 0; :::; gg) =
Pg

j=0
j
j

Pg

j=0

j

= �

Therefore, applying the� function to� we shall ob-
tain a collective preference relation whose values are
linguistic 2-tuples.

4 Example

Let us suppose that an enterprise want to renove
its cars. There exist four models of car available,
fCAR1, CAR2, CAR3 and CAR4g and three experts
provide his/her preference relations over the four cars.
The first expert expresses his/her preference relation
using numerical values in[0; 1], P n

1
. The second one

expresses the preferences by means of linguistic val-
ues in a linguistic term setS (see Figure 1),P S

2
.

And the third expert can express them using interval-
valued in[0; 1], P I

3
, or equivalently using IFS,P IFS

3
,

that will be represented by means of pairs of values
(�; �). The three experts attempt to reach a collective
decision.

P
n

1 =

0
B@

� :5 :8 :4
:5 � :9 :5
:8 :9 � :4
:4 :5 :4 �

1
CA

P
S

2 =

0
B@

� H VH M

H � H VH

VH H � V H

M VH VH �

1
CA
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P
I

3 =

0
B@

� [:7; :8] [:65; :7] [:8; :9]
[:7; :8] � [:6; :7] [:8; :85]
[:65; :7] [:6; :7] � [:7; :9]
[:8; :9] [:8; :85] [:7; :9] �

1
CA�

� P
IFS

3 =

0
B@

� (:7; :2) (:65; :3) (:8; :1)
(:7; :2) � (:6; :3) (:8; :15)
(:65; :3) (:6; :3) � (:7; :1)
(:8; :1) (:8; :15) (:7; :9) �

1
CA

Table 2: Preferences Relations

4.1 Decision Process

We shall use the following decision process to solve
this problem:

A) Aggregation Phase

We use the aggregation process presented in this
paper.

1. Making the information uniform

(a) Choose the BLTS.It will be S; due to the fact, it
satisfies the conditions showed in Section 3.1.

(b) Transforming the input information intoF (ST ).
Applying the transformation functions defined in
Section 3 we obtain the results showed in Table
3.

(c) Aggregating individual performance values.
When all information is expressed by means of
fuzzy sets defined in a BLTS we use a aggrega-
tion operator for combining it. In this example
we shall use as aggregation operator,f , the arith-
metic mean obtaining the collective preference
relation showed in Table 4.

2. Transforming into 2-tuple. In this step we trans-
form the fuzzy sets in a BLTS into 2-tuples with
the function� (Herrera and Mart´ınez, 2000) and
�(Herrera and Mart´ınez, 1999b). The collective
preference relation P is:

0
B@

� (H; :31) (V H;�:43) (H;�:18)
(H; :31) � (H; :33) (H; :38)

(V H;�:43) (H; :33) � (H; :29)
(H;�:18) (H; :38) (H; :29) �

1
CA

B) Exploitation Phase

To solve the GDM problem, finally we calculate the
dominance degree for the alternativex i over the rest
of alternatives. To do so, we shall use the following
function:

�(xi) =
1

n� 1

nX
j=0 j j 6=i

�ij

wheren is the number of alternatives and� ij =

�
�1

(pij) being pij a lingusitic 2-tuple. Then, we
shall choose as solution set of alternatives those with
a bigger value of dominance degree.

In this phase we shall calculate the dominance de-
gree for this preference relation showed in Table 5.

CAR1 CAR2 CAR3 CAR4

(H; :23) (H; :34) (H,.4) (H; :16)

Table 5: Dominance degree of the alternatives

Then, the dominance degree rank the alternatives
and we choose the best alternatives how solution set
of GDM problem, in this example the solution set is
fCAR3g.

5 Concluding Remarks

We have developed an aggregation process for aggre-
gating heterogeneous information composed byinter-
val valued, Intuitionistic Fuzzy Sets, numerical and
linguistic valuesand it is based on the transformation
of the heterogeneous information into fuzzy sets and
finally into linguistic 2-tuples. This aggregation pro-
cess has been applied it to a GDM problem defined in
a heterogeneous context.

In the future we want to apply this aggregation pro-
cess to other types of information used in the literature
to express preference as can be Interval-Valued Fuzzy
Sets.
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