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Abstract: Lot of activities carried out in the enterprise implies Group Decision Making processes. In Group Decision
Making is difficult that all experts have an exact knowledge about the problem. At the begining, Group
Decision Making problems manage uncertainty with real values within a predefined range, soon interval valued
approaches were proposed and more recently fuzzy-interval valued and linguistic approaches have obtained
successfull results. In this paper, we shall deal with Group Decision Making problems in which the experts can
express their knowledge over the alternatives using different types of information: numerical, interval valued,
fuzzy-interval valued or the linguistic one, that is callddterogeneous InformationThe main problem to
deal with heterogeneous information tsow to aggregate it? The aim of the contribution is to develop an
aggregation method able to combine all different types of information in the decision process. To do so, we
shall use the the linguistic 2-tuple representation model.

1 Introduction (Roubens, 1997):

1. Aggregation phase: that combines the expert pref-
In the enterprise processes, there exist a wide range erences, and
of activities that can involve imprecision and vague 5 gypjoitation one: that obtains a solution set of al-
information. In this contribution, we focus in Group ternatives from a preference relation.

Decision Making (GDM) problems that consist of a ) _
decision situation in which two or more individuals 1€ nature of the preference valugsy;, provided

express their preferences over some set of alternatives?Y the experts depends on the knowledge of the ex-
to obtain a solution (an alternative or set of alterna- PErtS over the alternatives. This knowledge is not pre-

tives). It is supposed there is a finite set of alterna- €IS€ and usually present uncertainty. Early this un-
tives X = {z1,...,zn} n > 2, as well as a finite set certainty were expressed in the preference values by

of expertsE = {ei,...,em} m > 2. In the fuzzy means of real valugs _assessed in a predefined range
context, the resglution prgcess starts from, a set of E)Tr?ecfZggrggghgsdéﬁééggf;i:tae%& 1\?53)61;?23 r?dnu
fuzzy preference relations where each expgrpro- ) = '
vides his/her preferences of i.e. P., (z;,;) = pfj 1997; Kuchta, 2000; &fho and Maresghal, 1998),
the degree of preference of alternative over z;, fuzzy-interval valued (Atan_assov, 1999; Szmidt anfj
to obtain a solution either from the individual pref- Kacprzyk, 1996) and linguistic one (Buckley, 1984;
erence relations, without constructing a social pref- D€lgado etal., 1993) were proposed.

erence relation, or by computing first a social fuzzy _1he most of the proposals for solving GDM prob-
preference relation and then using it to find a solu- €ms are focused in cases where all the experts pro-

tion (Kacprzyk and Fredizzi, 1986). Any of the above vide their preferences in an uniqu_e way, either real
approaches, called direct and indirect approaches re_\./alue's,.or interval values, or fuzzy-interval values,_ or
spectively, the resolution process for reaching a solu- Inguistic labels. But not always, all the experts in-

tion of the GDM problems is composed by two phases VO!Ve in the GDM problem can express their prefer-
ences in the same way, it could be each one express

°This work has been supported by Research Project his/her preferences with different types of informa-
PB98-1305 tion: real values, interval-valued, fuzzy-interval val-



ues, linguistic labels, that we shall call &etero- 2.1  Approachesfor Modelling
geneous InformatianHence, we say that the GDM Preferences
problem is defined in a heterogeneous context.

The main difficulty for dealing with GDM prob- . .
lems defined in a heterogenous context is how to ag- 211 Fuzzy Binary Relations
gregate the preferences?. Because of, there not exist
operators or processes for combining that type of in-
formation.

The linguistic 2-tuple model (Herrera and
Martinez, 1999b) has shown itself as a good choice
to manage non-homogeneous information in ag-
gregation processes (Herrera and Mweet, 1999a; ) _ > M )
Herrera and Martiez, 2000). According to the tegrggtwexJ (Kacprzyk and Fredizzi, 1986; Yager,
ideas expressed in those papers, we propose an1 )-

improved aggregation process that is able to manage2.1.2 |nterval-valued Reations
preferences expressed by meanswhercial values,

A (fuzzy) binary relationR on X is defined as
a fuzzy subset of the direct produgf x X with
values in[0,1], i.e, R : X x X — [0,1], where,
R(x;,2;) = pij, denotes the degree to whichRz;.
Particularly, in preference analysig;;, denotes the
degree to which an alternative; is preferred to al-

linguistic labels, interval-valuedand Intuitionis- The approaches based on fuzzy binary relations had
tic Fuzzy Sets This aggregation process V_V'” be  serious problems, in particular it has been argued that
developed according to the following scheme: the most of experts are unable to make a fair estima-

. L . tion of the inaccuracy of their judgements, making far
1. The heterogeneous information is unified by means |5 4er estimation errors that the boundaries accepted
of fuzzy sets on a specific domain, called Basic by them as feasible (de Afitaras and Gad 1997).
Linguistic Term Set (BLTS). An approach to overcome this problem is to add
some flexibility to the uncertainty representation

2. The fuzzy sets will be aggregated by means of an problem by means of interval-valued relations:

aggregation operator to obtain collective preference

fuzzy sets. R: X x X — p([0,1]).
3. These collective fuzzy sets will be transformed into Where R(z;,z;) = p;; denotes the interval-valued
linguistic 2-tuples. preference degree of the alternative over z; .

] ) In these approaches (Kundu, 1997; Kuchta, 2000;
Once the heterogeneous information has been ag-Teno and Mareschal, 1998), the preferences pro-
gregated and expressed by means of linguistic 2- yided by the experts consist of interval values as-

tuples, the exploitation step of the GDM process (rank sessed ([0, 1]), where the preference is expressed
alternatives) is easy to carry out for obtaining a solu- as|qg, a);;, with a < @.

tion set of alternative/s. T
In order to do that, this paper is structured as 2.1.3 Intuitionistic Fuzzy Sets

follows: in Section 2 we shall review different ap- L

proaches to express the preferences in the decision The Intuitionistic Fuzzy Sets (IFS) (Atanassov,
making problems and the linguistic 2-tuple represen- 1999; Szmidt and Kacprzyk, 1996) are a tool based
tation model; in Section 3 we shall propose an ag- ©n fuzzy sets used to represent uncertainty.
gregation process for combining heterogeneous infor- pefinition 1. (Atanassov, 1999An IFS A in E is
mation; in Section 4 we shall present an example of yefined as an object of the following form:

a GDM problem defined in a heterogeneous context

ij

and finally, some concluding remarks are pointed out. A={<z, p(z),va(x) > [z € E}
L . where the function:

2 Preliminaries 1@ E o 0,1]

In decision making problems the experts express their and, va(z) : E - [0,1]

preferences depending on their knowledge overtheal- :
ternatives by means of preference relations. In this define the degree of membership and the degree of

section, we shall review different approaches that we Non-membership of the element I, respectively.
can find in the literature to express those preferences.And for everyr € E:

And afterwards, we shall review the 2-tuple linguis- 0< <1

tic representation model, that plays a key role in the < pal@) +vale) <

aggregation process proposed in this contribution.



Definition 2. (Atanassov, 1999he value of, zoidal membership functions are good enough to cap-
ture the vagueness of those linguistic assessments.

ma(@) =1—pale) —va(z) The parametric representation is achieved by the 4-
is called the degree of non-determinacy (or uncer- tuple (a,b,d,c), whereb andd indicate the interval
tainty) of the element € E to the IFSA. in which the membership value is 1, withandc in-

In (Kreinovich et al., 1999) is showed that an IFS is  dicating the left and right limits of the definition do-
equivalent to an interval composed by two real num- main of the trapezoidal membership function (Bonis-
bers.Therefore, in this contribution when we shall sone and Decker, 1986). A particular case of this type
deal indistinctly with IFS or interval-valued prefer- of representation are the linguistic assessments whose

ences. membership functions are triangular, ifes d, then
. . we represent this type of membership functions by a
2.1.4 Linguistic Approach 3-tuple (a,b,c). An example may be the following
(Figure 1) :

Usually, we work in a quantitative setting, where
the information is expressed by means of numerical
values. However, many aspects of different activities N
in the real world cannot be assessed in a quantitative L
form, but rather in a qualitative one, i.e., with vague or H
imprecise knowledge. In that case a better approach P
may be to use linguistic assessments instead of nu-
merical values. The fuzzy linguistic approach repre-
sents qualitative aspects as linguistic values by means
of linguistic variables (Zadeh, 1975). This approach
is adequate in some situations where the information
may be unquantifiable due to its nature, and thus, it
may be stated only in linguistic terms.

We have to choose the appropriate linguistic de-
scriptors for the term set and their semantics. In order °
to accomplish this objective, an important aspect to
analyse is thégranularity of uncertainty”, i.e., the
level of discrimination among different counts of un-
certainty. Typical values of cardinality used in the lin- Other authors use a non-trapezoidal representation,
guistic models are odd ones, such as 7 or 9, where thee.g., Gaussian functions (Bordogna and Passi, 1993).
mid term represents an assessment of "approximately
0.5”, and with the rest of the terms being placed sym- 2 2 The 2-tuple Linguistic
metrically around it (Bonissone and Decker, 1986). .

One possibility of generating the linguistic term set Representation M odel
consists of directly supplying the term set by consid-
ering all terms distributed on a scale on which a total In this subsection we review the 2-tuple linguis-
order is defined. For example, a set of seven teSis  tic representation model, presented in (Herrera and
could be given as follows: Martinez, 1999b), that we shall use to manage the

heterogeneous information, therefore it plays a cen-
{s0:N,s1:VL,sy:L s3:M,ss:H,s5:VH,se: P} tral role in the aim of this contribution.

This linguistic model takes as a basis the symbolic
model and in addition defines the concept of Sym-
bolic Translation and uses it to represent the linguis-

(0,0,.17) VL =(0,.17,.33)
(.17,.33,.5) M = (.33,.5,.67)
(.5,.67,.83) VH = (.67,.83,1)
(.83,1,1).

0.17 0.33 0.5 0.67 o.83

Figure 1: A set of seven linguistic terms with its semantics

Usually, in these cases, it is required that in the lin-
guistic term set there exist:

1. A negation operator: Ngg;) = s; such thatj = tic information by means of a pair of values called
g-i (g+1is the cardinality). linguistic 2-tuple,(s, ), wheres is a linguistic term

2. 5; < 8; < i < j. Therefore, there existsrain anda is_ a numeric value representing the symbolic
and amaxoperator. translation.

The semantics of the linguistic terms is given by Definition 3. Let 5 be the result of an aggregation of
fuzzy numbers defined in the [0,1] interval. A way the indexes of a set of labels assessed in a linguistic
to characterize a fuzzy number is to use a represen-term setS, i.e., the result of a symbolic aggregation
tation based on parameters of its membership func- operation. 5 € [0, g], beingg + 1 the cardinality of
tion (Bonissone and Decker, 1986). The linguis- S. Leti = round() anda = 3 — i be two values,
tic assessments given by the users are just approxi-such that; € [0, g] anda € [—.5,.5) thena is called
mate ones, some authors consider that linear trape-a Symbolic Translation.



This model defines a set of transformation functions
between numeric values and linguistic 2-tuples.

Definition 4. LetS = {s, ..., s, } be alinguistic term
set ands € [0, g] a value representing the result of a
symbolic aggregation operation, then the 2-tuple that
expresses the equivalent informationstds obtained
with the following function:

A:[0,9] — S x [~0.5,0.5)

A(B) = (si, ), with { ia:e’“f’f‘_%‘ff))

5
a=p—1
whereround(-) is the usuaroundoperation,s; has
the closest index label to3” and " «” is the value of
the symbolic translation.

Proposition 1.Let S = {so,...,s,} be a linguistic
term set ands;, a) be a 2-tuple. There is always a
A~ function, such that, from a 2-tuple it returns its
equivalent numerical valug € [0, g] C R.

Proof. It is trivial, we consider the following func-

tion:

A7l : S x[-.5,.5) — [0, 9]

Ail(si,a) =1 +a= B
Remark: From definitions 2 and 3 and from proposi-
tion 1, it is obvious that the conversion of a linguistic
term into a linguistic 2-tuple consist of adding a value
0 as symbolic translatiors; € S = (s;,0)

Toghether with the 2-tuple representation model

was developed a computational technique to operate

with the 2-tuples without loss of information (Herrera
and Marthez, 1999b).

3 Aggregation Processfor a
Heter ogeneous GDM problem

In this section we present our purpose to carry out the

aggregation phasef a decision making process in a
GDM problem defined in a heterogeneous context.
A GDM problem defined in a heterogeneous
context has a finite set of alternativesy
{z1,22,...,2,} (n > 2), as well as a finite set of
expertsk = {ej,ez,...,en} (m > 2). Each ex-
pert,e;, € E, provides his/her preferences @nusing
preference relations. We focus in GDM problems in

which the preference relations provided by the experts

can be:

1.
1986),P : X x X — [0, 1], whereP! (z;, z;) =

3.

Fuzzy preference relations (Kacprzyk and Fredizzi,

by the experk;. These relations can be obtained
from preferences provided by experts using IFS.

Linguistic preference relation assessed in a pre-
established label set (Herrera et al., 199%)~—=
{s0,...,50}, P2 X x X — S, where
P? (z;,z;) = p}; denotes the preference degree of
the alternativer; overz; linguistically expressed
provided by the expeky,.

Following, we present our proposal for combin-
ing this heterogeneous information. This aggregation
process is composed by the following phases:

1. Making the information uniform.The heteroge-
neous information will be unified into a specific lin-
guistic domain, which is @asic Linguistic Term
Set(BLTS). Each numerical, interval-valued and
linguistic performance value is expressed by means
of a fuzzy set on the BLTS'(St). The process is
carried out in the following order:

(a) Transforming numerical values iff), 1] into
F(Srt).

(b) Transforming linguistic terms int&'(S ).

(c) Transforming interval-valued int& (S ).

2. Aggregating individual performance valued-or
each alternative, a collective performance value is
obtained aggregating the above fuzzy sets on the
BLTS, that represents the individual performance
values assigned by the experts according to his/her
preference. Therefore, each collective performance
value is a new fuzzy set on the specific linguistic
domain, the BLTS.

Itis clear that the information must be unified to be
manageable. The fuzzy sets are useful to unify and
aggregate the information at the beggining, but in
processes of decision making (exploitation phase)
that the preference values must be ranked are not
a good solution. In (Herrera and Maréz, 1999a;
Herrera and Martiez, 2000) were shown that the
conversion of the fuzzy sets into linguistic 2-tuple
provides good results.

3. Transforming fuzzy sets into linguistic 2-tuples.
The collective performance values (fuzzy sets)
are transformed into linguistic 2-tuples in the
BLTS. Obtaining a collective preference relation
expressed by means of linguistic 2-tuples.

Following we shall show in deep each step of the

pk; denotes the preference degree of the alternative different phases of the aggregation process.

x; overz; provided by the exped;,.

. Interval-valued preference relation g6 and
Mareschal, 1998)P! : X x X — ([0, 1]), where
P! (z;,2;) = pf; denotes the interval-valued pref-
erence degree of the alternativeoverz; provided

3.1 Makingtheinformation uniform

Firstly, the heterogeneous information is unified in
an unigue expression domain, the BLTS. Before to



unify the heterogeneous information, we have to de- membership value af in the membership functions
cide how to choose the BLTS,. We study the lin- associated with the linguistic terms 8f-.
guistic term setS that belongs to the definition con-

text of the GDM prob'em_ If: Definition 5. (Herre’a and Martinez, 2000) The
] - o functionr transforms a numerical value into a fuzzy
1. Sis afuzzy partitioRuspini, 1969), setinSy:

2. and the .membership functions of its terms are tri- r:[0,1] — F(St)
angular,i.e.,s; = (a;, b, ¢;)

T('ﬂ) = (S » Y )7""(8 » 7Y ) ,8i € STCLTLd'Yi € 071
then we seleck as BLTS, due to the fact that, these {(s0.70 #%)} [0,1]

conditions are necessary and sufficient for the trans- 99’7% if v ¢ Support(ps, (z))
formation between values [, 1] and 2-tuples, being D= g (9) = 4 e ifa; <V <b;
them carried out without loss of information (Herrera ‘ L ifhisvsd
and Marthez, 2000). = ifdi<9<qg

If the linguistic term setS, used in the definition
context of the problem, does not satisfy the above Remark: We consider membership functions, (-),
conditions then we shall choose as BLTS a term set for linguistic labelss; € S, that achieved by a para-
with a larger number of terms than the number of metric function(a;, b;,d;, c;). A particular case are
terms that a person is able to discriminate (normally the linguistic assessments whose membership func-
11 or 13, see (Bonissone and Decker, 1986)) and sat-tions a triangular, i.eh; = d;.

isfies the above conditions. We choose the BLTS with : : —
15 terms symmetrically distributed, with the follow- 312 Tr ansformlng |IﬂgUIStIC terms

ing semantics (graphically, Figure 2). in S into F(St).
so  (0,0,0.07) s1  (0,0.07,0.14) Definition 6.(Herrera and Martinez, 1999a) Let
sy (0.07,0.14,0.21) s; (0.14,0.21,0.28) S ={lo,...,l,} andSr = {so,...,5,} be two lin-
sg4 (0.21,0.28,0.35) s5 (0.28,0.35,0.42) guistic term sets, such thag, > p. Then, a multi-
s¢ (0.35,0.42,0.5) s; (0.42,0.5,0.58) granularity transformation function;ss,., is defined
sg  (0.5,0.58,0.65) sy (0.58,0.65,0.72) as:
s;p  (0.65,0.72,0.79) sy; (0.72,0.79,0.86) )
s1» (0.79,0.86,0.93) 515 (0.86.0.93.1) Tssy : A = F(Sr)
sia (0.93,1,1) Tssr(li) = {(ck, ) [k €1{0,....9}}, VI € S

S S % % % $% 0% % 05 b o8 OB B & i, = maxy min{g, (), e, () }

where F(St) is the set of fuzzy sets definedd,
and y, (-) and u, (-) are the membership functions
of the fuzzy sets associated with the tefpandc,,,
respectively.

Therefore, the result ofggs, for any linguistic
value of S is a fuzzy set defined in the BLTS;.

3.1.3 Transforming interval-valued
into F(St).

Figure 2: A BLTS with 15 terms symmetrically distributed Let] = [i,4] be aninterval-valued ift, 1], to carry
out this transformation we assume that the interval-
Once we have chosen the BLTS we shall define the Valued has a representation, inspired in the member-
transformation functions that unify the heterogeneous ShiP function of fuzzy sets (Kuchta, 2000), as follows:

information by means of fuzzy sets over the BLTS, 0, ifd<i
denoted ag'(Sr). _ A
pr(@) =< 1, ifi<9<q
3.1.1 Transforming numerical values 0, ifi<?
in [0, 1] into F(St). whered is a value in[0, 1]. In Figure 3 can be ob-
served the graphical representation of an interval.
Let F(St) be the set of fuzzy sets i,y = Definition 7. Let St = {sg,...,s,} be a BLTS.
{s0,---,84}, we shall transform a numerical value Then, the functiorr;g, transforms a interval-valued

9 € [0,1] into a fuzzy set inF'(St) computing the  Iin [0, 1] into a fuzzy set iy 7.



pllcl :{(50,7]%;)7"-7(89,7]%;)} pllcn:{(50,7];?),---,(5977]%;)}
P, =
prl :{(80771?01)5"'7(8977]?;)} pfm:{(807712?)7"'7(8977g;)}

Table 1: Preference Relation of Fuzzy Sets

characterized by the following membership function:
sz L F(Sr) 7= Fond ),

TIST,(I) = {(ck; %) /K €10,-.. 93}, where f is an “aggregation operator” anid is the
vi = max, min{pr(y), pe, ()} number of experts.

where F'(St) is the set of fuzzy sets defineddn, . .
and u;(-) and e, (1) are the membership functions 3-3  Transforming Fuzzy Setsinto
associated with the interval-valuedand termsey,, 2-tup|e

respectively.

In this phase we transform the fuzzy sets on the BLTS
s into linguistic 2-tuples over the BLTS. In (Herrera
and Marthez, 1999a) was presented a functiotihat
transforms a fuzzy set in a linguistic term set into a
numerical value in the interval of granularity 6fr,

[0, g]:
1 X:F(ST)—)[O,Q]
o N T ’ x(r(?9) = x({(s5,7), 7 : 0,...,9}) = Zzgfiooqj =8
Figure 3: Membership function df = [1, 7] Therefore, applying the: function to3 we shall ob-

tain a collective preference relation whose values are
linguistic 2-tuples.

3.2 Aggregating individual
performance values 4 Example

Using the above transformation functions we express L€t Us suppose that an enterprise want to renove
the input information by means of fuzzy sets on the Its cars. There exist four models of car available,
BLTS, St = {s0,...,5,}, i.e, we have the inputin-  {CAR1, CAR2, CAR3 and CARjand three experts
formation in an unique expression domain. Now we provide his/her preference relations over the four cars.
use an aggregation function for combining the fuzzy The first expert expresses his/her preference relation
sets on the BLTS to obtain a collective performance Using numerical values ifo, 1], P". The second one
for each alternative that will be a fuzzy set on the expresses the preferences by means of linguistic val-
BLTS. ues in a linguistic term sef (see Figure 1),P;.

For the heterogeneous GDM problem, the prefer- And the third expert can express them using interval-
ence relations are expressed by means of fuzzy setsvalued in[0, 1], P3, or equivalently using IFSP; >,
on the BLTS as can be seen in Table 1, whefg that will be represented by means of pairs of values
is the preference degree of the alternativeover (1, v). The three experts attempt to reach a collective

provides by the expetty,. decision.

We shall represent each fuzzy sgfy, asr}; = _ 5 8 4
(Vb s+ ,y,’jg) being the values of; their respec- pr_| % - 9 5
tive membership degrees. Then, the collective perfor- R
mance value of the preference relation according to all 4 5 4 -
preference relations provided by expefitg;, Ve } is _ H VH M
obtained aggregating these fuzzy sets. This collective " ~ H VH
performance value, denoteg, is a new fuzzy set de- = vy o - vH
fined inSr, i.e., M VH VH -—

rg = (i)



- 7,.8]  [65,.7 [.8,.9]
pr_ | [7.8 = [6,.7 [8,.85] | —
3= | [65.7 [6,.7 - [.7,.9] -
[8,.9] [8,.85] [7,.9 ~—

- (7,.2)  (.65,.3) (.8,.1)
= pirs_ | (7,2 = (6,.3)  (.8,.15)
— %3 7| (65.3) (6,.3) — (.7,.1)

(8,.1) (.8,.15) (.7,.9) —

Table 2: Preferences Relations

4.1 Decision Process

We shall use the following decision process to solve
this problem:

A) Aggregation Phase

We use the aggregation process presented in this

paper.
1. Making theinformation uniform

(a) Choose the BLT3t will be S, due to the fact, it
satisfies the conditions showed in Section 3.1.

(b) Transforming the input information int8'(S ).
Applying the transformation functions defined in
Section 3 we obtain the results showed in Table
3.

(c) Aggregating individual performance values.
When all information is expressed by means of
fuzzy sets defined in a BLTS we use a aggrega-
tion operator for combining it. In this example
we shall use as aggregation operafothe arith-
metic mean obtaining the collective preference
relation showed in Table 4.

2. Transforming into 2-tuple. In this step we trans-
form the fuzzy sets in a BLTS into 2-tuples with
the functiony (Herrera and Martiez, 2000) and
A(Herrera and Martiez, 1999b). The collective
preference relation P is:

- (H,.31) (VH,—43) (H,—.18)
(H,.31) - (H,.33)  (H,.38)
(VH,—.43) (H,.33) - (H,.29)
(H,—.18) (H,.38) (H,.29) -

B) Exploitation Phase

To solve the GDM problem, finally we calculate the
dominance degree for the alternatiwgover the rest
of alternatives. To do so, we shall use the following
function:

A(wi)Zﬁ > B

=0 i#i

where n is the number of alternatives ang};
A~'(p;;) beingp;; a lingusitic 2-tuple. Then, we
shall choose as solution set of alternatives those with
a bigger value of dominance degree.

In this phase we shall calculate the dominance de-
ree for this preference relation showed in Table 5.

| CAR1 | CAR2 | CAR3 | CAR4 |
| (H,23) ] (H,.349) | H,4 | (H,.16) |
Table 5: Dominance degree of the alternatives

Then, the dominance degree rank the alternatives
and we choose the best alternatives how solution set
of GDM problem, in this example the solution set is
{CARS}.

5 Concluding Remarks

We have developed an aggregation process for aggre-
gating heterogeneous information composeahbss-

val valued, Intuitionistic Fuzzy Sets, numerical and
linguistic valuesand it is based on the transformation
of the heterogeneous information into fuzzy sets and
finally into linguistic 2-tuples. This aggregation pro-
cess has been applied it to a GDM problem defined in
a heterogeneous context.

In the future we want to apply this aggregation pro-
cess to other types of information used in the literature
to express preference as can be Interval-Valued Fuzzy
Sets.
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(0,0,0,1,0,0,0) (0,0,0,0,0,1,0) (0,0,0,0,0,1,0) -
— (0,0,0,0,.81,.81,0) (0,0,0,.12,1,.19,0) (0,0,0,0,.81,1,.41)
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3~ 1 (0,0,0,0,.19,.81,0) (0,0,0,.41,1,.19,0) — 0,0,0,0,.81,1,.41)
(0,0,0,0,.81,1,.41) (0,0,0,0,.19,1,.12) (0,0,0,0,.81,1,.41) —
Table 3: Fuzzy setsin a BLTS
— (0,0,0,0,.6,.27,0) (0,0,0,.04, .4,.67,0)  (0,0,.2,.47,.27, .33, .14)
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(0,0,.2,.47,.27,.33,.14) (0,0,0,.33,.06,.67,.04) (0,0,.2,.14,.27,.67,.14) —

Table 4: The collective Preference relation.
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