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Abstract

In Group Decision Making is diÆ-

cult that all experts have the same

knowledge over the problem. In

this contribution we shall focus in

Group Decision Making problems in

which the experts can express their

knowledge over the alternatives us-

ing di�erent types of information

that will be called Heterogeneous In-

formation. The aim of this contri-

bution is to develop an aggregation

process able to manage all di�erent

types of information. As mean to

agregate the heterogeneous informa-

tion we shall use the linguistic 2-

tuple model.

Keywords: decision making, aggregation,

linguistic 2-tuples, heterogenous information.

1 Introduction

Group Decision Making (GDM) problems

have a �nite set of alternatives X =

fx1; :::; xng n � 2, as well as a �nite set of ex-

perts E = fe1; :::; emg m � 2. Each expert ek
provides his/her preferences on X by means

of a preference relation, i.e. Pek(xi; xj) = pk
ij

the degree of preference of alternative xi over

xj.

A solution is derived either from the individ-

ual preference relations, without constructing

a social preference relation (direct approach),
0This work has been supported by Research

Project PB98-1305

or by computing �rst a social fuzzy preference

relation and then using it to �nd a solution

(indirect approach) [8], in this contribution

we sahll use the last one. In any of the above

approaches the decision process is composed

by two steps [12]: (i) Aggregation phase: that

combines the expert preferences, and (ii) Ex-

ploitation one: that obtains a solution set of

alternatives from a preference relation.

It seems di�cult that the nature of the pref-

erence values , pk
ij
, provided by the experts

would be the same because it depends on the

knowledge of them over the alternatives (usu-

aly it is not precise). Therefore, the prefer-

ence has been expressed in di�erent domains.

Early in DM problems, the uncertainty were

expressed in the preference values by means

of real values assessed in a prede�ned range

[8], soon other approaches based on interval

valued [9, 13] and linguistic one [3, 14] were

proposed. The most of the proposals for solv-

ing GDM problems are focused in cases where

all the experts provide their preferences in an

unique domain, usually the experts are from

di�erent knowledge �eld and could express

his/her preferences with di�erent types of in-

formation depending on their kholedge. We

shall call this type of information as Hetero-

geneous Information. Hence, we say that the

GDM problem is de�ned in a heterogeneous

context.

The main diÆculty for dealing with GDM

problems de�ned in a heterogenous context

is how to aggregate the preferences. Because

of, there not exists operators or processes for

combining that information. The linguistic



2-tuple model [4] has shown itself as a good

choice to manage non-homogeneous informa-

tion in aggregation processes [5, 6]. In this

contribution we shall present an aggregation

process for heterogeneous information based

on the 2-tuple model.

In order to do that, this paper is structured

as follows: in Section 2 we shall review dif-

ferent basic concepts; in Section 3 we shall

propose an aggregation process for combin-

ing heterogeneous information; in Section 4

we shall solve an example of a GDM problem

de�ned in a heterogeneous context and �nally,

some concluding remarks are pointed out.

2 Preliminaries

We have just seen that in decision making

problems the experts express their preferences

depending on their knowledge over the al-

ternatives by means of preference relations.

Here we review di�erent approaches to ex-

press those preferences. And afterwards, we

shall review the 2-tuple linguistic representa-

tion model.

2.1 Approaches for Modelling
Preferences

2.1.1 Fuzzy Binary Relations

A valued (fuzzy) binary relation R on X is

de�ned as a fuzzy subset of the direct product

X �X with values in [0; 1], i.e, R : X �X !
[0; 1]. The value, R(xi; xj) = pij, of a valued

relation R denotes the degree to which xiRxj.

These were the �rst type of relations used in

decicion making [8].

2.1.2 Interval-valued Relations

The above approach has serious problems, in

particular it has been argued that the most

experts are unable to make a fair estimation

of the inaccuracy of their judgements, making

far larger estimation errors that the bound-

aries accepted by them as feasible [10].

A �rst approach to overcome this problem

is to add some 
exibility to the uncertainty

representation problem by means of interval-

valued relations:

R : X �X ! }([0; 1]):

Where R(xi; xj) = pij denotes the interval-

valued preference degree of the alternative xi
over xj . In these approaches [9, 13], the pref-

erences provided by the experts consist of in-

terval values assessed in }([0; 1]), where the

preference is expressed as [a; a]ij ; with a � a.

2.1.3 Linguistic Approach

Many aspects cannot be assessed in a quanti-

tative way, but rather in a qualitative one, i.e.,

with vague or imprecise knowledge. In that

case a good approach may be to use linguistic

assessments instead of numerical values. The

fuzzy linguistic approach represents qualita-

tive aspects as linguistic values by means of

linguistic variables [15].

We have to choose the appropriate linguistic

descriptors for the term set and their seman-

tics. In the literature, several posibilities can

be found (see [7] for a wide description). An

important aspect to analyce is the "granular-

ity of uncertainty", i.e., the level of discrimi-

nation among di�erent counts of uncertainty.

The "granularity of uncertainty" for the lin-

guistic term set S = fs0; :::; sgg is g+1, while

its "interval of granularity" is [0; g].

One possibility of generating the linguistic

term set consists of directly supplying the

term set by considering all terms distributed

on a scale on which a total order is de�ned

[14]. For example, a set of seven terms S,

could be given as follows:

S = fs0 : N; s1 : V L; s2 : L; s3 : M; s4 : H; s5 : V H; s6 : Pg

Usually, in these cases, it is required that in

the linguistic term set satisfy the following ad-

ditional characteristics:

1. There is a negation operator: Neg(si) =

sj such that j = g � i (g+1 is the cardi-

nality).

2. si � sj () i � j. Therefore, there ex-

ists a min and a max operator.



The semantics of the linguistic terms are given

by fuzzy numbers de�ned in the [0,1] interval.

A way to characterize a fuzzy number is to

use a representation based on parameters of

its membership function [1]. The linguistic

assessments given by the users are just ap-

proximate ones, some authors consider that

linear trapezoidal membership functions are

good enough to capture the vagueness of those

linguistic assessments. The parametric repre-

sentation is achieved by the 4-tuple (a; b; d; c),

where b and d indicate the interval in which

the membership value is 1, with a and c in-

dicating the left and right limits of the de�-

nition domain of the trapezoidal membership

function [1]. A particular case of this type of

representation are the linguistic assessments

whose membership functions are triangular,

i.e., b = d, then we represent this type of

membership functions by a 3-tuple (a; b; c). A

possible semantics for the above term set, S,

may be the following (Figure 1):

P = (:83; 1; 1) V H = (:67; :83; 1)

H = (:5; :67; :83) M = (:33; :5; :67)

L = (:17; :33; :5) V L = (0; :17; :33)

N = (0; 0; :17)

N VL L M H VH P

0 0.17 0.33 0.5 0.67 0.83 1

Figure 1: A set of seven linguistic terms with
its semantics

2.2 The 2-tuple Linguistic
Representation Model

This model was presented in [4], for overcom-

ing the drawback of the loss of information

presented by the classical linguistic computa-

tional models: (i) The model based on the

Extension Principle [1], (ii) and the symbolic

one [2]. The 2-tuple fuzzy linguistic represen-

tation model is based on symbolic methods

and takes as the base of its representation the

concept of Symbolic Translation.

De�nition 1. The Symbolic Translation of

a linguistic term si 2 S = fs0; :::; sgg is a

numerical value assessed in [�:5; :5) that su-
port the "di�erence of information" between

a counting of information � 2 [0; g] and the

closest value in f0; :::; gg that indicates the in-
dex of the closest linguistic term in S(si), be-

ing [0,g] the interval of granularity of S.

From this concept a new linguistic representa-

tion model is developed, which represents the

linguistic information by means of 2-tuples

(ri; �i), ri 2 S and �i 2 [�:5; :5). ri repre-

sents the linguistic label center of the infor-

mation and �i is the Symbolic Tranlation.

This model de�nes a set of functions between

linguistic 2-tuples and numerical values.

De�nition 2. Let S = fs0; :::; sgg be a lin-
guistic term set and � 2 [0; g] a value rsup-
porting the result of a symbolic aggregation
operation, then the 2-tuple that expresses the
equivalent information to � is obtained with
the following function:

� : [0; g] �! S � [�0:5; 0:5)

�(�) = (si; �); with

�
si i = round(�)

� = � � i � 2 [�:5; :5)

where round(�) is the usual round operation,

si has the closest index label to "�" and "�"

is the value of the symbolic translation.

Proposition 1.Let S = fs0; :::; sgg be a lin-

guistic term set and (si; �) be a linguistic 2-

tuple. There is always a ��1 function, such

that, from a 2-tuple it returns its equivalent

numerical value � 2 [0; g] in the interval of

granularity of S.

Proof. It is trivial, we consider the following

function:

��1 : S � [�:5; :5) �! [0; g]

��1(si; �) = i+ � = �

Remark: From De�nitions 1 and 2 and

Proposition 1, it is obvious that the conver-

sion of a linguistic term into a linguistic 2-

tuple consist of adding a value 0 as symbolic

translation: si 2 S =) (si; 0)



3 Aggregation Process for a
Heterogeneous Information in a
GDM problem

In this section we present our purpose to carry

out the aggregation step of a decision making

process in a GDM problem de�ned in a het-

erogeneous context.

We focus in GDM problems in which the pref-

erence relations provided by the experts can

be:

1. Fuzzy preference relations [8]

2. Interval-valued preference relation [13]

3. Linguistic preference relation assessed in

a pre-established label set [3]

Following, we present our proposal for com-

bining this heterogeneous information. This

aggregation process is composed by the fol-

lowing phases:

1. Making the information uniform. The

heterogeneous information will be uni�ed

into a speci�c linguistic domain, which is

a Basic Linguistic Term Set (BLTS). The

process is carried out in the following or-

der:

(a) Transforming numerical values in

[0; 1] into F (ST ).

(b) Transforming linguistic terms into

F (ST ).

(c) Transforming interval-valued into

F (ST ).

2. Aggregating individual performance val-

ues. For each alternative, a collective

performance value is obtained by means

of the aggregation of the above fuzzy sets

on the BLTS that represents the individ-

ual performance values assigned by the

experts according to his/her preference.

3. Transforming into 2-tuple. The collec-

tive performance values (fuzzy sets) are

transformed into linguistic 2-tuples in the

BLTS and obtained a collective 2-tuple

preference relation.

Following we shall show in deep each step of

the above phases of the aggregation process.

3.1 Making the information uniform

Firstly, the heterogeneous information is uni-

�ed in an unique expression domain. In this

case, we shall use fuzzy sets over a BLTS, de-

noted as F (ST ). We study the linguistic term

set S that belongs to the de�nition context of

the GDM problem. If:

1. S is a fuzzy partition,

2. and the membership functions of its

terms are triangular, i.e., si = (ai; bi; ci)

then we select S as BLTS, due to the fact that,

these conditions are necessary and suÆcient

for the transformation between values in [0; 1]

and 2-tuples, being them carried out without

loss of information [6].

If the linguistic term set S, used in the def-

inition context of the problem, does not sat-

isfy the above conditions then we shall choose

as BLTS a term set with a larger number of

terms than the number of terms that a per-

son is able to discriminate (normally 11 or

13, see [1]) and satis�es the above conditions.

We choose the BLTS with 15 terms symmetri-

cally distributed, with the following semantics

(graphically, Figure 2).

s0 (0,0,0.07) s1 (0,0.07,0.14)
s2 (0.07,0.14,0.21) s3 (0.14,0.21,0.28)
s4 (0.21,0.28,0.35) s5 (0.28,0.35,0.42)
s6 (0.35,0.42,0.5) s7 (0.42,0.5,0.58)
s8 (0.5,0.58,0.65) s9 (0.58,0.65,0.72)
s10 (0.65,0.72,0.79) s11 (0.72,0.79,0.86)
s12 (0.79,0.86,0.93) s13 (0.86,0.93,1)
s14 (0.93,1,1)

0  1 2 3 4  5 6 7 8 9 10 11 12 13 14s s s s s s s s s s s s s s s

Figure 2: A BLTS with 15 terms symmetri-
cally distributed

The process of unifying the information in-

volves the comparison between fuzzy sets.



Comparisons are usually carried out by means

of a measure of comparison. We focus in mea-

sures of comparison which evaluate the re-

semblance of likeness of two objects (fuzzy

sets in our case). These type of measures are

called measures of similitude [11]. For sim-

plicity, in this contribution we sall choose a

measure of similitude based on a possibility

funcion S(A;B) = maxxmin(�A(x); �B(x)),

where �A and �B are the membership func-

tion of the fuzzy set A and B respectively.

3.1.1 Transforming numerical values
in [0; 1] into F (ST ).

Let F (ST ) be the set of fuzzy sets in ST =

fs0; : : : ; sgg, we shall transform a numerical

value # 2 [0; 1] into a fuzzy set in F (ST ) com-

puting the membership value of # in the mem-

bership functions associated with the linguis-

tic terms of ST .

De�nition 3. [6] The function � transforms
a numerical value into a fuzzy set in ST :

� : [0; 1] ! F (ST )

�(#) = f(s0; 
0); :::; (sg; 
g)g; si 2 ST and 
i 2 [0; 1]


i = �si(#) =

8><
>:

0; if # =2 Support(�si(x))
#�ai
bi�ai

; if ai � # � bi
1; if bi � # � di
ci�#

ci�di
; if di � # � ci

Remark: We consider membership func-

tions, �si(�), for linguistic labels, si 2
ST , that achieved by a parametric function

(ai; bi; di; ci). A particular case are the lin-

guistic assessments whose membership func-

tions a triangular, i.e., bi = di.

Example 1

Let # = 0:78 be a numerical value to be trans-

formed into a fuzzy set in S = fs0; :::; s4g.
The semantic of these term set is:

s0 = (0; 0; 0:25) s1 = (0; ; 0:25; 0:5)

s2 = (0:25; 0:5; 0:75) s3 = (0:5; 0:75; 1)

s4 = (0:75; 1; 1)

�(0:78) = f(s0; 0); (s1; 0); (s2; 0); (s3; 0:88); (s4; 0:12)g

3.1.2 Transforming linguistic terms in
S into F (ST ).

De�nition 5.[5] Let S = fl0; : : : ; lpg and
ST = fs0; : : : ; sgg be two linguistic term sets,
such that, g � p: Then, a multi-granularity
transformation function, �SST , is de�ned as:

�SST : A! F (ST )

�SST (li) = f(ck; 

i

k
) = k 2 f0; :::; ggg; 8li 2 S


i
k
= maxyminf�li(y); �ck(y)g

where F (ST ) is the set of fuzzy sets de�ned in

ST , and �li(�) and �ck(�) are the membership

functions of the fuzzy sets associated with the

terms li and ck, respectively.

Therefore, the result of �SST for any linguistic

value of S is a fuzzy set de�ned in the BLTS,

ST .

Example 2

Let S = fl0; l1; : : : ; l4g and ST =

fs0; s1; : : : ; s6g be two term set, with 5 and

7 labels, respectively, and with the following

semantics associated:

l0 = (0; 0; 0:25) s0 = (0; 0; 0:16)

l1 = (0; ; 0:25; 0:5) s1 = (0; 0:16; 0:34)

l2 = (0:25; 0:5; 0:75) s2 = (0:16; 0:34; 0:5)

l3 = (0:5; 0:75; 1) s3 = (0:34; 0:5; 0:66)

l4 = (0:75; 1; 1) s4 = (0:5; 0:66; 0:84)

s5 = (0:66; 0:84; 1)

s6 = (0:84; 1; 1)

The fuzzy set obtained after applying �SST for

l1 is:

�AST (l1) = f(s0; 0:39); (s1; 0:85); (s2; 0:85);

(s3; 0:39); (s4; 0); (s5; 0); (s6; 0)g

3.1.3 Transforming interval-valued
into F (ST ):

Let I = [i; i] be an interval-valued in [0; 1],
to carry out this transformation we assume
that the interval-valued has a representation,
inspired in the membership function of fuzzy
sets [9], as follows:

�I(#) =

8<
:

0; if # < i
1; if i � # � i
0; if i < #



Table 1: The preference relation

Pek =

0
B@

pk11 = f(s0; 

11

k0
); : : : ; (sg; 


11

kg
)g � � � pk1n = f(s0; 


1n
k0

); : : : ; (sg; 

1n
kg

)g
... � � �

...

pkn1 = f(s0; 

n1
k0

); : : : ; (sg; 

n1
kg

)g � � � pknn = f(s0; 

nn
k0

); : : : ; (sg; 

nn
kg

)g

1
CA

Table 2: Example preference relations

Pn
1 =

0
@ � :5 :8 :4

:5 � :9 :5
:8 :9 � :4
:4 :5 :4 �

1
A PS

2 =

0
@ � H VH M

H � H VH
VH H � V H
M VH VH �

1
A P I

3 =

0
@

� [:7; :8] [:65; :7] [:8; :9]
[:7; :8] � [:6; :7] [:8; :85]
[:8; :9] [:6; :7] � [:7; :9]
[:8; :9] [:8; :85] [:7; :9] �

1
A

where # is a value in [0; 1]: In Figure 3 can
be observed the graphical representation of an
interval.

i i

1

0 1

Figure 3: Membership function of I = [i; i]

De�nition 5. Let ST = fs0; : : : ; sgg be a
BLTS. Then, the function �IST transforms a
interval-valued I in [0; 1] into a fuzzy set in
ST .

�IST : I ! F (ST )

�IST (I) = f(ck; 

i

k
) = k 2 f0; :::; ggg;


i
k
= maxyminf�I(y); �ck(y)g

where F (ST ) is the set of fuzzy sets de�ned in
ST , and �I(�) and �ck(�) are the membership
functions associated with the interval-valued I
and terms ck, respectively.

Example 3

Let I = [0:6; 0:78] be an interval-valued to
be transformed into a fuzzy set in ST . The
semantic of these term set is the same of Ex-
ample 3.1.1. The fuzzy set obtained after ap-
plying �IST is:

�IST = f(s0; 0); (s1; 0); (s2; 0:6); (s3; 1); (s4; 0:2)g

3.2 Aggregating individual
performance values

Using the above transformation functions we
express the input information by means of

fuzzy sets on the BLTS, ST = fs0; : : : ; sgg;.
Now we use an aggregation function for com-
bining the fuzzy sets on the BLTS to obtain
a collective performance for each alternative
that will be a fuzzy set on the BLTS.

For the heterogeneous GDM the preference
relations are expressed by means of fuzzy sets
on the BLTS as Table 1, where pk

ij
is the pref-

erence degree of the alternative xi over xj pro-
vides by the expert ek.

We shall represent each fuzzy set, pk
ij
, as

rk
ij

= (

ij

k0
; : : : ; 


ij

kg
) being the values of rk

ij

their respective membership degrees. Then,
the collective performance value of the pref-
erence relation according to all preference re-
lations provided by experts frk

ij
;8ekg is ob-

tained aggregating these fuzzy sets. This col-
lective performance value, denoted rij ; is a
new preference relation of fuzzy set de�ned in
ST , i.e.,

rij = (

ij

0
; : : : ; 
ij

g
)

characterized by the following membership
function:


ijv = f(

ij

1v
; : : : ; 


ij

kv
);

where f is an \aggregation operator" and k is
the number of experts.

3.3 Transforming into 2-tuple

In this phase we transform the fuzzy sets
on the BLTS into linguistic 2-tuples over the
BLTS. In [5] was presented a function � that
transforms a fuzzy set in a linguistic term set
into a numerical value in the interval of gran-
ularity of ST , [0; g]:

� : F (ST )! [0; g]

�(� (#)) = �(f(sj ; 
j); j = 0; :::; gg) =

P
g

j=0
j
jP

g

j=0

j

= �



Table 3: Fuzzy sets in a BLTS

Pn
1 =

0
@

� (0; 0; 0; 1; 0; 0; 0) (0; 0; 0; 0; :19; :81; 0) (0; 0; :59; :41; 0; 0; 0)
(0; 0; 0; 1; 0; 0; 0) � (0; 0; 0; 0; 0; :59; :41) (0; 0; 0; 1; 0; 0; 0)

(0; 0; 0; 0; :19; :81; 0) (0; 0; 0; 0; 0; :59; :41) � (0; 0; :59; :41; 0; 0; 0)
(0; 0; :59; :41; 0; 0; 0) (0; 0; 0; 1; 0; 0; 0) (0; 0; :59; :41; 0; 0; 0) �

1
A

Table 4: The collective Preference relation.

P =

0
@

� (0; 0; 0; 0; :6; :27; 0) (0; 0; 0; :04; :4; :67; 0) (0; 0; :2; :47; :27; :33; :14)
(0; 0; 0; 0; :6; :27; 0) � (0; 0; 0; :14; :67; :26; :14) (0; 0; 0; :33; :06; :67; :04)
(0; 0; 0; :04; :4; :67; 0) (0; 0; 0; :14; :67; :26; :14) � (0; 0; :2; :14; :27; :67; :14)

(0; 0; :2; :47; :27; :33; :14) (0; 0; 0; :33; :06; :67; :04) (0; 0; :2; :14; :27; :67; :14) �

1
A

Therefore, applying the � function to � we
shall obtain a collective preference relation
whose values are linguistic 2-tuples.

4 Example

Let us suppose that an enterprise want to ren-
ove its computers. There exist four models
of computers available, fHP, IBM, COMPAQ
and DELLg and three experts provide his/her
preference relations over the four cars. The
�rst expert expresses his/her preference rela-
tion using numerical values in [0; 1], P n

1
. The

second one expresses the preferences by means
of linguistic values in a linguistic term set S
(see Figure 1), P S

2
. And the third expert can

express them using interval-valued in [0; 1],

P I

3
. The three experts attempt to reach a

collective decision.

4.1 Decision Process

We shall use the following decision process to
solve this problem:

A) Aggregation Phase

We use the aggregation process presented in
this paper.

1. Making the information uniform

(a) Choose the BLTS. It will be S; due
to the fact, it satis�es the conditions
showed in Section 3.1.

(b) Transforming the input information
into F (ST ). (see Table 3)

(c) Aggregating individual performance
values. In this example we use as
aggregation operator, f , the arith-
metic mean obtaining the collective
preference relation shows in Table 4

2. Transforming into 2-tuple. The re-
sult of this transformation is:

P =

0
@

� (H; :31) (V H;�:43) (H;�:18)
(H; :31) � (H; :33) (H; :38)

(V H;�:43) (H; :33) � (H; :29)
(H;�:18) (H; :38) (H; :29) �

1
A

B) Exploitation Phase

To solve the GDM problem, �nally we calcu-
late the dominance degree for the alternative
xi over the rest of alternatives. To do so, we
shall use the following function:

�(xi) =
1

n� 1

nX
j=0 j j 6=i

�ij

where n is the number of alternatives and
�ij = ��1(pij) being pij a lingusitic 2-tuple.

In this phase we shall calculate the dominance
degree for this preference relation showed in
Table 5.

Table 5: Dominance degree of the alternatives

HP IBM COMPAQ DELL

(H; :23) (H; :34) (H,.4) (H; :16)

Then, the dominance degree rank the alterna-
tives and we choose the best alternatives how
solution set of GDM problem, in this example
the solution set is fCOMPAQg.

5 Concluding Remarks

We have developed an aggregation process for
aggregating heterogeneous information com-
posed by numerical, interval valued and lin-
guistic values. This aggregation process is



based on the transformation of the informa-
tion into fuzzy sets and afterwards into lin-
guistic 2-tuples. This aggregation process has
been applied it to a GDM problem de�ned in
a heterogeneous context.

In the future we want to apply this aggre-
gation process to other types of information
used in the literature to express preference as
can be Interval-Valued Fuzzy Sets, Intuition-
istic Fuzzy Sets.
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