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Abstract

The Fuzzy Linguistic Approach has

been applied successfully to many

problems, its use implies processes of

Computing with Words (CW). One

important limitation of the fuzzy lin-

guistic approach appears when these

processes are applied to problems

de�ned in multigranular linguistic

contexts. This limitation consists

of the diÆculty in dealing with this

type of information in processes of

CW, due to the fact, that there is no

standard normalization process for

this type of information as in the

numerical domain. In this contri-

bution, taking as base the 2-tuple

fuzzy linguistic representation model

and its computational technique, we

shall present a method for easily

dealing with multigranular linguistic

information in fusion processes.

Keywords: Linguistic variables, fusion pro-

cesses, granularity of uncertainty.

1 Introduction

On many occasions we �nd problems that

present several sources of information to qual-

ify their phenomena. When these phenomena

present quantitative aspects, they can be as-

sessed by means of precise numerical values,

however when the aspects presented by the
0This work has been supported by Research

Project PB98-1305

phenomena are qualitative may be diÆcult to

qualify using precise values. So, the use of the

fuzzy linguistic approach [13] has shown itself

as a good choice to model these phenomena.

The use of the fuzzy linguistic approach im-

plies processes of Computing with Words. In

the specialized literature can be found three

di�erent linguistic computational models that

provide linguistic operators for CW:

� Model based on the Extension Principle

[3]

� The symbolic one [2]

� Model based on the 2-tuple representa-

tion [7]

An important aspect when the fuzzy linguis-

tic approach is used, is to determine the

\granularity of uncertainty" of the linguistic

term set used to assess the linguistic vari-

ables. When a problem presents multigranu-

lar linguistic information, the classical compu-

tational techniques presented in [2, 3] have an

important limitation because in these compu-

tational methods, neither a standard normal-

ization process nor fusion operators are de-

�ned for this type of information. Therefore,

the results obtained are not �tted (loss of in-

formation) and are expressed by values in do-

mains far removed from the inital expression

domains.

The aim of this paper is to develop an ag-

gregation process, for multigranular linguis-

tic information, that overcomes the above

limitations. To do so, we shall use the 2-

tuple fuzzy linguistic representation model

and its computational technique [7], together

with the multigranular linguistic information



fusion ideas presented in [5]. Finally, we

shall solve a Multi-Expert Decision-Making

(MEDM) problem de�ned in a multigranular

linguistic context.

To do so, the paper is structured as follows:

in Section 2, we shall make a brief review of

some preliminaries. In Section 3, we develop

a fusion method for multigranular linguistic

information. In Section 4, a decision process

over an MEDM problem with multigranular

linguistic information is presented. Finally,

some concluding remarks are pointed out in

Section 5.

2 Preliminaries

In this section we briey review the fuzzy lin-

guistic approach together with the three lin-

guistic computational techniques and present

a general scheme for MEDM problems.

2.1 Fuzzy Linguistic Approach

Many aspects of di�erent activities in the real

world cannot be assessed in a quantitative

form, but rather in a qualitative one, i.e., with

vague or imprecise knowledge. In that case a

better approach may be to use linguistic as-

sessments instead of numerical values. The

fuzzy linguistic approach represents qualita-

tive aspects as linguistic values by means of

linguistic variables [13].

We have to choose the appropriate linguistic

descriptors for the term set and their seman-

tics [5]. One possibility of generating the lin-

guistic term set consists of directly supply-

ing the term set by considering all terms dis-

tributed on a scale on which a total order is

de�ned [12]. For example, a set of seven terms

S, could be:

fs0 : N; s1 : V L; s2 : L; s3 : M; s4 : H; s5 : V H; s6 : Pg

Usually, in these cases, it is required that in

the linguistic term set there exist:

1. A negation operator: Neg(si) = sj such

that j = g-i (g+1 is the cardinality).

2. An order: si � sj () i � j. Therefore,

there exists a min and a max operator.

The semantics of the terms are given by fuzzy

numbers de�ned in the [0,1] interval, which

are usually described by membership func-

tions. For example, we may assign the fol-

lowing semantics to the set of seven terms:

P = (:83; 1; 1) V H = (:67; :83; 1)

H = (:5; :67; :83) M = (:33; :5; :67)

L = (:17; :33; :5) V L = (0; :17; :33)

N = (0; 0; :17):

which is graphically shown in Figure 1.

N VL L M H VH P

0 0.17 0.33 0.5 0.67 0.83 1

Figure 1: A Set of 7 Terms with its Semantic

2.2 Linguistic Computational Models

The linguistic variables are used in processes

of CW that imply their fusion, aggregation,

comparison, etc. To perform these computa-

tions have been developed three techniques in

the literature. (i) The model based on the Ex-

tension Principle, (ii) the symbolic one, and

(iii) the model based on the linguistic 2-tuple.

Here we briey review the two �rst, and the

third one will be review in deep.

1. The linguistic computational methods based

on the Extension Principle [3]. These meth-

ods use the extended arithmetic, based on the

Extension Principle [4], on the membership

functions associated to the linguistic terms

to make linguistic computations. The use

of extended arithmetic based on the Exten-

sion Principle increases the vagueness of the

results. Therefore, the results obtained are

counts of information that usually do not

match any linguistic term in the initial term

set, so a linguistic approximation process [3]

is needed to express the results in the original

expression domain.

2. The linguistic computational symbolic mod-

els [2]. These methods do not use the mem-

bership functions of the labels to perform the

computations, but use the order index and

properties of such linguistic assessments to



make direct computations on labels. The re-

sults are numerical values which must be ap-

proximated to obtain a value that indicates

the index of the associated linguistic term.

For a more detailed description of these lin-

guistic computational models see [2, 3].

3. The 2-tuple Fuzzy Linguistic Representa-

tion Model. This model, has been presented

in [7], is based on the symbolic one and in a

concept called Symbolic Translation.

De�nition 1. Let � be the result of an aggre-

gation of the indexes of a set of labels assessed

in a linguistic term set S = fs0; :::; sgg, i.e.,

the result of a symbolic aggregation operation.

� 2 [0; g], being g+1 the cardinality of S. Let

i = round(�) and � = � � i be two values,

such that, i 2 [0; g] and � 2 [�:5; :5) then �

is called a Symbolic Translation.

From this concept in [7] it was developed a lin-

guistic representation model which represents

the linguistic information by means of a pair

of values (si; �i), si 2 S and �i 2 [�:5; :5).

This model de�nes a set of functions to deal

with 2-tuples.

De�nition 2. Let S = fs0; :::; sgg be a lin-

guistic term set and � 2 [0; g] a value sup-

porting the result of a symbolic aggregation

operation, then the 2-tuple that expresses the

equivalent information to � is obtained with

the following function:

� : [0; g] �! S � [�0:5; 0:5)

�(�) =

(
si i = round(�)

� = � � i � 2 [�:5; :5)

where si has the closest index label to "�" and

"�" is the value of the symbolic translation.

Proposition 1. Let S = fs0; :::; sgg be a lin-

guistic term set and (si; �) be a 2-tuple. There

is always a ��1 function, such that, from a 2-

tuple it returns its equivalent numerical value

� 2 [0; g] � R.

Proof.

It is trivial, we consider the following func-

tion:
��1 : S � [�:5; :5) �! [0; g]

��1(si; �) = i+ � = �

2.3 A General Scheme of an

Muti-Expert Decision-Making

problem

A Muti-Expert Decision-Making (MEDM)

problem can be de�ned as follows. Let A =

fa1; :::; ang be a set of alternatives, each one

assessed by a set of experts fe1; :::; emg. This

scheme is shown in Table 1:

Table 1: A general MEDM problem

Alternatives Experts
(ai) e1 e2 ::: em

a1 y11 y12 ::: y1m
::: ::: ::: ::: :::

an yn1 yn2 ::: ynm

We focus in MEDM problems de�ned over

multigranular linguistic term sets, i.e., prob-

lems where their preference values yij can

be assessed in linguistic term sets Sj that

can have di�erent granularity of uncertainty

and/or semantics.

Decision-making problems that manage pref-

erences from di�erent experts follow a com-

mon resolution scheme [10] composed by two

phases:

1. Aggregation phase: It combines the indi-

vidual preferences to obtain a collective

preference value for each alternative.

2. Exploitation phase: It orders the col-

lective preference values according to a

given criterion to obtain the best alter-

native/s.

In problems de�ned in multigranular linguis-

tic contexts the aggregation phase is carried

out in two steps [5]:

� Normalization step. The multigranular

linguistic information is expressed in an

unique linguistic term set.

� Combination step. The uni�ed linguistic

information expressed in an unique lin-

guistic term set is aggregated.

3 Fusion Method for Multigranular

Linguistic Information based on

the 2-tuple Representation

This fusion method for multigranular linguis-

tic information is developed according to the

following processes.



1. Making the information uniform.

The multigranular linguistic information

is uni�ed into \fuzzy sets" in a Basic Lin-

guistic Term Set (BLTS).

2. Transforming fuzzy sets into 2-

tuples. The fuzzy sets in the BLTS are

transformed into 2-tuples in the BLTS.

3. Fusion of 2-tuples. We apply a 2-tuple

aggregation operator in order to obtain

aggregated values expressed by means of

2-tuples assessed in the BLTS.

4. Backward step. The 2-tuples obtained

by the aggregation method, are assessed

in the BLTS, and can be distant from the

linguistic term sets used by the sources of

information. Therefore, it is o�ered the

option to express the results in the initial

term sets for a better comprehensiveness

of them. This step is not neccesary, it is

simply convenient.

Subsequently, we shall develop the above

method over an MEDM problem.

3.1 Making the Information Uniform

With a view to manage the information we

must make it uniform. The multigranular lin-

guistic information provided by all the sources

must be transformed into a uni�ed linguistic

term set, called BLTS and denoted as ST .

Before de�ning a transformation function into

this BLTS, ST , we have to decide how to

choose ST . We take into consideration two

possibilities:

� If there is only one term set with the max-

imum granularity, then, it is chosen as

ST .

� If we have two or more linguistic term

sets with maximum granularity then, ST
is chosen depending on the semantics of

these linguistic term sets, �nding two

possible situations to establish ST :

1. All the linguistic term sets have the

same semantics, then ST is any one of

them.

2. There are some linguistic term sets

with di�erent semantics. Then, ST is

a basic linguistic term set with a larger

number of terms than the number of

terms that a person is able to discrim-

inate (normally 11 or 13, see [9]). We

de�ne a BLTS with 15 terms and the fol-

lowing semantics (see Figure 2):

s0 (0; 0; :07) s1 (0; :07; :15) s2 (:07; :15; :22)
s3 (:15; :22; :29) s4 (:22; :29; :36) s5 (:29; :36; :43)
s6 (:36; :43; :5) s7 (:43; :5; :57) s8 (:5; :57; :64)
s9 (:57; :64; :71) s10 (:64; :71; :78) s11 (:71; :78; :85)
s12 (:78; :85; :93) s13 (:85; :93; 1) s14 (:93; 1; 1)

0  1 2 3 4  5 6 7 8 9 10 11 12 13 14s s s s s s s s s s s s s s s

Figure 2: Term set with 15 terms

Once the BLTS has been chosen, the multi-

granular linguistic information is uni�ed.

This process involves the comparison between

fuzzy sets representing the semantics of the

initial terms assessed in Sj and the fuzzy sets

of the linguistic terms of the BLTS. Compar-

isons are usually carried out by means of a

measure of comparison. Depending on the

framework, the measure of comparison can

have di�erent forms [8, 11]. We focus on mea-

sures of comparison which evaluate the resem-

blance or likeness of two objects (fuzzy sets in

our case). These type of measures are called

\measures of similitude" [1].

Measures of similitude are very general and

di�erent classes can be identi�ed [1]. For

simplicity, in this paper we shall choose a

measure of similitude based on a possibility

function S(A;B) = maxxmin(�A(x); �B(x)),

where �A and �B are the membership func-

tions of the fuzzy sets A and B respectively.

Therefore, to make the information uniform,

we shall use the following function:

De�nition 3 [5]. Let A = fl0; : : : ; lpg and

ST = fc0; : : : ; cgg be two linguistic term sets,

such that, g � p. Then, a multigranular

transformation function, �AST is de�ned as:

�AST : A �! F (ST )



�AST (lo) = f(ck; �
o
k) =k 2 f0; : : : ; ggg; 8lj 2 A

�ok = max
x

minf�lo(x); �ck(x)g

where F (ST ) is the set of fuzzy sets de�ned in

ST , and �lo(x) and �ck(x) are the membership

functions of the fuzzy sets associated to the

terms lo and ck, respectively.

The result of �AST for any linguistic value of

A is a fuzzy set de�ned in the BLTS, ST .We

shall denote each �SjST (y
ij) with yij 2 Sj, as

rij, and represents each fuzzy set of perfor-

mance, rij, by means of its respective mem-

bership degrees, i.e.,

rij = (�
ij
0 ; : : : ; �

ij
g ):

3.2 Transforming Fuzzy Sets into

2-tuples

So far, we have uni�ed the multigranular

linguistic information transforming each lin-

guistic term "yij" provided by the sources

in a fuzzy set by means of �SjST (y
ij)

over the BLTS ST , such that,�SjST (y
ij) =

f(c0; �
ij
0 ); :::; (cg ; �

ij
g )g. To deal with this type

of information, we shall transform each fuzzy

set into a linguistic 2-tuple using a central

value computed by means of a weighted av-

erage, where the weights are the membership

degrees of the fuzzy set. We shall de�ne the

function � that computes a value � 2 [0; g]

that represents a central value of the infor-

mation in the fuzzy set �SjST (y
ij).

De�nition 4. Let �SjST (lo) =

f(c0; �
o
0); :::; (cg ; �

o
g)g be a fuzzy set that

represents a linguistic term lo 2 Sj over

ST . We shall obtain a numerical value, that

supports the information of the fuzzy set,

assessed in the interval [0; g] by means of the

following function:

� : F (ST ) �! [0; g]

�(�SjST (lo)) =

Pg
k=0 k�

o
kPg

k=0 �
o
k

= �

This value � is easy to transform into a lin-

guistic 2-tuple using the function �:

�(�(�SjST (y
ij))) = �(�(rij)) = (sk; �)

ij

3.3 Fusion of 2-tuples

Here we shall obtain the result we are looking

for, an aggregated value from the multigran-

ular linguistic information.

Our objective is to aggregate the information

associated to the alternative i. In [7] a wide

range of 2-tuple linguistic aggregation oper-

ators were presented. To aggregate the 2-

tuples, (sk; �)
ij ; j = 1; :::;m, we shall choose

one of these linguistic 2-tuple aggregation op-

erators and we shall apply it to combine the

2-tuples, obtaining as a result an aggregated

linguistic 2-tuple assessed in ST .

Formally, it can be expressed as:

FO((sk; �)
i1; :::; (sk; �)

im)) = (sk; �k)
i

where FO is any 2-tuple fusion operator.An

example of a 2-tuple aggregation operator can

be:

De�nition 5.[7] Let x =

f(r1; �1); :::; (rm; �m)g be a set of 2-tuples,

the 2-tuple arithmetic mean xe is computed

as,

xef(r1; �1); : : : ; (rm; �m)g =

= �(
mX
i=1

1

m
��1(ri; �i)) = �(

1

m

mX
i=1

�i)

Therefore, an example can be:

xef(M; 0); (L; 0); (V L; 0); (H; 0)g = (M;�:5)

3.4 The Backward Step

This is an optional step in the fusion pro-

cess that o�ers the possibility of making a

transformation to the initial term sets, for

improving the comprehensiveness of the re-

sults. To accomplish the backward step we

shall present a transformation function, that

obtains a 2-tuple in any initial linguistic term

set Sj = fs0; :::; sgjg from a 2-tuple expressed

in the BLTS, ST = fs0; :::; sgg. This function

will carry out the following processes:

1. In �rst place, it transforms each 2-tuple

(sk; �k) 2 ST into a fuzzy set in ST with

an only two values of membership degree

di�erent from 0:



Æ : ST�[�:5; :5) �! fST�[0; 1]g�fST�[0; 1]g

Æ(sk; �k) = f(sh; 1� h); (sh+1; h)g

where
h = trunc(��1(sk; �k))

h = ��1(sk; �k)� h

2. Following, it is applied the measure of

similitude �ST Sj to the above fuzzy set,

obtaining two fuzzy sets in Sj:

�ST Sj (sh) = f(s0; �
h
0); :::; (sgj ; �

h
gj
)g

�ST Sj (sh+1) = f(s0; �
h+1
0 ); :::; (sgj ; �

h+1
gj

)g

3. The fuzzy sets in the initial linguistic

term set, Sj, are converted into numer-

ical values assessed in [0; gj ] by means of

the � function, obtaining �h and �h+1 2

[0; gj ], such that,

�(�ST Sj (sh)) = �h
�(�ST Sj (sh+1)) = �h+1

4. To achieve our objective, we need to ob-

tain a value �
j
k 2 [0; gj ] that represents

the amount of information of (sk; �k).

We have �h and �h+1 2 [0; gj ], that

represent the information supportted by

sh and sh+1, now we make a linear combi-

nation (LC) using the degrees of member-

ship of the fuzzy set to obtain the value

that we are looking for:

LC[(�h; 1� h); (�h+1; h)] =

= (�h � (1� h)) + (�h+1 � h) = �
j
k 2 [0; gj ]

Then, applying � to �
j
k we shall obtain the

linguistic 2-tuple assessed in Sj that we were

looking for:

�(�
j
k) = (s

j
k; �

j
k)

Now we de�ne the function � that accomplish

the whole process of the backward step:

De�nition 6: Let (sk; �k) be a 2-tuple as-

sessed in the BLTS, therefore its equivalent

2-tuple in Sj is computed as:

� : ST � [�:5; :5) �! Sj � [�:5; :5)

�(sk; �k) = �(LC(�(�ST Sj (Æ(sk; �k))))) = (s
j
k; �

j
k)

S  x [-.5,.5)

{S  x [0,1], S  x [0,1]} [0,g ]

S  x[-.5,.5)
T

T  T

i

i

i{[0,g ] x[0,1], [0,g]x[0,1]}i

δ( )

χ τ( ) LC(·)

∆( )··

·

·Γ( )

Figure 3: Backward step. � function

This process will be carried out for all source

term sets Sj, therefore each source can easily

understand the results. In Figure 3 we can

see graphically the whole process.

Obviously, the backward step has sense only

if the order of the alternatives is not altered

during the process. In [6] is proved that �

does not alter the order.

4 Example

Here we shall apply the 2-tuple multigranular

fusion method to a decision process over the

following MEDM problem.

A distribution company needs to renew its

computing system, so it contracts a consulting

company to carry out a survey of the di�erent

possibilities existing on the market, to decide

which is the best option for its needs. The

alternatives are the following:

x1 x2 x3 x4
UNIX WINDOWS-2000 AS/400 VMS

The consulting company has a group of four

consultancy departments (experts).

p1 p2 p3 p4
Cost Systems Risk Technology

analysis analysis analysis analysis

Each department (expert) provides a perfor-

mance vector expressing its preferences for

each alternative assessed in linguistic term

sets with a di�erent granularity and/or se-

mantics:
� p1: preferences in the set of 9 labels, S1:

� p2: preferences in the set of 7 labels, S2:

� p3: preferences in the set of 5 labels, S3:

� p4: preferences in the set of 9 labels, S4:



S1 S4

a0 (0; 0; :12) d0 (0; 0; 0; 0)

a1 (0; :12; :25) d1 (0; :01; :02; :07)

a2 (:12; :25; :37) d2 (:04; :1; :18; :23)

a3 (:25; :37; :5) d3 (:17; :22; :36; :42)

a4 (:37; :5; :62) d4 (:32; :41; :58; :65)

a5 (:5; :62; :75) d5 (:58; :63; :80; :86)

a6 (:62; :75; :87) d6 (:72; :78; :92; :97)

a7 (:75; :87; :1) d7 (:93; :98; :99; 1)

a8 (:87; 1; 1) d8 (1; 1; 1; 1)

S2 S3

b0 (0; 0; :16) c0 (0; 0; :25)

b1 (0; :16; :33) c1 (0; :25; :5)

b2 (:16; :33; :5) c2 (:25; :5; :75)

b3 (:33; :5; :66) c3 (:5; :75; 1)

b4 (:5; :66; :83) c4 (:75; 1; 1)

b5 (:66; :83; :1)

b6 (:83; 1; 1)

The performance vectors provided by the ex-

perts are the following:

experts

p1 p2 p3 p4
x1 a4 b3 c2 d4

alternatives x2 a6 b4 c3 d5
x3 a3 b3 c2 d3
x4 a5 b5 c1 d5

where yij 2 Sj is the performance value given

by the expert pj over the alternative xi.

We shall apply the decision process presented

in section 2.3 to solve this MEDM problem

with multigranular linguistic information.

A. Collective Performance Vector.

1. Making the Information Uniform

We have to choose the BLTS. In this case

ST is the term set of 15 labels given in

Figure 2. All the assessments are con-

verted to ST by means of �SiST . We ob-

tain fuzzy sets as results:

r11(0; 0; 0; 0; :05; :45; :8; :82; :48; :23; 0; 0; 0; 0; 0)

2. Transforming rij into 2-tuples

Using the functions � and �. As example

we obtain:

�(�(r11)) = (s7;�:32)
11�(�(r21)) = (s7;�:05)

21

After this transformation, we manage 2-

tuples assessed in the BLTS, ST .

3. Computing the collective perfor-

mance values

For each alternative xi we compute its

collective performance value using a 2-

tuple linguistic aggregation operator, in

this case we choose the 2-tuple mean op-

erator:

x1 �! xe((sj ; �)
1i)) = (s8;�:46)

1

x2 �! xe((sj ; �)
2i)) = (s9;�:32)

2

x3 �! xe((sj ; �)
3i)) = (s7;�:16)

3

x4 �! xe((sj ; �)
4i)) = (s8;�:25)

4

Then the collective vector is:

f(s8;�:46)
1; (s9;�:32)

2; (s7;�:16)
3; (s8;�:25)

4
g

4. The Backward step

Now we can make the backward step to

express the collective performance vector

in the linguistic term sets used by the

experts, i.e., S1; S2; S3; S4. To do so, we

shall use the � function:

(a) First, the collective values are trans-

formed into fuzzy sets in ST .

Æ(s8;�:46)
1 = f(s7; :46); (s8; :54)g

1

Æ(s9;�:32)
2 = f(s8; :32); (s9; :68)g

2

Æ(s7;�:16)
3 = f(s6; :16); (s7; :84)g

3

Æ(s8;�:25)
4 = f(s7; :25); (s8; :75)g

4

(b) Following, we shall apply the func-

tions �STS1 ; �ST S2 ; �ST S3 ; �STS4 to

the above fuzzy sets. For example:

�ST S3(s6) =f(c0; 0)(c1; :4)(c2; :79)(c3; 0)(c4; 0)g

(c) Transforming the fuzzy sets into nu-

merical values by means of the �

function. An example can be:

�(�STS3(s6)) = 1:66

(d) Expressing the collective vector in

all initial linguistic term sets:



S1 :f(a4; :34)
1; (a5;�:02)

2; (a4;�:09)
3; (a5;�:14)

4
g

S2 : f(b3; :3)
1; (b4;�:23)

2; (b3;�:08)
3; (b4;�:33)

4
g

S3 : f(c2; :15)
1; (c2; :44)

2; (c2;�:06)
3; (c2; :21)

4
g

S4 : f(d4; :17)
1; (d5;�:46)

2; (d4; :02)
3; (d4; :24)

4
g

B. Selection Process

Finally, we shall apply a choice degree to the

collective performance vector to obtain the so-

lution set of alternatives. In this problem the

solution set obtained is fx2g. Then, the best

option for the distribution company according

to the experts' opinion is the Windows-2000

based system.

5 Concluding Remarks

In this paper we have presented a fusion

method based on the 2-tuple fuzzy linguistic

representation that allows us to easily deal

with multigranular linguistic information in

fusion processes. The development of this

method takes as base the 2-tuple linguistic

representation model and its computational

technique.

This new fusion method is useful for prob-

lems with multiple sources of information that

express their knowledge with linguistic infor-

mation assessed in several linguistic term sets

with di�erent cardinality and/or semantics.

We have applied this fusion method to a de-

cision process as an application example.
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