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Abstract

The paper combines the ideas from 

preferential logic and many-valued 

logic to address the consistency in the 

knowledge-based system. The

consistency and simplification theories 

of the rule-base in a lattice-valued 

propositional logic system LP(X) are 

formulated. Then, the verification of the 

consistency of the rule-base is 

transformed into a finite and achievable 

simplification problem. The 

consistency reflects the preferential 

interpretation. The principle of 

uncertainty minimization is in fact a 

preference criterion among different 

interpretations of the premise. 

Keywords: consistency, preferential logic, 

lattice-valued logic, rule-base system. 

1     Introduction 

The ability to reason in a reasonable way with 

incomplete or inconsistent information is a 

major challenge, and its significance should be 

obvious. The consistency of a knowledge-base is 

an essential issue for the knowledge-based 

intelligent information processing. However, 

this cannot be done effectively using classical 

logic. Reasoning based on classical logic cannot 

solve the problem because the presence of a 

single contradiction results in trivialization—

anything follows from A A, and so all 

inconsistencies are treated as equally bad. Hence, 

faced with an inconsistent set, if we want to 

perform automated reasoning, we must either 

remove information until consistency is 

achieved again, or adopt a non-classical logic. 

The problem with the former approach is that 

we may be forced to make premature decisions 

about which information to discard. 

Alternatively multi-valued logics allow such 

reasoning. Multi-valued logics permit some 

contradictions to be true, without the resulting 

trivialization of classical logic. For example, 

multi-valued logics use additional truth values to 

represent different types of contradiction. Multi-

valued logics are useful for merging information 

from inconsistent viewpoints because they allow 

us to explicitly represent different levels of 

agreement. The choice of values to use in the 

logic depends on how we wish to combine 

information from individual agents. The values 

used mostly are not totally ordered, but partially 

ordered.

In the framework of the lattice-valued first-order 

logic system LP(X) which is in the attempt of 

handling fuzziness and incomparability, this 

paper focuses on how to define and verify the 

consistency degree of the rule-base in the 

intelligent information process system. We 

incorporate a concepts introduced by McCarthy 

[2] and later considered by Shoham [5], 

according to which inferences from a given 

theory are made with respect to a subset of the 

models of that theory. The principle of 

uncertainty minimization is in fact a preference 

criterion among different interpretations of the 

premise. In our case the idea is to give 

precedence to those valuations that minimize the 

amount of uncertain information in the set of 

premises. The truth values are therefore 

arranged according to an order relation that 

reflects differences in the amount of uncertainty 

that each one of them exhibits. Then we choose 

those valuations that minimize the amount of 

uncertainty with respect to this order. The 
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intuition behind this approach is that incomplete 

or contradictory data corresponds to inadequate 

information about the real world, and therefore 

it should be minimized. 

Based on the above ideas, some kinds of the 

rule-bases in LP(X) with truth-value in a lattice-

valued logical algebra – lattice implication 

algebra [6-7] as the generalized clause set forms 

are presented [8-10]. Then the consistency and 

simplification theories of the rule-base in LP(X) 

are formulated. Therefore, the verification of the 

-consistency of the rule-base is transformed 

into a finite and achievable simplification 

problem. Finally, a simplification search 

algorithm for verifying the consistency of the 

rule-base is proposed. The -consistency 

reflects the consistency degree of preferential 

interpretation. The uncertainty minimization is 

in fact taken as a preference criterion among 

different interpretations of the premise. 

2     Lattice-valued Logic LP(X) 

Lattice-valued logics are particularly interesting, 

as they can handle both inconsistency and 

incompleteness. In general, lattice structures 

apply whenever ordinal information must be 

represented. The question of the appropriate 

operation and lattice structure has generated 

much literature. One of most important work is 

by Goguen [1] who established L-fuzzy logic of 

which truth value set is a complete lattice-

ordered monoid, which is also called a complete 

residuated lattice in Pavelka and Novak´s L-

fuzzy logic [3-4].  

Definition 2.1 [4]  A residuated lattice (RL) is a 

structure <L, , >, where

(1) L=<L, , , , O, I> is a bounded lattice 

with the least element O and the greatest 

element I.  

(2) < , > is an adjoint couple on L, i.e.,

(a)  is istone (ordering preserving) on L L;

(b)  is antione (order reversing) in the first 

and isotone in the second variable on L L; (c) 

for all x, y, z L hold the adjointness condition 

or Galois correspondence: x y c iff x y z

(3) <L, , I> is a commutative monoid. 

The operation  is called multiplication and 

is called residuation.

Since this algebraic structure is quite general, it 

is relevant to ask whether one can specify the 

structure. In this note, we specify the algebraic 

structure to lattice implication algebras 

introduced by Xu [7]. This module of our 

system is strongly related to previous 

developments in the theory of lattice-valued 

logic [6]. 

Definition 2.2 (LIA) [6]  Let (L, , , ) be a 

bounded lattice with an order-reversing 

involution “  ” and the universal bounds O, I, 

: L L L be a mapping. (L, , , , ) is 

called a lattice implication algebra (LIA) if the 

following axioms hold for all x, y, z L:

(A1) x (y z)=y (x z), (exchange 

property) 

(A2) x x=I, (identity) 

(A3) x y=y x , (contraposition or 

contrapositive symmetry) 

(A4) x y=y x=I implies x=y, (equivalency)  

(A5) (x y) y=(y x) x,

(A6) (x y) z=(x z) (y z),

(A7) (x y) z=(x z) (y z).

Some basic concepts and properties of LIAs can 

be seen in [6]. 

In the following, we always assume that (L, , ,

 , , O, I) is a lattice implication algebra, in 

short L.

Definition 2.3  Let X be a set of propositional 

variables, T=L { , } be a type with ar(  ) =1, 

ar( ) 2  and ar(a)=0 for every a . The 

propositional algebra of the lattice-valued 

propositional calculus on the set of propositional 

variables is the free T algebra on X and is 

denoted by LP(X).

L

Proposition 2.1 LP(X) is the minimal set Y

which satisfies the following conditions: 

(1) ,X L Y

(2) If p q Y, , then .p p q Y,

Note that L and LP(X) are the algebras with the 

same type T, where T L { , } . Moreover, 

note that , ,  and  can all be expressed by 

and , so p q, p q, p q, and p q LP(X) if p, 

q LP(X). We denote all L-fuzzy sets of LP(X)

as FL(LP(X)).

Definition 2.4  A valuation of LP(X) is a 

propositional algebra homomorphism  : 

LP(X) L.
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If is a valuation of LP(X), we have )(

for every L .

Definition 2.5  Let p LP(X), L . If (p)

for every valuation   of LP(X), then p is said to

be valid by truth-value level . If =I, then we 

say that p is valid. 

Definition 2.6  Let p, q LP(X). We say that p

and q are equivalent propositions and written as 

p=q, if (p)= (q) for every valuation  of LP(X).

Definition 2.7 Let p, q LP(X). If (p) (q) for

every valuation  of LP(X), we say that p is

always less than q, denoted by p q.

Definition 2.8 Let p LP(X), L . If (p)

for every valuation  of LP(X), we say that p is

always false by truth-value level , in short -

false. If =O, then we say that p is invalid. 

Definition 2.9  Let p LP(X), L . If there 

exists a valuation   of LP(X) such that (p) ,

then p is said to be -satisfiable. If =I, then we 

say that p is satisfiable. 

In the following section, we always suppose that 

L is a complete lattice implication algebra. And 

we use LP(X) to express the set of lattice-valued

logical formulae based on the lattice implication

algebra L.

Suppose that F is the set of all L-type formula in 

LP(X), and FL(F) represents the set of all the L-

type fuzzy set on F. Let A FL(F), A is called a

non-logical fuzzy axiom set. For any logical

formula F, always associated with a value 

A( ) L. In the real-world practices, one may

suppose that A( ) is the minimal truth-value

degree of a proposition or possibility degree,

or credibility degree (based on the application 

context). It is expected that during the reasoning

process, every inferred formula LP(X),

whose associated (truth) value should be larger

than A( ). Thus, we need to know the minimal

value A( ) of the involved formula , in 

addition, the associated truth values may

continuously improved during the deduction

process. In the following, we always assume that

for any L-type formula 0)(, A  or A is said to 

be regular, and  is called a non-logical axiom

of A.

Definition 2.10 Let A FL(F), F, L.

is said to be -true in A, denoted as A = , if

Asatisfying valuationais;)( .

Set
))((ACon

Asatisfying valuationais;)(

Now we consider the syntax in the following 

part. For arbitrary p, q F, set p q=:(p q ) .

Definition 2.11 Let A FL(LP(X)), LP(X). A 

formal proof  from A to is a finite sequence 

as follows

                 ( 1, 1), ( 2, 2), … , ( n, n),

where n = , and for any i, 1 i n , i LP(X),

i L, and 

    (1) AL( i) = i, or

    (2) A( i) = i, or 

    (3) there exist j, k< i , such that j = k I

and i = j k, or 

    (4) there exists j<i, and L, such that i =

j and i= j.

Here n is called a length of the proof , denoted 

as l( ) . Moreover, n is called the value of the

proof , denoted as val ( ) .

Definition 2.12 Let A FL(LP(X)), LP(X),

L.   is called an -theorem of A, denoted as 

A — , if

{val( );  is a proof from A to }

If = {val( );  is a proof from A to }, then, 

denoted as A — .

Set )(ACon FL(LP(X)) for A FL(LP(X)) such 

that for any LP(X), if A — , then 

)(ACon ( )= .

Definition 2.13 Let A FL(LP(X)). If 

= {  ; there exist 1 2, L , LP(X)

such that A — 1 , A — 2  and 

= 1 2 }, then A is said to be -consistent

or A is said to be -contradict, also the 

contradiction degree of A is , denoted as 

Cont(A).

If A is I-consistent, then A is called shortly

consistent. If A is O-consistent, then A is called

shortly contradict. 

Corollary 2.1 If A is - consistent, then 
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 = { 21 , A — 1 , A — 2 ,

LP(X)}.

The truth values are arranged according to an 

order relation that reflects differences in the 

amount of uncertainty that each one of them 

exhibits. Accordingly we choose those 

valuations that minimize the amount of 

uncertainty with respect to this order, i.e., it 

reflects the consistency of logic system. How to 

determine the consistency based on the 

valuation in the rule-based system is provided in 

the following section. 

3   Consistency of Rule-Base in LP(X) 

In a rule-based intelligent information 

processing system, the rule-base  has 

generally the type of n rules: 

Ri:  If A1i, A2i,…, Ami, then B1i, B2i, …, Bki,

i=1,…, n

In the rule-base , each rule is actually a first-

order logical formula in LP(X). Suppose that the 

logical relationships among A1i, A2i,…, Ami and 

those among B1i, B2i, …, Bki are taken as “ ,”

and those among n rules as “ ,” respectively. 

Accordingly, the matrix Mi of the formula of the 

ith rule in  in LP(X) can be written as: 

(A1i A2i … Ami)

(B1i B2i  … Bki)     (3.1) )(
11

tisi

m

s

k

t

BA

Consequently,  can be written by the matrixes: 

M:
n

i 1

)))(((
11

tisi

m

s

k

t

BA

= ))((......
111111

itsi

m

s

n

i

k

t

k

t

k

t
i

ni

BA

(3.2)

M= { | t)(
11

itsi

m

s

n

i
i

BA i = 1, …, k, i=1,…, n}

(3.3)

Under many situations in intelligent information 

process systems, the established rule-base is not 

only regarded as the formal logical formulae, 

but also associated with the rich semantic 

interpretation, which is naturally associated 

during the knowledge acquisition process from 

the domain experts. From the logical point of 

view, the formulae are always associated with a 

valuation e in LP(X) such that

e (Asi) = si , e (Bti) = ti , s=1, 2,…, m, 

t=1, 2,…, k, i=1, 2, …, n.                             (3.4)

Based on Definition 2.13 and Corollary 2.1, in 

intelligent information process systems, if the 

valuation in Eq. (3.4) is obtained, then the local 

consistency degree of the rule-base is defined as 

follows:

Definition 3.1 Let  be the valuation of LP(X), 

M be the generalized clause set of the formula 

corresponding to the rule-base . (M) is 

called the local consistency degree of  with 

respect to .

Accordingly, the local consistency degree of 

corresponding to rule-base case in (3.1) with 

respect to the valuation e  is given as follows 

respectively: 

e  (M) =              (3.6) 
n

i 1

)))(((
11

tisi

m

s

k

t

Definition 3.2 Let M be the generalized clause 

set of the formula corresponding to the rule-

base . The uniform consistency degree of ,

denoted as C (M), is defined as 

C (M) = { (M)  D is an interpretation in 

LP(X),  is the corresponding valuation} 

Theorem 3.1 (Existence of the uniform 

consistency degree of ) Let L be a complete 

lattice implication algebra, M be the generalized 

clause set of the formula corresponding to the 

rule-base . C (M) exists. 

Lemma 3.2 Let L, M be the generalized 

clause set of the formula corresponding to the 

rule-base . Then 

            M  if and only if C (M) .

Definition 3.3 Let M be the generalized clause 

set of the formula corresponding to the rule-

base . If M is simplified into , the  is 

called the local simplification degree of M,

denoted as s (M) = .

Definition 3.4 Let M be the generalized clause 

set of the formula corresponding to the rule-

base . The uniform simplification degree of M,

denoted as S (M), is defined as 
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S (M) = { | there exists a simplification s, s 

(M) = }

Theorem 3.3 (Existence of the uniform

simplification degree of ) Let L be a complete

lattice implication algebra, M be the generalized

clause set of the formula corresponding to the

rule-base . Then S (M) exists. 

Theorem 3.4 Let L be complete lattice 

implication algebra, M be the generalized clause 

set of the formula corresponding to the rule-

base . Then C (M) = S (M). 

Corollary 3.1 Let L be a finite lattice 

implication algebra, M be the generalized clause 

set of the formula corresponding to the rule-

base . Then C (M) = S (M).

Theorem 3.5 Let L be a completely distributive

lattice implication algebra, M be the generalized

clause set of the formula corresponding to the

rule-base . If the relationship among the rules 

in the rule-base  is taken as “ ,” then

S (M) = C (M) = C (M
n

i 1
i) = S (M

n

i 1
i).

Here Mi (i =1,…, n) is the generalized clause set

of the formula corresponding to the ith rule in 

the rule-base .

Theorem 3.5 shows that it is possible to increase

the consistency degree and the simplification

degree while the number of the rules decreases.

Theorem 3.6 L be a completely distributive

lattice implication algebra, Mi (i=1,…, n) be the 

generalized clause set of the formula

corresponding to the ith rule-base Ri. If the

relationship among the rules in the rule-base 

is taken as “ ,” and there are , j=1,…, k, 
jnR

n

i 1

 C (Mi) = ,)(
1

jn

k

j

MC

then for any arbitrary *
k( ),

C(M*) C(M0) holds for the generalized clause 

set M* of the GSSF corresponding to * and 

the generalized clause set M0 for -

{ |j=1,…, k}, where
jnR

k( )={ *| * ( ),
jnR *, j=1,…,

k}.

4     Determination of Consistency 

Degrees of Rule-Bases 

4.1 Determination of the local consistency of 

the rule-base 

If a valuation  in LP(X) is given, then the local 

consistency of the rule-base can be obtained

from the valuation ; Moreover, if the truth-

value si of Asi and the truth-value ti of Bti (s=1,

2,…, m, t=1, 2,…, k, i=1, 2,…, n) can be

obtained, then a family of valuations V in LP(X)

can be generated by these values. For each

valuation V, can further generate a 

valuation  in LP(X) such that (Asi)= si and 

(Bti)= ti (s=1, 2,…, m, i=1, 2,…, n, t=1, 2,…,

k). Then the local consistency of the rule-based

can be calculated from (M).

4.2 Determination of the uniform consistency 

degree of the rule-base 

Let L . Generally, since the interpretation

set of LP(X) is an infinite set, so is the 

corresponding valuation set. To determine C (M)

directly by all the valuations of LP(X) does not 

seem feasible. According to Theorem 3.4, the

determination of C (M) is transformed into that 

of S (M) so that an infinity problem is 

transformed into a finite problem. According to

Definition 3.4, however, it is required to obtain

many local simplification degrees to finally 

determine the uniform simplification degree S 

(M) while the cardinality of L is relatively large.

Let M be the generalized clause set of the

formula corresponding to the rule-base .

Considering Definition 3.4, in the following, we 

propose an algorithm to determine S (M), i.e., a 

stepwise search algorithm:

Step 1. A predict initial value 0 of C (M) is 

given by the expert; 

Step 2. Simplify the M according to 0, denoted 

this simplification as s0

If s0 (M) = 0, when there does not exist 1, then 

stop s0 and s0 (M) = 0; when there exists 1 in

[O, 0 ) , go to Step 3; 

If s0(M) 0, set A={ L| // 0} { 0},

when for any A, there does not exist such

1 in ( , I), then S(M) = s0(M)=I; for any 

}),(,|{ IA , select 1 in ( , I), 

then go to Step 3. 
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Step 3. Simplify M according to 1. Repeat Step 

2.

Step 4. After stopping Step 2, set S (M) = 

{ L| there exists a simplification s, s (M) 

= }.

Since L , then S (M) can be obtained by 

circularly operating Step 2 and Step 3 in finite 

times. 

5   Conclusions 

The paper investigated the consistency in the 

knowledge-based system combining a kind of 

lattice-valued logic and preferential logic. The 

consisteny degree was defined in lattice-valued 

logic based on the valuations that minimize the 

amount of uncertain information in the set of 

premises. The consistency actually reflects the 

preferential interpretation. The intuition behind 

is that uncertainty minimization is in fact a 

preference criterion among different 

interpretations of the premise, actually 

incomplete or contradictory data corresponds to 

inadequate information about the real world, and 

therefore it should be minimized. Concretely, 

the consistency and simplification theories of 

the rule-base in a lattice-valued propositional 

logic system LP(X) were formulated. Then, the 

verification of the consistency of the rule-base 

was transformed into a finite and achievable 

simplification problem. These provide certain 

theoretical support for preference modeling from 

the logic point of view, specially the partially 

ordered preference relationship. 
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