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A fuzzy rule-based cvidential reasoning approach and it corresponding optimization
algorithm have been proposed recently, where a fuzzy rule-base with a belief structure,
called a fuzzy belief rule base (FBRB), forms a basis in the inference mechanism. In this
paper, a new learning method for optimally generating a consistent FBRB based on the
given data is proposed. The main focus is given on the consistency of FBRB knowing
that the consistency conditions are often violated if the system is generated from real
world data. The measurement of inconsistency of FBRB is provided and finally is
incorporated in the objective function of the optimization algorithm. This process is
formulated as a nonlinear constraint optimization problem and solved using the
optimization tool provided in MATLAB. A numerical example is provided to
demonstrate the effectiveness of the proposed algorithm.

1. Introduction

In order to extend the fuzzy logic framework [1] to cover credibility uncertainty
as well, a Fuzzy Rule-Based Evidential Reasoning (FURBER) approach was
proposed in [2] by combining fuzzy logic and Dempster-Shafer (D-S) theory of
evidence [3, 4], which is mainly based on a generic Rule-base Inference
Methodology using the Evidential Reasoning approach (RIMER) developed in
[5]. In the FURBER framework, a fuzzy rule-base designed on the basis of a
belief structure, called a Fuzzy Belief Rule Base (FBRB), is used to capture
uncertainty and non-linear relationships between the parameters, and the
inference is implemented using the evidential reasoning algorithm in [6].

In addition, optimal models for training the elements of general belief rule
bases in RIMER have been proposed in [7], which has also been revised and
applied into FURBER framework for engineering system safety analysis and
leak detection [8, 9]. However, the consistency of generated rule-base are not
addressed in the above work, which is important for a rule-based system to
exhibit a reliable performance because the inconsistency generally exists in the
knowledge itself provided by the domain experts and in the process of
knowledge representation and acquisition as well. Hence, the main focus of this
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paper is to extend the optimal algorithm in [8] in order to generate the consistent
FBRB from sample data. The measurement of inconsistency of FBRB is
provided and incorporated into the objective function of the optimization
algorithm. The paper is organized as follows. Section 2 briefly reviews the
FURBER approach. The detailed optimization algorithm is provided in Section
3 including the way on how to measure the inconsistency of FBRB. A numerical
example is provided in Section 4 to demonstrate the effectiveness of the
proposed algorithm. Conclusions are drawn in Section 5.

2. Fuzzy Rule-Based Evidential Reasoning (FURBER) Approach

This section reviews the FURBER framework in [2]. A belief rule-base is given
by R={Ry, R,,..., R;}, where the &™ rule can be represented as follows:

R IF U is A* THEN D with belief degree ,Bk , with a rule weight 6, and

attribute weights &, &, ..., OkT -
This is the vector form of a belief rule. Here U represents the antecedent
attribute vector (Uy,..., Uy ), 4* the packet antecedents {Alk Ve A;} (4¥
(=1,..., T) is the linguistic value of the Jj™ antecedent attribute in the 4™ rule), T
the number of antecedent attributes used in the rule, D the consequent vector
(Dy,..., Dy), and ﬂ" the vector of the belief degrees ( By, ,..., B ) forke{l,...,
L}. By measures the degree to which D; is the consequent if the input activates
the antecedent 4* in the ™ rule for i=1,...,N, k=1,..., L. L is the number of rules
and N is the number of possible consequents. The rule-base can be summarized
using a belief rule expression matrix shown in Table 1.

Table 1. A belief rule expression matrix.

Output Input A" (w) A* (wy) A (we) 4 o)
Z 4 B v | By ~ 1 7
= b b v | B —~ 1|

In the matrix, wy is the activation weight of A", which measures the degree
to which the &A™ rule is weighted and activated. wy is calculated as follows:

Wi = (0 * ﬁl(aj?)‘s’)/(ﬁl[e, *Iﬁ(af)dl D, here 5, =5, /(jnllaxT{éj}), (1
j= t= - =1...,

where Ajf €{4js; s=1,..., §;} (S is the total number of linguistic terms for the
attribute U)) and a}‘ € {ajs ;5=1,..., 8§} (=1,..., T) is the degree of belief to
which the input for U; belongs to Aj‘-’ of the j* individual antecedent in the 4™
rule. a;‘ =A;-‘ (x;) is the fuzzy membership degree of a given real input x; for
the attribute U; to the linguistic term Af . Continuous and differentiable
Gaussian function is used in this paper, i.e.,

Af(x;) = exp(— (1/2)((x IR LG ))z) ()
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where cf is the central value of the fuzzy membership function and o-f is the
variance at the central value.

Based on the above belief rule expression matrix, we can use the analytical
evidential reasoning (ER) algorithm in [7] (which is equivalent to the recursive
ER algorithm in [6]) to combine rules and generate final conclusions. The
combined degree of belief £, in D; is generated as follows:

L N L N
ﬂ*[ IT Wk Bik +1=wp ZBi k) — TT (1—wy Zﬁi,k)}
f, = — Lkl i=1 k=1 i=1

= ,i=l,..,N (3)
1~u*[n(l~wk)}
k=1

N L N L N -1
where !F[aklill (Wi Bige +1—wi Z_:lﬂi,k) -(N - l)kﬂl (1= wy ‘Zlﬂi,k)j| .

3. Extended Optimization Algorithm for Generating Consistent FBRB

The performance of inference can be improved if the following parameters in Eq.
(3) are adjusted by autonomous learning if they are not given a priori or only
known partially or imprecisely: (1) rule weight 6, (&=1,..., L) and attribute
weights &; (=1,..., T); (2) the degrees of belief g, (i=1,..., N; k=1,..., L); (3)
the central value ¢;; of fuzzy membership function and the variance oj at the
central value (j=1,., T; s=1,..., S)); (4) the utility u(D;) (i=1,..., N) of the
linguistic term of the consequent. Some constraint conditions on each parameter
above are detailed in [7, 8], so are skipped here because of space limitation.

3.1 Initial optimization algorithm

The objective of the optimization algorithm is to produces the parameter
estimation which minimizes the mean square error criterion defined as
MIN {&} (4)

M N
where, & = >Xm —jz,,,)2 s Ym = X u(D;)B;(m), Mis the total number of
1 j=1

m=

L
M
sample data in the training set, »,, is the expected confidence score or the actual
output. (y,, — ,,) 18 the residual at the mth point. Eq. (4) is a multi-variable
constrained nonlinear single-objective optimization problem and is solved using
the existing nonlinear optimization tools in Matlab [10].

3.2 Extended optimization algorithm to minimize the inconsistency

Fuzzy rules are regarded as inconsistent, if they have very similar premise parts,
but possess rather different consequents; or they conflict with the expert
knowledge or heuristics [11]. Before we discuss the definition of the consistency,
we first provide the definition of the similarity of rule premise (SRP) and the

similarity of rule consequent (SRC) again with the help of fuzzy similarity
measure and similarity measure of discrete probability distribution.
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3.2.1 Similarity measures

For any two fuzzy sets 4 and B, the set-theoretic similarity measure usually used
in interpretability analysis is in the following form [12]:

S(4,B)= (4 B|)/(4|+|B|-|4-B)), ®)
where || denotes the cardinality of the set. For the Gaussian fuzzy sets A and B
defined in (1), the cardinality calculation becomes an integration as follows [12]:

= 2, 4oy = 2 expl- (6 c.) /0, P e = Vo,
2
o= - By = p[[ ) }dx - oo,
Op

=

AN B|= T”[zarmin +QJ,

C = Cmi C —Cmi
Q= (0 — O min Jerf (=% ) — (Omax + O i Jerf (=2 )
max ~ Pmin max T Omin

Omax =Max(o,05) (others are defined similarly), erf(x)= (2/~/7 ) e d .

For the comparison functions m(P, Q) for two probability distributions P
and O, we use the Minkowski’s (or Euclidean) distance given by

2
m(P,Q) = ¥,er|P(1) =g, So S, Q)=1-m(P, Q). ©)
The more options about m can be found in [13].
3.2.2 Consistency measure of FBRB

Consider two rules in the rule base:
R;:IF Uyis 4] and ... and Uris 43 THEN Dis {(D\, B 1),..., Dy, B m)},
Ri:IF Uyis Af and ... and Uris A4f THEN Dis {(D1, B 10),..., Dw, B no)}.
Then SRP of these two rules is defined as follows:

SRP(i,k) = min’_, S(4%, 4%), where S(4, B) is defined in (5).
Jj=1 J

The SRC of these two rules is defined as follows:
SRC(, k) = S[{(Dy, B1i)s-» (D, Brid - A(Dy, Bii ) (Do Bra )}
where S is defined in (6).
Then the consistency of rule R, and Ry is defined by [11]:
Cons(R;, Ry)= exp{- (SRP(i, k) /SRC(i,k)~1.0)* /(1/SRP(i, k))* } (7
A degree of inconsistency of a rule base is suggested based on the
consistency index provided in (7). At first, a degree of inconsistency for the /h
rule is calculated as follows:

Incons(i)=  X[1.0-Cons(R!,R;)]+ X[1.0-Cons(R!,R?)],i=1,...,L, (8)
1<k<L I<isM

ki
where R' and R* denote the rule base generated from data and the rule base
extracted from prior knowledge, L and M are the rule numbers of R' and R?
respectively. The degree of inconsistency of each rule is then summed up to
indicate the degree of inconsistency of a rule base:
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flncons = ZiL=1 Incons(i) ’ (9)
which can be incorporated in the objective function of the algorithm.
3.2.3 Extended optimization formulation

Combining the inconsistency indices, the quality of a generated FBRB is
evaluated with the following objective function in order to minimize the mean
square error criterion and also minimize the inconsistency level:

MIN {§+ )‘flncons}’
where ¢is the same as in (4), &ncons is provided in (9). A is a weighting constant
to control the consistency level.

4. A Numerical Example

An example for oil pipeline leak detection in [9] is used here. We use the data to
train a FRBB system for detecting and estimating the leak sizes. The difference
between inlet flow and outlet flow, denoted by FlowDiff, and the average
pipeline pressure change over time, denoted by PressureDiff, are the two
important factors in detecting a leak in the pipeline. A sample rule could be:

IF FlowDiff is Negative Medium AND PressureDiff is Negative Large
THEN LeakSize is {(High; 0.2), (Very High, 0:8)}

During the leak trial, 2008 samples were collected for training purpose and
1135 data for test. The test results based on the trained FRBB with and without
considering the consistency of the FRBB, are given in Figs. 1 and 2 respectively.
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Fig.1 Test results without consistency Fig. 2 Test results with consistency

It demonstrates that the estimated outcomes match the observed ones very
closely. And the accuracy of the test output has been effectively improved due to
minimize the inconsistency in an optimal way. The consistency of the system is
violated because of the noise data, which may be caused by turbulence and
dynamic changes in the pipeline, and possible instrument and data
communication errors. Such noise is intrinsic to almost all pipeline operation
data and poses significant challenges to developing pipeline leak detection
systems. To minimize the inconsistency can be an effective way to minimize
those noises.
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5. Conclusions

An optimization method for generating consistent fuzzy rule base with the belief
structure was proposed, which provided a practical and reliable support for the
proposed FURBER approach, the detailed case study for application in
engineering, e.g., offshore safety and risk estimation or oil pipeline leak
detection, will be provided in the extended version of this paper.
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