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Preface

On behalf of the University of the Balearic Islands, the working group AGOP of EUSFLAT and
the Organizing Committee of the Fifth International Summer School on Aggregation Operators,
it is my pleasure to welcome the participants of this new edition of AGOP2009.

Many people and institutions have made this Summer School possible. I want to thank all the
persons who have assisted me. My recognition to all members of the Scientific Committee, as
well as other additional reviewers, that with their effort have contributed to enhance the quality
of the accepted papers. I would also recognize the support of EUSFLAT and the sponsors of
this event.

I am also thankful to all the distinguished invited participants: G. Beliakov, M. Couceiro, J.-L.
Marichal, E. Trillas and V. Torra, for their interest in AGOP2009. Special thanks to my friends
T. Calvo and R. Mesiar, as well as to the Dept. of Mathematics and Computer Science of the
U.LB.

I finally hope that you will find the time to enjoy our island and the friendship of mallorquin
people.

Gaspar Mayor
Palma, 6th of July 2009
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The uncertain probabilistic OWA operator

José M. Merigé
Department of Business Administration,
University of Barcelona,

Av. Diagonal 690, 08034, Barcelona, Spain
Email: jmerigo@ub.edu

Summary

We present the uncertain probabilistic or-
dered weighted averaging (UPOWA) opera-
tor. It is an aggregation opcrator that uscs
probabilities and OWAs in the same formula-
tion. Moreover, it also uses uncertain infor-
mation represented with interval numbers in
the aggregation process. The main advantage
of this aggregation operator is that it is able
to use the attitudinal character of the deci-
sion maker and the available probabilistic in-
formation in an environment where the infor-
mation is very imprecise and can be assessed
with interval numbers. We also compare this
ncew approach with the previous models such
as the concept of immediate probabilities and
we see its main advantages and how it in-
cludes them as special cases. We also develop
an application of the new approach in a de-
cision making problem about selection of in-
vestments. We see that this model gives more
complete information of the decision prob-
lem because it is able to deal with decision
making problems under uncertainty and un-
der risk in the same formulation.

Keywords: OWA operator, Probabilities,
Probabilistic OWA operator, Uncertainty, In-
terval numbers.

1 INTRODUCTION

The usc of probabilitics and the ordered weighted av-
craging (OWA) operator [13] in the same aggregation
process is a very useful method for considering the
probabilistic information and the attitudinal charac-
ter of the decision maker in the same formulation. In

Macarena Espinilla
Departient of Computer Science,
University of Jaén,

23071 Jaén, Spain
Fiail: mestevezQujaen.es

the literature, there arc some studics that have alrcady
considered this problem by referring to it as the im-
mediate probability [3-5,16-17]. The main advantage
of this approach is the possibility of underestimate or
overestimate the probabilistic information according
to the degree of orness (or optimism) given in the
OWA opcrator. Thus, we arc able to obtain a pa-
rameterized family of aggregation operators between
the maximum and the minimum. For further reading
on the OWA operator, see for example [1-7,9-17]. Note
also that there exist in the literature other approaches
that uses probabilistic information and OWA opera-
tors at the same time such as some decision making
methods with Dempster-Shafer belief structure [6,14).

"The concept of immediate probability has some limita-
tions. One of the most significant problems, as stated
in (5], is that it is not able to unify the probability and
the OWA operator considering that sometimes one of
them can be more relevant in the aggregation. T'here-
fore, it is necessary to use another approach that it is
able to unify both concepts but taking into account
that they can be more or less relevant depending on
the problem considered. For doing so, in [5] it has been
suggested a new aggregation operator that unifies the
probability with the OWA. opcrator giving different
degrees of importance to each case in the unification
depending on the problem studied: the probabilistic
ordered weighted averaging (POWA) operator.

‘I'he POWA operator is very useful to unify the proba-
bility with the OWA operator when using exact num-
bers in the aggregation process. However, many situ-
ations of the real world cannot be assessed with exact
numbers because the information is uncertain and very
complex. Therefore, it is necessary to usc another ap-
proach that it is able to asscss this situation such as
the use of interval numbers. The interval numbers [8]
are a very useful technique for representing the un-
certainty by considering the best and worst possible
results that could happen in the environment and the
most possible ones.

(©Edicions UIB. Proceedings AGOP 2009, Palma July 6-10, ISBN: 978-81-8384-101-3. 201
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The aim of this paper is to present the uncertain prob-
abilistic OWA (UPOWA) opcrator. It is an aggrega-
tion operator that uses uncertain information given in
the form of interval numbers in the POWA operator.
Therefore, we arc able to assess the POWA operator
considering the best and worst results that could hap-
pen in the aggregation process. T'he main advantage
of the UPOWA operator is that it provides more com-
plete information to the decision maker by using inter-
val numbers that includes a wide range of results and
by using probabilities and OWA operators in the same
formulation. '

This paper is organized as follows. In Scction 2, we
briefly review some basic concepts about the interval
numbers and the uncertain OWA (UOWA) operator.
In Section 3, we present the UPOWA operator. Scc-
tion 4 concludes the paper summarizing the main find-

ings.

2 PRELIMINARIES

In this Section, we briefly describe the interval num-
bers and the UOWA operator.

2.1 INTERVAL NUMBERS

The interval numbers [8] are a very useful and simple
technique for representing the uncertainty. I'hey have
been used in an astonishingly wide range of applica-
tions.

The interval numbers can be expressed in differ-
cnt forms. For cxample, if we assume a 4-tuple
(a1, a2,a3,a4), that is to say, a quadruplet; we could
consider that a; and a4 represents the minimum and
the maximum of the interval number, and as and agz,

the interval with the highest probability or possibil-
iy, depending on the use we want to give to the in-
tevval nmberss Note that ap 7 ay < ag < aq. If
iy m o ay. Lheng the interval number is an
cxnet number:s il a ay, il is a 3-tuple known as
triplet; and il ay an and ay ay, it is a simple
2 tuple interval number

L the following, we are going to review some ba-
sic anterval number operations as follows. Let A
and 13 be two triplets, where A = (ag,a2,a3) and

/3 (Ill‘lﬁr_g,l);(). Then:

I. A+ B = (a1 + b1, a2 + by, a3 + b3)
A—B=(a; —bs,az — ba,a3 — b;)

3. Axk=(kxaikxas,kxaz); fork>0
4. Ax B = (a; X by,as X ba,a3 X b3); for RT.
5. A+ B = (a1 +bs,as + ba,a3 + by); for RT.

SV

Note thiat other operations could be studied [8] but in
this paper we will focus on these ones.

2.2 UOWA OPERATOR

The uncertiun OWA (UOWA) operator was intro-
duced by [11]. 1t is an extension of the OWA operator
[1-7,9- 18] Tor uncertain situations where the available
information can be assessed with interval numbers. It

can be detined as follows:

Definition 1. Let  be the set of interval num-
bers. Au UOWA operator of dimension n is a map-
ping UOWA: O" — Q that has an associated weight-
ing vector W of dimension n such that w; € [0, 1] and
> j=1 wj = 1, then:

UOW A(ay, 2, -, @n) = Y _ w;b; (1)
3=1

where b; is the jth largest of the @; and a; is the ar-
gument variable represented in the form of interval
numbers.

From a generalized perspective of the reordering
step it is possible to distinguish between descending
(DUOWA) and ascending (AUOWA) orders. Note
that in the reordering step of the interval numbers it
is necessary to establish a criterion for its comparison.
For doing this, we will usc the following onc. First, we
will analyze if there is an order between the interval
numbers. That is, if all the values of the interval a are
higher than the corresponding values in the interval
c¢. If not, we will calculate an average of the interval
number. For example, if n = 2, (a3 + a3) / 2;if n = 3,
(a1 + 2a2 + a3) / 4; etc. If there is still a tie, then, we
will follow a subjective criterion such as considering
only the minimum, the maximum, etc.

Note that if the weighting vector is not normalized,

e, W = 2;21 w; # 1, then, the UOWA operator
can be expressed as:

1 T
UOW A(ar, @, .., an) = 7 > wib; (2)
j=1

Note also that different families of UOWA operators
can be studied by choosing a different weighting vector
such as the step-UOWA operator, the window-UOWA,
the median-UOWA, the olympic-UOWA, the cerntered-
UOWA, the S-UOWA, etc.

3 UNCERTAIN PROBABILISTIC
OWA OPERATOR

The uncertain probabilistic ordered weighted averag-
ing (UPOWA) opcrator is an cxtension of the OWA

202
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operator for situations where we find probabilistic and
uncertain information that can be assessed with in
terval numbers. It can also be seen as a unification
between decision making problems under uncertainty
(with OWA opcrators) and under risk (with probabili
tics). Its main advantage is that it can unify both con
cepts considering the degree of importance that they
have in the specific problem considered. Thus, we are
able to apply this formulation to all the previous mod-
els that use probabilities or OWAs. Therefore, we get.
a more complete approach that it is able to consider a
widce range of scenarios and it includes the classical ap
proaches as special cases. Specially, it is worth noting
that in decision making problems, this approach is able
to include decision making under risk and under un-
certainty cnvironments in the same formulation. This
approach seems to be complete, at least as an initial
real unification between OWA operators and probabil-
ities.

However, it is worth noting that some previous models
already considered the possibility of using OWA oper-
ators and probabilitics in the same formulation. The
main model is the concept of immediate probability
[3-5,16-17]. Although it seems to be a good approach
it is not so complete than the UPOWA because it can
unify OWAs and probabilitics in the same model but
it can not take in consideration the degree of impor-
tance of each case in the aggregation process. Before
studying the UPOWA, we are going briefly to consider
the immediate probabilitics with interval numbers (IP-
UOWA). For uncertain situations assessed with inter-
val numbers, the immediate probability can be defined
as follows.

Definition 2. Let 2 be the sct of interval numbers.
An TPUOWA opcrator of dimension n is a mapping
IPUOWA: Q™ — Q that has associated a weighting
vector W of dimension n such that w; € [0,1] and
> 5o wj =1, according to the following formula:

n
IPUOW A(@1, ..., @n) = »_ 05b; ©)
j=l

where b; is the jth largest of the @;, the @; arc in-
terval numbers and each one has associated a pro-
bability 9; with >, v; = 1 and v; € [0,1], 9; =
(wjv5)/ 35—, wjvj and v; is the probability v; ordered
according to by, that is, according to the jth largest of
the a;.

Notc that the IPUOWA opcrator is a good approach
for unifying probabilitics and OWAs in some particular
situations. But it is not always useful, especially in
situations where we want to give more importance to
the OWA opcrators or to the probabilitics. Onc way
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Lo see why Hhas unification does not seem to be a final

thodelis considering other ways of representing 9. For
) . 1§ B IS () "‘\/\,— . . n 'l .

cxnmple, we could also use 95 = [w, +v5/ 35— (wj +

1, )] or other similar approaches.
Note that other approaches that could be taken into
account are the hybrid averaging (HA) [12] and the

weighed OWA (WOWA) operator [9]. These models
unily the OWA operator with the weighted average
(WA). T'herefore, they can also be extended for situa-
tions with the OWA operator and probabilities assum-
ing that for some situations the WA can be seen as a
probability, for example, when we use the WA as a
subjective probability. As said before, these an other
approaches are useful for some particular situations
but they docs not scem to be so complete than the
UPOWA becausce they can unify OWAs with probabil-
ities (or with WAs) but they can not unify them giving
different degrees of importance to each case. Note that
in future rescarch we will also prove that these mod-
els can be seen as a special case of a general UPOWA
operator (or its respective model with WAs) that uses
quasi-arithmetic mecans. Obviously, it is possible to
develop more complex models of the IP-UOWA, the
HA (or uncertain HA) and the WOWA that takes into
account the degree of importance of the OWAs and
the probabilitics (or WAs) in the model but they scem
to be artificial and not a natural unification as it will
be shown below.

In the following, we arc going to analyzc the UPOWA
operator. It can be defined as follows.

Definition 3. Let © be the set of interval numbers.
An UPOWA operator of dimension n is a mapping
UPOWA: Q™ — Q that has associated a weighting
vector W of dimension n such that w; € [0,1] and

T .. . .
2 j=1wj =1, according to the following formula:

n
UPOW A(@1, ..., @n) = » _ 95b;. (4)
7=1

where b; is the jth largest of the @;, the @; arc interval
numbers and cach onc has an associated probability v;
with 327" v; = 1 and v; € [0,1], %; = Bw; + (1 - B)v;
with § € [0,1] and v; is the probability v; ordered
according to bj;, that is, according to the jth largest of
the a;.

Note that it is also possible to formulate the UPOWA
opcrator scparating the part that strictly affects the
OWA operator and the part that affects the probabil-
ities. This representation is useful to see both models
in the same formulation but it docs not scem to be as
a unique cquation that unifics both models.

Definition 4. Let € be the sct of interval numbers.




An UPOWA operator is a mapping UPOWA: Q" x
02" — Q of dimension n, if it has associated a weighting
vector W, with 377, w; = 1 and w; € [0,1] and a
probabilistic vector V, with Yoimqvi = 1 and v; €
(0,1], such that:

UPOWA(ay, ..., dn) = B _ wib; + (1 - f) > v
j=1 i=1
(5)

where b; is the jth largest of the arguments @;, the a;
arc interval numbers and § € [0,1].

In the following, we are going to give a simple example
of how to aggregate with the UPOWA operator. We
consider the aggregation with both definitions.

Example 1. Assumc the following arguments in an
aggregation process: ([20, 30], [40, 50], [50, 60], [30,
40]). Assume the following weighting vector W = (0.2,
0.2, 0.2, 0.4) and the following probabilistic weighting
vector P= (0.4, 0.3, 0.2, 0.1). Note that the proba-
bilistic information has a degree of importance of 60%
while the weighting vector W a degree of 40%. If we
want Lo aggregate this information by using the UP-
OWA operator, we will get the following. The aggre-
gation can be solved either with the Eq. (4) or (5).
With Eq. (4) we calculate the new weighting vector
as:

71 =04x0240.6x02=0.2,
iy = 0.4 x 0.2 + 0.6 x 0.3 = 0.26,
93 =10.4x0.2+0.6 x 0.1 =0.14,
9 =04x04+40.6x04=04.

And then, we calculate the aggregation process as fol-
lows:

UPOWA = 0.2 x [50,60] + 0.26 x [40,50] + 0.14 x
[30,40] + 0.4 x [20, 30] = [32.6, 42.6].

Obviously, we get the same results with both methods.

Note that different types of interval numbers could
be used in the aggregation such as 2-tuples, triplets,
quadruplets, etc.

When using interval numbers in the UPOWA opera-
tor, we have the additional problem of how to reorder
the arguments because now we are using interval num-
bers. Then, in some cascs, it is not clear which inter-
val number is higher, so we need to cstablish an addi-
tional criteria for reordering the interval numbers. For
simplicity, we recommend the following criteria. For
2-tuples, calculate the arithmetic mean of the inter-
val: (a1 + a2) / 2. For 3-tuples and more, calculate
a weighted average that gives more importance to the
central values. That is, (a1 + 2a2 + a3) / 4. And

Y
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s0 on. Iu Lthe case of tie, we will select the interval
with the lowest increment (ay - a1). For 3-tuples and
more we will select the interval with the highest contral
value.

From a generalized perspective of the reordering step,
it is possible to distinguish between the descending
UPOWA (DUPOWA) and the ascending UPOWA
(AUPOWA) operator by using w; = Wy, i1, Where
wj is the jth weight of the DUPOWA and Wy_i4q the
Jth weight of the AUPOWA operator.

If B is a vector corresponding to the ordered argu-
ments bj, we shall call this the ordered argument vec-
tor and W7 is the transpose of the weighting vector,
then, the UPOWA operator can be expressed as:

UPOWA(éy, ...,4,) = WTB (6)

Note that if the weighting vector is not normalized,
ilegW =37 w#1, thenf,’ the UPOWA operator

e

ian T'ex tessed as: UL [ - Z.p —?75/ 4
# y’\ﬁ . = 4 I
V=& V. £ 7

Sn
¥ UPOW A(ay, ..

7
/]

1 n
"&?}T@Zﬁjbf’ (7)
" =

The UPOWA is monotonic, commutative, bounded
and idempotent. It is monotonic because if @; >
i;, for all @, then, UPOWA(&1,&2,...,&n) >
UPOW A(iiy, U, ..., iin). It is commutative because
any permutation of the arguments has the same
cvaluation.  That is, UPOWA(@, @z, ..., 4n)
UPOW A(i, dig, ..., Up), where (i1, s, ..., iy) is any
permutation of the arguments (@1,82, ...y @n). It
is bounded becausc the UPOWA aggregation is
delimitated by the minimum and the maximum:
Min{a;} < UPOW A(ay,as, ...,a4n) < Maz{a;}. Tt
is idempotent because if @ = &, for all G;, then,
UPOW A(@y, as, ..., an) = @.

Note that it is also possible to consider that the
weights and the probabilities of the UPOWA opera-
tor arc also interval numbers. For doing so, we rec-
ommend, for example, to follow the methodology ex-
plained in [19] about dealing with imprecise probabil-
itics. Notc that if cither the weights (or probabilitics)
and the arguments are interval numbers, then, the op-
erations with interval numbers are a bit more complex
than those explained in Section 2.1. For more infor-
mation on these operations, refer, c.g., to [8].

4 TYPES OF UPOWA OPERATORS

First of all we are going to consider the two main cases
of the UPOWA operator that are found by analyzing
the coceflicient (3. Basically, if 3 = 0, then, we got




the probabilistic approach and if 3 = 1, the UOWA
opcrator.

By choosing a different manifestation of the weighting
vector in the UPOWA operator, we are able to obtain
different types of aggregation opcrators. For example,
we can obtain the uncertain probabilistic maximurmn,
the uncertain probabilistic minimum, the uncertain
probabilistic average and the uncertain probabilistic
weighted average.

Remark 1. The uncertain probabilistic maximum is
found when wy = 1 and w; = 0 for all § # 1. The
probabilistic minimum is formed when w, = 1 and
wj = 0 for all j # n.

Remark 2. More generally, the step-UPOWA is
formed when wi = 1 and w; = 0 for all § # k. Note
that if k¥ = 1, the step-UPOWA is transformed into
the uncertain probabilistic maximum, and if k¥ = n,
the step-UPOWA becomes the uncertain probabilistic
minimum operator.

Remark 3. The uncertain probabilistic average is
obtained when wj = 1/n for all j, and the uncertain
probabilistic weighted average is obtained when the
ordered position of 7 is the same as the ordered position
of j.

Remark 4. For the median-UPQOWA, if 7 is odd we
assign W(nt1)/2 = 1 and wj. = 0 for all others. If n
is even we assign for cxample, wy,/y = W(n/2)+1 = 0.5
and wj, = 0 for all others.

Remark 5. T'he olympic-UPOWA is generated when
W1 = wp = 0, and for all others w;, = 1/(n—2). Note
that it is possible to develop a general form of the
olympic-UPOWA by considering that w; = 0 for j =
L2, ..,knn—1,.,n—k+1, and for all others Wie —
1/(n — 2k), where k < n/2. Note that if k = 1, then
this general form becomes the usual olympic-UPOWA.
If k = (n —1)/2, then, this gencral form bocomes the
median-UPOWA aggregation. That is, if n is odd, we
assign W, 41)/2 = 1, and wj« = 0 for all other values.
If n is cven, we assign, for cxample, wy, /5 = Win/2)41 =
0.5 and wj, = 0 for all other values.

Remark 6. Note that it is also possible to develop the
contrary case of the general olympic-UPOWA opera-
tor. In this case, w; = (1/2k) for j = 1,2,..,k,nn—
1,..;,n—k+1, and w; — 0, for all other values, where
k < n/2. Note that if k — 1, then we obtain the
contrary case for the median-UPOWA.,

Remark 7. Another type of aggregation that could
be used is the E-Z UPOWA weights. In this case, we
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should distinguish between two classes. In the first
class, we assign wj, = (1/q) for J*=1to qand w;, =
0 for j* > ¢, and in the second class, we assign w;, =0
for j* =1 ton —q and wije =(1/g) for j* =n —q+1
to n.

Remark 8. Another interesting family is the S-
UPOWA operator. It can be subdivided into threc
classes: the “or-like”, the “and-like” and the gencral-
ized S-UPOWA operators. I'he generalized S-UPOWA
operator is obtained if w; = (1/n)(1 — (@+8) +a,
Wy, = (1/n)(1—(a+03))+0, and w; = (1/n)(1—(a+p))
for j = 2 to n — 1, where a,B€0,1l]]anda+3<1.
Note that if & = 0, the generalized S-UPOWA opera-
tor becomes the “and-like” S-UPOWA operator, and
if B = 0, it becomes the “or-like” S-UPOWA operator.

Remark 9. Another family of aggregation operator
that could be used is the centered-UPOWA operator.
We can define an UPOWA operator as a centered ag-
gregation operator if it is symunetric, strongly decaying
and inclusive. Note that these properties have to be
accomplished for the weighting vector W of the UOWA
operator but not necessarily for the weighting vector
P of the probabilitics. It is symmetric if w; = wjp,_;.
It is strongly decaying when i < j < (n+1)/2 then
W; < wj and when ¢ > 5 > (n +1)/2 then w; < w;.
It is inclusive if w; > 0. Note that it is possible to
consider a softening of the second condition by using
w; < w; instead of w; < wj, then, we get the softly de-
caying centered-UPOWA operator. And if we remove
the third condition, we get the non-inclusive centered-
UPOWA operator.

Remark 10. A further interesting type is the non-
monotonic-UPOWA opcrator. It is obtained when
at least one of the weights wj is lower than 0 and
Z?:l wj = 1.

Note that a key aspect of this operator is that it docs
not always achicve monotonicity. Therefore, this par-
ticular case is not strictly an UPOWA operator. How-
ever, we can sce it as a particular family of opcrators
that is not monotonic but has strong similaritics with
the UPOWA operator.

Remark 11. Note that other families of UPOWA
operators could be used following the recent literature
about different methods for obtaining OWA weights.
Some of these methods are explained in (1-2,4-5,7,15].

5 CONCLUSIONS

We have presented the UPOWA opcrator. It is an
aggregation operator that unifies the OWA operator
and the probability in the same formulation and in
an uncertain cnvironment that can be assessed with



interval numbers. The main advantage of this new
modcl is that it is able to unify the probability and the
OWA opecrator giving different degrees of importance
to them. Moreover, by using interval numbers, we
arc able to provide more complete information to the
decision maker because we represent the environment
considering the best and worst result that could occur
under uncertainty. We have compared this approach
with the concept of immediate probability and we have
seen how the UPOWA operator is able to overcome the
main limitations of the immediate probability.

In futurc rescarch, we expect to develop further exten-
sions of the POWA opcrator by using other techniques
for representing the uncertainty (fuzzy numbers, lin-
guistic variables, ctc.) and other variables such as in-
ducing orders, gencralized means, distance measures,
etc. We will also extend this analysis to a similar one
when using weighted averages instead of probabilities.
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