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Nowadays important decisions that have a significant impact either in societies or in
organizations are commonly made by a group rather than a single decision maker, which

might require more than a majority rule to obtain a real acceptance. Consensus Reaching
Processes provide a way to drive group decisions which are more accepted and apprecia-
ted by people affected by such a decision. These processes care about different consensus

measures to determine the agreement in the group. The adequate choice of a consensus
measure is a key issue for improving and optimizing consensus reaching processes, which
still requires further research. This paper focuses on the attitude of the group to achieve
the consensus and introduces this attitude in the consensus measure through a novel

aggregation operator based on OWA operators, so-called Attitude-OWA (AOWA).
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1. Introduction

Group Decision Making (GDM) problems are required throughout most companies

and organizations nowadays, in order to guarantee a right development in them.

GDM problems can be defined as decision situations where two or more decision

makers or experts try to achieve a common solution to a decision problem consisting

of two or more possible solutions or alternatives.1

In real world GDM problems, a range of situations including collaboration and

competitiveness among individuals, compatible approaches or incompatible propo-

sals could occur. Some guiding rules have been proposed to support decision making

in such situations, for example the majority rule, minority rule, unique person-based

1
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decision and unanimity.2 In democratic political systems, for instance, the majority

rule is the most usual rule for dealing with GDM problems.3 However, in many real

world GDM problems that can affect many people or the whole society (civil rights,

political or religious issues) agreed solutions are highly appreciated. Therefore, the

necessity of making decisions under consensus is becoming increasingly common in

a variety of social situations.

Consensus Reaching Processes (CRP)2,4 pursue an experts’ agreement about the

problem before making the decision, thus yielding a more accepted solution by the

whole group. Different authors have proposed distinct approaches to handle CRPs,

where Kacprzyk’s soft consensus approach stands out.1 In this approach, later con-

sidered by many authors, the concept of fuzzy linguistic majority is used to measure

consensus between individuals in a flexible way. Later on, major achievements have

been reached with the development different consensus models, including the use of

different preference structures,5 management of incomplete preferences6,7 or even

the introduction of adaptive consensus models based on the process’ performance.8

However, some crucial aspects in CRPs still require a further study, for example

the study of consensus measures, i.e. measurements to evaluate the level of agree-

ment in the group. Consensus measures normally require similarity measures to

calculate closeness among opinions based on distance metrics, as well as aggrega-

tion operators to obtain a collective consensus degree.9 In this aggregation process,

it would be very important reflecting the decision group’s policies or attitudes re-

garding how to measure consensus as faithfully as possible, since different attitudes

might be considered by them depending on the context of the decision problem.

Additionally, it is important to consider the application of GDM problems with

a large number of experts, because although real-world consensus processes usually

involve many experts, most developed models provide examples of performance with

a small number of experts only.

In this paper, we aim to integrate the attitude towards consensus of groups

participating in GDM problems with many experts. Our goal consists in introducing

this attitude in the aggregation of agreement degrees between experts. To do this,

we present the Attitude-OWA Operator (AOWA), that extends OWA operator10

so that it lets us determine those agreement positions among experts which will be

considered in the measurement of consensus in the group, and therefore reflect the

group’s attitude towards consensus. The approach will be tested in an automatic

consensus support system to solve problems with a large number of experts.

The rest of this paper is organized as follows: in Section 2 we present some

preliminaries related to consensus processes in GDM, and review OWA operators

and linguistic quantifiers, used to compute OWA weights. In Section 3, we present

our proposal to reflect group’s attitudes by means of AOWA operators. A case study

with the use of different AOWA operators reflecting distinct group’s attitudes is

presented in Section 4. Finally, in Section 5, we draw the main conclusions and

consider some future works.
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2. Preliminaries

In this section, we present an overview of GDM problems and CRPs. We then briefly

review OWA operators and linguistic quantifiers.

2.1. Group Decision Making (GDM)

GDM problems are characterized by the participation of two or more experts in a

decision problem, where a set of alternatives or possible solutions to the problem

are presented.1,2 Formally, the main elements found in any GDM problem are:

• A set of possible alternatives to choose as possible solutions to the problem.

X = {x1, . . . , xn}(n ≥ 2) (2.1)

• A set of individuals or experts who express their judgements or opinions on the

alternatives in X.

E = {e1, . . . , em}(m ≥ 2) (2.2)

Each expert ei provides his/her opinions over alternatives in X by means of a prefe-

rence structure. Different preference structures have been widely used in GDM ap-

proaches, including preference orderings, preference relations and utility vectors.5,11

One of the most usual preference structures, which also has shown to be especially

effective when dealing with uncertainty, is the so-called fuzzy preference relation.

Definition 2.1. A fuzzy preference relation Pi associated to an expert ei on a set

of alternatives X is a fuzzy set on X×X, which is characterized by the membership

function µPi
: X×X −→ [0, 1]. When the number of alternatives n is finite, Pi may

be represented by a n× n matrix as follows:

Pi =







p11i . . . p1ni
...

. . .
...

pn1i . . . pnni







where the numerical opinion or assessment plki = µPi
(xl, xk) ∀l, k ∈ {1, . . . , n} is

the degree of preference of alternative xl over xk assessed by expert ei, and:

• plki > 1/2 indicates that xl is preferred to xk, and plki = 1 indicates absolute

preference of xl over xk.

• plki < 1/2 indicates that xk is preferred to xl, and plki = 0 indicates absolute

preference of xk over xl.

• plki = 1/2 indicates indifference between xl and xk.

The solution for a GDM problem may be obtained either by a direct approach

or an indirect approach.12 In the former, the solution is immediately obtained from

the experts’ individual opinions or preferences. In the latter, a social or collective

opinion is computed to determine the chosen alternative/s. Regardless of the ap-

proach considered, two main phases are required to solve a GDM problem (Fig. 1):
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Fig. 1. Selection process in GDM problems.

(i) an Aggregation phase, where experts’ preferences are combined, and (ii) an Ex-

ploitation phase, which consists in obtaining an alternative or subset of alternatives

as the solution to the problem.

2.2. Consensus Reaching Processes (CRPs)

One of the main shortcomings found in classic GDM rules, such as the majority

rule or minority rule, is the possible disagreement shown by one or more experts

with the achieved solution, because they might consider that their opinions have not

been taken into account sufficiently. Given the importance of obtaining an accepted

solution by the whole group, CRPs as part of the decision process have attained a

great attention. Consensus can be understood as a state of mutual agreement among

members of a group,2,4 where the decision made satisfies all of them. Reaching a

consensus usually requires that experts modify their initial opinions in a discussion

process, making them closer to each other and towards a collective opinion which

must be satisfactory for all of them.

The notion of consensus can be interpreted in different ways, ranging from con-

sensus as total agreement (unanimity), to a more flexible approach.13 The traditio-

nal or strict notion of consensus assumes that consensus exists only if all experts

have achieved a mutual agreement in all their opinions, which is commonly known

as unanimity.3,14 Consensus as unanimity may be quite difficult or even impossible

to achieve in practice, and in the cases it could be achieved, the cost derived from

the CRP would be unacceptable, and it may sometimes have been achieved through

a normative point of view, through intimidation and other social strategies.15 Sub-

sequently, more flexible notions of consensus have been proposed to soften the strict

view of consensus as unanimity. These flexible approaches, more feasible in prac-

tice, consider different degrees of partial agreement among experts to decide about

the existence of consensus, thus indicating how far a group of experts is from ideal

consensus or unanimity.

One of the most widely accepted approaches for a flexible measurement of con-

sensus is the so-called notion of soft consensus, proposed by Kacprzyk in Ref. 1. This

approach introduces the concept of fuzzy linguistic majority, which establishes that

there exists consensus if most experts participating in a problem agree with the most

important alternatives. Soft consensus based approaches have been used in different
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GDM problems, providing satisfactory results.16,17,18,19,20 Consensus measures ba-

sed on soft consensus are more human-consistent and ideal for reflecting human

perceptions of the meaning of consensus in practice 21. The aforementioned concept

of fuzzy linguistic majority has been captured by using linguistic quantifiers 22.

Next, some related works on consensus models and a general scheme for con-

ducting CRPs are described.

2.2.1. Related Work on CRPs

Here we review a selection of some representative consensus models to conduct

CRPs, together with their main features. Kacprzyk et al. proposed in the 80’s and

early 90’s some consensus models based on soft computing techniques.1,21,23,24 Their

work introduced the use of fuzzy preference relations combined with the notion of

soft consensus and fuzzy majority, where linguistic quantifiers are used to reflect a

’humanly-consistent’ degree of consensus.25 Later models were proposed by them

in Refs. 18,26.

Saint et al. proposed in Ref. 4 a theoretical consensus model to describe CRPs

as they usually occur in real situations in companies and organizations. This model

addresses social aspects such as the initial proposal’s presentation and acceptation,

disagreement solution and some alternative actions in view of fails to reach a con-

sensus, and introduces some roles to support moderator in the process supervision.

The model proposed by Herrera-Viedma et al. in Ref. 5 is characterized by

the use of different preference structures by experts. A transformation function is

applied on them so that they are expressed under a common uniform preference

structure, i.e. fuzzy preference relations. Later on, Herrera-Viedma et al. presented

in Ref. 27 a new model incorporating the use of multi-granular linguistic preference

relations, making possible to manage CRPs where experts may have different levels

of knowledge on the problem considered. In Refs. 6,7, they introduced the problem

of dealing with incomplete preference relations. More recently, the work of Mata et

al.8 presents an adaptive consensus model, which adapts its behavior to the level of

agreement achieved in each discussion round.

In Ref. 28, Cabrerizo et al. presented a consistent consensus model characteri-

zed by the use of incomplete and unbalanced linguistic preferences. The approach

includes a methodology to manage unbalanced fuzzy sets effectively.20,29 Cabrerizo

et al. also conducted in Ref. 13 a study on different flexible and adaptive consensus

approaches in fuzzy GDM problems, highlighting the strong and weak points in all

of them.

Current efforts on the improvement of CRPs regard not only the increase in

automation degree, but also an effective resolution of consensus processes with

uncertain information and considerably large groups of experts. Although many

consensus models have been proposed and put in practice, it is still necessary a

higher scalability to manage large groups. The consensus support system, so-called

COMAS, proposed by Mata et al. in Refs. 30,31 is based on a MAS (multi-agent sys-
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Fig. 2. General consensus process scheme in GDM problems.

tem) architecture, thus allowing higher computational capabilities and distributed

processing.

2.2.2. General CRP Scheme and Notation

The process to reach a consensus in GDM problems is a dynamic and iterative

discussion process,4 frequently coordinated by a human figure known as moderator,

who plays a key role in consensus processes.32 The moderator’s main responsibilities

are:

• Evaluate the degree of agreement achieved in each round of discussion, and decide

whether it is enough or not to accept the existence of consensus.

• Identify those alternatives that hamper reaching a consensus.

• Give feedback to experts, regarding changes they should perform in their opinions

on the previously identified alternatives, in order to increase the level of agreement

in the next rounds.

A general scheme for conducting CRPs is shown in Fig. 2. A brief description

and some necessary notation on the steps shown in this process are given below.

• Gather preferences: Each expert ei provides moderator a fuzzy preference relation

on X, Pi.

• Determine Degree of Consensus: For each different pair of experts ei, ej (i < j),

a similarity value smlk
ij ∈ [0, 1] is computed on each pair of alternatives (xl, xk),
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l, k ∈ {1, . . . , n} as a function of the distance between their assessments plki , plkj
on that pair,

smlk
ij = 1− |plki − plkj | (2.3)

Pairwise similarities are aggregated to obtain the consensus degree on each pair

of alternatives, cmlk ∈ [0, 1], as

cmlk = φ(smlk
12, sm

lk
13, . . . , sm

lk
1m, smlk

23, . . . , sm
lk
2m, . . . , smlk

(m−1)m) (2.4)

where φ is the aggregation operator used. Our proposal in this paper shall use a

novel AOWA operator to reflect a group’s attitude in this aggregation procedure,

in order to improve the CRP adapting it to such attitude.

Afterwards, an average operator is used to obtain an overall consensus degree

cr ∈ [0, 1] based on consensus degrees on pairs of alternatives cmlk.

• Consensus Control : cr is compared with a consensus threshold µ, i.e. the mini-

mum level of agreement desired by the group. If cr ≥ µ, the group moves on to

the selection process, otherwise, moderator must move to the feedback generation

phase.

• Generate Feedback Information: A collective preference Pc is obtained by aggre-

gating experts’ preferences. The moderator determines those furthest opinions plki
from the collective opinion plkc for each expert ei and pair of alternatives (xl, xk),

and suggest experts increasing or decreasing them in order to increase consensus

degree in next rounds.

2.3. OWA (Ordered Weighted Averaging) Operators

Frequently, aggregation processes in multiple criteria decision making and GDM

problems require assigning weights on values to be aggregated, thus using the so-

called weighted operators.33 One of the most widely applied families of weighted

operators in different GDM approaches in the literature are the so-called OWA

(Ordered Weighted Averaging) operators, introduced by Yager in Ref. 10. OWA

operators are defined for values ai ∈ [0, 1] (i = 1, . . . , n) as follows:

Definition 2.2. An OWA operator of dimension n is a mapping OWAW : [0, 1]n →

[0, 1], with an associated weighting vector W = [w1w2 . . . wn]
⊤, where wi ∈ [0, 1],

∑

i wi = 1 and,

OWAW (a1, . . . , an) =
n
∑

j=1

wjbj (2.5)

where bj is the jth largest of the ai values.

Note that a weight wi is associated with a particular ordered position instead of a

particular element, i.e. wi is associated with the ith largest element in a1, . . . , an.

OWA operators are idempotent, continuous, monotone, neutral and

compensative.34,35 In addition, they fulfill some behavioral properties, including
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the reflection on attitudes in the aggregation, as well as an easy adjusting of the

degree of optimism by an appropriate choice of the weights wi employed. In order

to classify an OWA operator basing on its optimism degree accordingly, a measure

of orness associated with W was introduced, and defined as

orness(W ) =
1

n− 1

n
∑

i=1

(n− i)wi (2.6)

While optimistic or OR-LIKE OWA operators are those whose orness(W ) > 0.5,

in pessimistic or AND-LIKE operators we have orness(W ) < 0.5.10,37

Another measure, the dispersion,36 was introduced to let a further distinction

amongst different OWA operators with equal optimism degree. This measure is also

defined by the vector W as

Disp(W ) = −

n
∑

i=1

wi lnwi (2.7)

This measure can be used as an indicator of the degree to which information con-

tained in values a1, . . . , an is really used in aggregation.

Yager provides in Ref. 37 a detailed review on different families of OWA opera-

tors, including some special cases of them. Next, we point out three widely known

special cases of OWA operators:

• Let W ∗ be the weighting vector defined as w1 = 1 and wi = 0, i 6= 1. Then

OWAW∗(a1, . . . , an) = max(a1, . . . , an) and orness(W ∗) = 1.

• Let W∗ be the weighting vector defined as wn = 1 and wi = 0, i 6= n. Then

OWAW∗
(a1, . . . , an) = min(a1, . . . , an) and orness(W∗) = 0.

• For WA defined as wi = 1/n ∀i, we have the arithmetic mean, with and

orness(WA) = 0.5.

2.4. OWA Weights Computation

Several approaches have been proposed to perform OWA weights identification,34

including methods based on maximum entropy,38 through a learning mechanism

based on previous observations of decision makers performance,39 and by semantic

considerations by using linguistic quantifiers,40 as will be considered in this paper,

more specifically, with Regular Increasing Monotone (RIM) quantifiers.

Linguistic quantifiers, were introduced by Zadeh in Ref. 22. They can be used to

semantically express aggregation policies and actually capture Kacprzyk’s notion of

soft consensus in consensus models.1,25 Examples of linguistic quantifiers are most,

almost all, few, many, all and at least one.22,40

OWA weights identification based on linguistic quantifiers is possible thanks to

fuzzy set theory.39,41 Zadeh distinguished in Ref. 22 two types of linguistic quan-

tifiers: absolute and relative. A relative linguistic quantifier can be represented as

a fuzzy subset Q of the unit interval, where for a given proportion r ∈ [0, 1], Q(r)

indicates the extent to which this proportion satisfies the semantics defined in Q.40
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Fig. 3. Example of RIM quantifier Q =“most”.

For example, given Q =“most” (see Fig. 3), if Q(0.7) = 1 then we say that a pro-

portion of 70% totally satisfies the idea conveyed by the quantifier most, whereas

Q(0.55) = 0.25 indicates that the proportion 55% is barely compatible (only 0.25)

with this concept.

Yager provided in Refs. 40,42 a further classification of relative linguistic quanti-

fiers into three categories: Regular Increasing Monotone (RIM) quantifier, Regular

Decreasing Monotone (RDM) quantifier and Regular UniModal (RUM) quantifier.

We are interested in the use of linear RIM quantifiers,40,43 which are appropriate

to apply the notion of soft consensus and the concept of fuzzy linguistic majority.

RIM quantifiers present the following properties: (i) Q(0) = 0, (ii) Q(1) = 1 and

(iii) if r1 > r2 then Q(r1) ≥ Q(r2).

In Ref. 10, Yager proposed the following method to compute OWA weights with

the use of RIM quantifiers:

wi = Q

(

i

n

)

−Q

(

i− 1

n

)

, i = 1, . . . , n (2.8)

where the linear membership function of a RIM quantifier Q(r) is defined by the

use of two parameters α, β ∈ [0, 1] as

Q(r) =















0 if r < α,
r − α

β − α
if α ≤ r ≤ β,

1 if r > β.

(2.9)

Although these parameters are usually denoted in the literature as a and b, here

we use an alternative notation, α, β to avoid confusion with previously denoted

aggregation elements ai and bi in OWA operators.

3. Attitude-OWA Operator in Consensus Reaching Processes

As it was previously pointed out, the aim of this paper is to introduce and manage

the concept of group’s attitude towards consensus in CRPs, by means of a new ag-

gregation operator based on OWA that allows reflecting and managing this concept
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regarding the measurement of consensus (see Eq. (2.4)). Therefore, in this section

we introduce the idea of attitude towards the achievement of consensus and the so-

called Attitude-OWA operator (AOWA) used to reflect it in aggregation. Attitude

towards the measurement of consensus must be understood as follows:

• Optimistic attitude: those positions (pairs of experts) in the group whose level

of agreement is higher will be given more importance in the aggregation process,

so that when experts modify their opinions to make them closer each other, the

desired consensus degree will be achieved more quickly.

• Pessimistic attitude: those positions in the group whose agreement is lower will be

given more importance in the aggregation process, so that when experts modify

their opinions to make them closer to each other, the desired consensus degree

will require more discussion rounds to be achieved.

The choice of an appropriate attitude depends on the prospects considered by ex-

perts in the group and the nature of the decision problem to address. Our proposal

begins introducing the attitudinal parameters which can be used by the group to

reflect their attitude towards consensus, then AOWA operator is defined to capture

the reflected attitude in the aggregation of similarity values, and finally the relations

between parameters are described. Figure 4 shows with more detail the phase of de-

termining consensus degree previously presented in the general consensus scheme in

Fig. 2, including the aggregation step where we are integrating attitudes reflection

with the use of AOWA.

3.1. Attitudinal parameters and AOWA Operator

In Section 2.4, we reviewed RIM quantifiers and stated the membership function for

a linear RIM quantifier upon two parameters α, β. Note that [α, β] ⊆ [0, 1] (α ≤ β),

defines the range of proportions r where the membership function Q(r) increases,

i.e. the slope of the RIM quantifier. Therefore, we have either Q(r) = 0 or Q(r) = 1

for any r situated to the left or to the right side of the slope, respectively. For a

slope [a, b], its amplitude d is defined as d = β−α. We will denote a RIM quantifier

Q, regarding values of α and d, as Q(α,d).

When computing OWA weights from Q(α,d) using Eq. (2.8), non null weights wi

are assigned to elements bi whose r = i/n is situated inside the quantifier’s slope,

i.e. r ∈ [α, α + d]. As we can see, α and d can be used to indicate which and how

many similarity values are considered in the aggregation. In addition, orness(W )

indicates how optimistic this aggregation is. These three elements will be considered

the attitudinal parameters which can be used by the decision group to reflect an

attitude towards consensus.

• orness(W ) ∈ [0, 1] represents the group’s attitude in aggregation of pairwise

similarities. This attitude can be either optimistic if orness(W ) > 0.5, pessimistic

if orness(W ) < 0.5 or neutral if orness(W ) = 0.5.



August 3, 2011 14:22 WSPC/ws-ijitdm ws-ijitdm

Modeling Attitudes towards Consensus with OWA Operators 11

Fig. 4. Procedure to measure consensus based on group’s attitude.

• α ∈ [0, 1] indicates whether higher or lower similarity values are assigned a non-

null weight when aggregating (assuming these similarities are ranked in decreasing

order). The lower α, the higher ranked values are considered.

• d ∈ [0, 1] indicates the amount of similarity values which are given non-null weight

and therefore are considered in the aggregation. This parameter has a relation

with the dispersion of the corresponding operator. The higher d, the wider range

of ranked similarity values are given non-null weight and the higher dispersion in

the OWA operator defined by Q(α,d).

These parameters are related to each other, so it is not necessary that the

decision group uses all of them to express an attitude towards consensus. We can now

define a class of OWA operator so-called AOWA for reflecting specific aggregation

attitudes as follows:

Definition 3.1. An AOWA operator of dimension n on A = {a1, . . . , an} is an

OWA operator based on two attitudinal parameters ϑ, ϕ given by a decision group

to indicate how to measure consensus between their members,

AOWAW (A, ϑ, ϕ) =

n
∑

j=1

wjbj (3.1)

where bj is the jth largest of the ai values, ϑ, ϕ ∈ [0, 1] are two attitudinal parame-
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ters and weights W are computed using RIM quantifier Q(α,d). Our proposal focuses

on considering ϑ = orness(W ) and ϕ = d as the input attitudinal parameters to

define an AOWA operator.

The attitude or optimism degree ϑ of an AOWA operator can be determined gi-

ven the associated RIM quantifier Q(α,ϕ), when the number of elements to aggregate

n is infinitely large, as follows40,43

Theorem 3.1. Let ϑ be the attitude of an AOWA operator based on a RIM quan-

tifier denoted as Q(α,ϕ). Then for n → ∞, ϑ ∈ [0, 1] is determined as follows

ϑ = 1− α−
ϕ

2
(3.2)

The detailed analytical proof to obtain this expression is given as follows:

Proof. Based on Eq. (2.6) and Eq. (2.8), we have

ϑ =
1

n− 1

n
∑

i=1

(n− i)

[

Q

(

i

n

)

−Q

(

i− 1

n

)]

(3.3)

To calculate ϑ when n is infinitely large, n → ∞,

ϑ = lim
n→∞

1

n− 1

n
∑

i=1

(n− i)

[

Q

(

i

n

)

−Q

(

i− 1

n

)]

= lim
n→∞

1

n− 1

n−1
∑

i=1

(n− i)

[

Q

(

i

n

)

−Q

(

i− 1

n

)]

(3.4)

If we consider P =
n−1
∑

i=1

(n− i)

[

Q

(

i

n

)

−Q

(

i− 1

n

)]

then we have

P =
n−1
∑

i=1

[

n

[

Q

(

i

n

)

−Q

(

i− 1

n

)]

− i

[

Q

(

i

n

)

−Q

(

i− 1

n

)]]

=
n−1
∑

i=1

[

n

[

Q

(

i

n

)

−Q

(

i− 1

n

)]]

−
n−1
∑

i=1

[

i

[

Q

(

i

n

)

−Q

(

i− 1

n

)]]

= n
n−1
∑

i=1

[

Q

(

i

n

)

−Q

(

i− 1

n

)]

−
n−1
∑

i=1

[

i

[

Q

(

i

n

)

−Q

(

i− 1

n

)]]

(3.5)

where, expanding it into the sum form, some terms are mutually deleted, having

finally

P = nQ

(

n− 1

n

)

−

[

−

[

n−2
∑

i=1

Q

(

i

n

)]

+ (n− 1)Q

(

n− 1

n

)]

= nQ

(

n− 1

n

)

− (n− 1)Q

(

n− 1

n

)

+
n−2
∑

i=1

Q

(

i

n

)

= Q

(

n− 1

n

)

+
n−2
∑

i=1

Q

(

i

n

)

=
n−1
∑

i=1

Q

(

i

n

)

(3.6)
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Fig. 5. Membership function in RIM quantifiers considered.

Therefore,

ϑ = lim
n→∞

1

n− 1

n
∑

i=1

(n− i)

[

Q

(

i

n

)

−Q

(

i− 1

n

)]

= lim
n→∞

1

n− 1

n−1
∑

i=1

Q

(

i

n

)

(3.7)

When n → ∞, it follows from the limit definition of definite integral that40

ϑ = lim
n→∞

1

n− 1

n−1
∑

i=1

Q

(

i

n

)

=

∫ 1

0

Q(r)dr =

∫ 1

α

Q(r)dr (3.8)

where r = i/n. Notice that the interval [α, 1] defines the support of quantifier Q(α,ϕ).

The obtained integral states that ϑ is equal to the area under the membership

function Q(r). Considering Eq. (2.9) where function Q(r) was defined (see Figure

5), the area under Q(r) is actually as follows:

ϑ =
∫ 1

α
Q(r)dr = Area(Q) =

[

1

2
(β − α)

]

+ [1− β]

=
1

2
ϕ+ 1− (α+ ϕ) = 1− α−

ϕ

2
(3.9)

Notice here that β − α = d = ϕ. This completes the proof of Theorem 3.1.

Therefore, ϑ may closely approximate to the result of Eq. (3.2) when measuring

consensus in large groups, where a high number of pairs of experts’ similarities must

be aggregated to measure consensus.

As a result, since we are interested in integrating a group’s attitude towards

consensus by means of ϑ and ϕ, we use Eq. (3.2) to determine the value of α,

necessary to define the RIM quantifier, as follows:

α = 1− ϑ−
ϕ

2
(3.10)
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3.2. Relations and restrictions between attitudinal parameters

Attitudinal parameters’ values are related to each other, so it is convenient to clarify

some existing relations and restrictions between them. As stated earlier, α and ϕ

are used to univocally define a RIM quantifier Q(α,ϕ), but the following condition

must be fulfilled to define a valid RIM quantifier and therefore integrate a valid

attitude in the process:

Theorem 3.2. Given α, ϕ ∈ [0, 1], a valid attitude given by ϑ can be guaranteed

only if α+ ϕ ≤ 1.

Proof. Let us suppose α+ ϕ > 1. Considering that ϕ = β − α, Eq. (3.2) leads to

ϑ = 1− α−
ϕ

2
= 1−

α+ β

2
(3.11)

where
α+ β

2
is the central value of the quantifier’s slope, so that

α ≤
α+ β

2
≤ β

1− α ≥ 1−
α+ β

2
≥ 1− β

1− α ≥ ϑ ≥ 1− (α+ ϕ) (3.12)

where β = α + ϕ. Notice here that if α + ϕ > 1 as we supposed, then ϑ can be

negative, therefore α+ ϕ must be equal or less than one to ensure a valid attitude

is defined. This completes the proof of Theorem 3.2.

In order to avoid expressing invalid attitudinal parameters, we present the res-

trictions to be considered by the decision group when providing them.

Corollary 3.1. The following condition must be fulfilled when the group provides

a value of ϑ:

ϕ

2
≤ ϑ ≤ 1−

ϕ

2
(3.13)

Proof. According to Eq. (3.10), α is negative if (ϑ+ϕ/2) > 1. We need α ≥ 0, i.e.

1− ϑ−
ϕ

2
≥ 0

ϑ+
ϕ

2
≤ 1

ϑ ≤ 1−
ϕ

2
(3.14)
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However, according to Theorem 3.2, it is also necessary to guarantee α + ϕ ≤ 1.

Based on Eq. (3.10) we have,

α+ ϕ = 1− ϑ−
ϕ

2
+ ϕ ≤ 1

1− ϑ+
ϕ

2
≤ 1

ϑ ≥
ϕ

2
(3.15)

The fulfillment of both inequalities leads to the aforementioned restriction and

completes the proof of Corollary 3.1.

As a result, the higher the proportion of values to consider in aggregation (given by

ϕ), the narrower range of possible attitudes or optimism degrees (given by ϑ) can

be considered.

Corollary 3.2. The following condition must be fulfilled when the group provides

a value of ϕ:

ϕ ≤ 1− |2ϑ− 1| (3.16)

Proof. Based on the previous proof in Corollary 3.1, α ≥ 0 requires

ϑ+
ϕ

2
≤ 1 i.e.,

ϕ ≤ 2(1− ϑ) (3.17)

which is valid for ϑ ∈ [0.5, 1], but may give rise to ϕ > 1 and fail to fulfill Theorem

3.2 when ϑ < 0.5. Let us consider Theorem 3.2 and Eq. (3.10). We then have

α+ ϕ = 1− ϑ−
ϕ

2
+ ϕ ≤ 1

1− ϑ+
ϕ

2
≤ 1

ϕ ≤ 2ϑ (3.18)

which is valid for ϑ ∈ [0, 0.5] but ϕ > 1 may still be possible when ϑ > 0.5, hence a

valid quantifier can be defined only if these restrictions are satisfied,
{

ϕ ≤ 2ϑ if ϑ ∈ [0, 0.5]

ϕ ≤ 2(1− ϑ) if ϑ ∈ [0.5, 1]
(3.19)

We finally proceed to find a single expression which considers both restrictions. On

the one hand, we have

2ϑ = 1− (−2ϑ+ 1) (3.20)

where, when ϑ ∈ [0, 0.5], the term (−2ϑ+ 1) ≤ 0. On the other hand,

2(1− ϑ) = 1− (2ϑ− 1) (3.21)
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Fig. 6. Process to determine the AOWA operator used to measure consensus based on the group’s
attitudinal parameters ϑ and ϕ.

where, when ϑ ∈ [0.5, 0.1], the term (2ϑ− 1) ≥ 0. This means we can consider the

absolute value of the term (2ϑ− 1) to integrate both restrictions as

ϕ ≤ 1− |2ϑ− 1| (3.22)

This completes the proof of Corollary 3.2.

This restriction can be interpreted as the fact that the closer ϑ is to a neutral

attitude (0.5), the wider range of possible degrees for ϕ can be considered.

If restrictions pointed out in Eqs. (3.13) and (3.16) are taken into account when

expressing any two values for input attitudinal parameters (ϑ, ϕ), then a valid RIM

quantifier is always defined, thus guaranteing a valid AOWA operator.

3.3. Attitude Integration in Consensus Processes

Once presented the concept of attitude towards consensus and the main features of

the AOWA operator used to reflect it, next we describe how this attitude can be

integrated in CRPs. We propose conducting the task of expressing group’s attitude

as part of the pre-consensus process,4 where the moderator is responsible for reflec-

ting a group’s attitude towards measuring consensus before the discussion process

begins. In order to express the appropriate attitudinal parameters (ϑ, ϕ), the mode-

rator may consider both the context and characteristics of the decision problem to

solve, and the experts’ individual concerns and level of knowledge about the domain
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where the problem is defined. He might also not consider all experts in the group to

determine an attitude, but rather a subset of them (due to their status, high level

of knowledge, etc.) or even a single person’s concerns only, because of his/her core

position in the group.

Figure 6 shows the procedure to determine a group’s attitude towards the achie-

vement of consensus and integrate it in the CRP, defining the corresponding AOWA

operator to measure consensus.

4. Experimental simulation

In this section, we use a multi-agent based consensus support system30,31 to simu-

late the resolution of a consensus problem under uncertainty, with different AOWA

operators based on different group attitudes to achieve consensus, having a consi-

derable number of experts in the group.

Our main hypothesis mainly focuses on the effect of using different attitudes

towards consensus in the process, and states that optimism, given by OR-LIKE

operators, may favor a greater convergence towards consensus with a lower num-

ber of rounds; whereas pessimism, given by AND-LIKE operators, may favor a

lower convergence towards consensus and, therefore, more rounds of discussion are

required.

Table 1. Attitudinal parameters and RIM quantifiers used.

Attitude ϑ ϕ α Q(α,ϕ)

Pessimistic 0.25 0.1 0.7 Q(0.7,0.1)

0.25 0.3 0.6 Q(0.6,0.3)

0.25 0.5 0.5 Q(0.5,0.5)

Indifferent 0.5 0.2 0.4 Q(0.4,0.2)

0.5 0.6 0.2 Q(0.2,0.6)

0.5 1 0 Q(0,1)

Optimistic 0.75 0.1 0.2 Q(0.2,0.1)

0.75 0.3 0.1 Q(0.1,0.3)

0.75 0.5 0 Q(0,0.5)

The GDM problem we have simulated consists of four alternatives X =

{x1, x2, x3, x4} and 50 experts, E = {e1, . . . , e50}. In addition, a consensus th-

reshold µ = 0.85 was defined. The experiments consisted in defining a total of nine

different attitudes towards consensus, where both optimistic, indifferent and pessi-

mistic attitudes are reflected, and applying the CRP introduced in Section 2.2.2.

For each one, three different degrees of the amount of information used, given by

ϕ, have been considered. Table 1 shows the different group attitudes used in simu-

lations, the obtained value of α (see Eq. (3.10)) and the subsequent definition of
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Fig. 7. Average number of required rounds of discussion for RIM quantifier-based AOWA operators
with different attitudinal parameters given by ϑ and ϕ.

nine different RIM quantifiers used in experiments. For each instance of AOWA, 20

experiments have been run.

Results from experiments include the convergence to consensus achieved, i.e.

the average number of rounds of discussion required to reach a consensus for each

AOWA operator defined upon a RIM quantifier Q(α,ϕ). These results are shown in

Figure 7. Results allow us to confirm our hypothesis that the use of AOWA opera-

tor based on an optimistic attitude favors a greater convergence towards consensus,

whereas the use of AOWA operator based on a pessimistic attitude favors a lower

convergence and a further discussion process. Note that attitude is faithfully reflec-

ted in the process performance regardless of the proportion of values considered, ϕ,

which is not as influential as ϑ in the process performance.

Therefore, if decision makers’ priority is achieving a consensus in a fast discus-

sion process and they don’t care about considering rather the highest agreement

positions, they would adopt an optimistic attitude. On the other hand, if they con-

sider that the problem requires further discussion and they want to ensure that

the even the most disagreing experts finally reach an agreement, they would rather

consider a pessimistic attitude.

5. Conclusions and Future works

In this paper, we have presented AOWA operator for expressing group’s attitudes

in consensus reaching processes. Basing on the definition of attitudinal parameters

and their relations, we have proposed an approach where a decision group can
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easily reflect the attitude they consider towards the measurement of consensus in

the group. A simulation has been carried out in an automatic consensus support

system in order to prove the importance of integrating these attitudes in the process,

having shown the effect of using optimistic/pessimistic attitudes in the number of

discussion rounds necessary to achieve an agreement.

Our future works are currently focused on a further analysis of defined attitu-

dinal parameters, as well as introducing the possibility that experts can express

their desired attitudes in a linguistic background, thus giving them an even more

natural way to provide attitudinal information. We also aim to develop an adaptive

consensus model with the integration of dynamic attitudes based on the process

performance.
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