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Abstract

Consensus reaching processes in group decision mak-
ing attempt to reach a mutual agreement amongst
experts before making & common decision. Classi-
cal consensus models are focused on problems where
few decision makers participate. However, new so-
cietal and technological trends may require a large
number of experts in such processes. In group de-
cision making problems involving large groups, iden-
tifying and dealing with experts who present non-
cooperative behaviors during the consensus reaching
process might become a particularly complex task.
Such behaviors might bias the discussion process and
prevent achieving an agreement. This paper presents
a fuzzy clustering-based approach to detect and man-
age non-cooperative behaviors. Such an approach is
integrated into a consensus model suitable to manage
large groups of experts in group decision making prob-
lems.

Keywords: Group Decision Making, Consensus
Reaching, Preference Relation, Fuzzy Clustering, Be-
havior Detection

1. Introduction

Decision making is a frequent mankind activity in
daily life. Group Decision Making (GDM) problems,
in which multiple experts with different points of view
must make a common decision, have become increas-
ingly necessary in many organizations [1]

Although GDM problems have been traditionally
solved by applying a selection process to choose the
best alternative/s [2], many real-life problems where
entire groups are involved may require highly agreed
collective decisions. Consensus Reaching Processes
(CRPs) attempt to reach an agreement amongst ex-
perts before making a decision which is more accepted
by the whole group [3].

Despite a variety of consensus models have been pro-
posed to deal with CRPs [4-6], most of them focus on
dealing with a few number of experts only. Current
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technological and societal demands are giving rise to
new trends, such as e-democracy [7] and social net-
works [8], where decisions can be made by a large
number of experts. In such situations, the CRP would
present a higher cost and complexity. Another prob-
lem, that may be severely increased in CRPs that in-
volve large groups, is the necessity of finding and deal-
ing with experts and subgroups who do not cooperate
to achieve an agreement, because they are not prone to
modify their initial position or even they move their
preferences against the collective opinion. Detecting
and managing such behaviors becomes then crucial to
reach an agreement more efficiently [3].

This contribution presents an approach based on
fuzzy clustering techniques to detect and deal with
non-cooperative behaviors in large-scale CRPs. Such
an approach is integrated into a consensus model
whose design allows a high degree of automation and
its implementation into a Consensus Support System,
which may facilitate the management of large groups
of experts.

This paper is organized as follows: Section 2 re-
views some preliminaries related to CRPs in GDM and
fuzzy clustering. In Section 3, a consensus model that
incorporates the methodology to detect and manage
experts’ non-cooperative behaviors is presented. Sec-
tion 4 shows an illustrative example of the proposal’s
performance, and Section 5 concludes the paper.

2. Preliminaries

This section reviews some preliminary concepts about
consensus reaching in GDM and fuzzy clustering tech-
niques.

9.1. Consensus Reaching in Group Decision
Making

GDM problems [1] are defined as decision situations
where a set E = {e1,...,em}, (m > 2), of decision
makers or ezperts express their preferences over a finite
set of alternatives X = {#1,...,Za}, (n = 2) by using




a preference structure, for instance a fuzzy preference
relation:
= g BT
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where each assessment p* = up, (2, 1) € [0,1] repre-
sents e;’s preference degree of alternative z; over zy,
(L £ k) [9].

It is usual in many GDM situations that each expert
e; € E has associated an importance weight w; € [0, 1],
due to different reasons, such as the existence of ex-
perts with different degree of expertise or knowledge
about the problem [10]. The specific meaning and use
of such weights in the consensus model presented in
this paper, will be illustrated in Sect. 3.

The resolution of GDM problems by applying a se-
lection process solely [2,11] does not always guarantee
a decision that is accepted by all experts in the group,
since some of them might consider that their opinions
have not been sufficiently considered. CRPs as part of
the decision process have attained a great attention to
overcome this limitation [3]. In a CRP, experts mod-
ify their initial opinions, making them closer to each
other and towards a collective opinion which must be
satisfactory for all of them.

Different approaches for consensus have been pro-
posed in the literature, for example the so-called no-
tion of soft consensus, proposed by J. Kacprzyk in [1]
and based on the concept of fuzzy linguistic majority,
which establishes that consensus exists if most experts,
participating in o problem, agree on the most impor-
tant alternatives.

Classically, the process to reach a consensus is a
dynamic and iterative discussion process coordinated
by a human moderator, who is responsible for guid-
ing experts in the overall process [3]. A basic scheme
of the phases required for conducting CRPs is briefly
described below (see Fig. 1):

1) Gathering Preferences: Each expert provides
his/her preferences on the existing alternatives to
the moderator.

2) Determine Degree of Consensus: The moderator
computes the level of agreement in the group by
means of a consensus measure, based on similarity
measures and aggregation operators.

3) Consensus Control: The consensus degree is com-
pared with a threshold level of agreement desired
by the group. If such degree is enough, the group
moves on to the selection process, otherwise, more
discussion rounds are required.

4) Generate Feedback Information: The moderator
advises experts, suggesting them how to modify
their opinions to make them closer and increase
the level of agreement in the group. Afterwards,
a new discussion round begins.
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Fig. 1: General scheme for CRPs.

2.2. Fuzzy Clustering

The method proposed in this paper to detect non-
cooperative experts’ behaviors in CRPs is based on
fuzzy clustering, therefore in this subsection we give a
brief revision of fuzzy clustering techniques.

Clustering is a non-supervised classification tech-
nique for data analysis and interpretation [12], in
which a set of data objects are separated into a num-
ber of groups so-called clusters, based on a measure of
similarity, so that data objects within the same clus-
ter are more similar to each other than data objects
belonging to different clusters [13]. Usually, each clus-
ter is represented by a prototype or cluster centre that
characterizes all data objects in the cluster.

Although traditional clustering methods assume
that each data object can belong to one cluster only,
fuzzy clustering-based approaches, where data objects
may belong to multiple clusters with different degrees
of membership, have also arisen [12,13]. Such methods
seek to find cluster centres for a predefined number NV
of clusters and assign each data object a fuzzy mem-
bership degree to each cluster. One of the most ex-
tended fuzzy clustering algorithms is Fuzzy C-Means
(FCM) [14]. In FCM, cluster centres and data objects
are iteratively updated until a locally optimal solution,
determined by a pre-established stopping condition, is
found.

Some necessary assumptions for adapting FCM to
our proposal for GDM based on fuzzy preference rela-
tions, are:

e A data object is an expert’s fuzzy preference re-
lation P;, hence cluster centres C}, are also struc-
tured as fuzzy preference relations.

e A parameter b > 1 indicates fuzziness degree of
clusters. The larger b, the fuzzier the clusters are
[14].

e Membership degrees to each cluster, ue, (P;), are
computed by using distance metrics. Let d denote
a distance metric (e.g. based on Minkowski dis-
tance). Then, d(P;, Ch) represents the distance
between P; and a cluster centre C), (see Sect. 3.2
for more detail about its computation).
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Fig. 2: Consensus model scheme.

A description of the FCM algorithm on a set
{Py,..., Py} of fuzzy preference relations is shown be-
low:

1. Set number of clusters N > 2 and fuzziness degree
b.

2. Initialize N clusters Cp, h = 1,..., N, by means
of a cluster initialization technique [15].

3. Compute membership degrees of each preference
relation P; to each cluster Ch, pe, (B) € [0,1]:

(1/d(P,, Cy)Y O™

non(P) = 5 1/(b-1) 2
> (1/d(P;, Cu))
u=1
4. Update cluster centres:
2 non(P) B
Ch ="+ (2)

i=1

5. Repeat steps 3,4 until a stopping condition is
reached. Further detail about the stopping con-
dition considered in this proposal can be found in
Sect. 3.2.

3. Consensus Model for Detecting
Non-Cooperative Behaviors

This section presents a novel consensus model for
large-scale GDM problems. Its main novelty is the
fuzzy clustering-based approach it integrates to clas-
sify experts, based on their preference values, in order
to detect non-cooperative behaviors across the CRP
and manage them.

Figure 2 shows a scheme of the model, which is di-
vided into three components:
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(a) A general scheme of the model that supports the
main phases usually conducted in CRPs (see Sec.
2.1).

(b) A guzzy clustering-based method to classify ex-
perts’ preferences and a rule-based approach for
non-cooperative behavior detection.

(¢) A method based on updating experts’ weights w;
to manage non cooperating experts previously de-
tected.

Such components are developed in detail in the follow-
ing subsections.

3.1. Consensus Model Scheme

The proposed consensus model extends some ideas
from [4,5]. Each e; € F is given an importance weight
w; € [0,1], which is maximum for all experts in the
group at the beginning of the CRP, ie. w; = 1,
vi € {1,...,m}. The values of such weights may vary
during the discussion process as a result of detecting
non-cooperative behaviors within the group (as will be
shown in Sect. 3.3).

The main phases of the model are described be-
low. As will be pointed out during the descrip-
tion of the model, detection and management of non-
cooperative behaviors takes place at some steps across
these phases:

(1) Gathering Preferences.

Each e; provides a fuzzy preference relation P; =
(p%)5n oOn alternatives in X.

(2) Computing Consensus Degree.

The level of agreement amongst experts is computed,
by means of the following steps:

1. For each pair of experts e;, e;, (i < j) a similar-
ity matrix SMy; = (smi¥)"™*" is computed, being
smif ¢ [0,1] the degree of similarity between pik




and piF, obtained as follows:

smif =1—|(pl — pi¥)| (3)

2. A consensus matrix CM = (cm'*)nxn, is com-
puted by aggregating similarity matrices, taking
into account experts’ importance weights. Each
element em!* € [0,1], [ # k, is computed as:

m—1 m Ik
e _ 2ui=1 Zj=i+1 Wij 8T
e = m—1 m (4)
Ei:l Ej=i+1 Wij

where w;; is the weight associated to the pair
(e, e;5), as will be explained in Sect. 3.3. em!®
represents the consensus degree on the pair of al-
ternatives (z;,zx), Lk € {1,...,nh 1l #k.

3. The degree of consensus on each alternative z; €
X is computed as:

n ik
I Ek:Lk# cm
n—1

ca

(5)
4. Finally, a global consensus degree is computed:

_ E?=1 ca'

n

cr (6)
(3) Consensus Control.

The global consensus degree cr is compared with a
consensus threshold p € [0,1] established a priori by
the group. If cr > p, then the CRP ends; otherwise,
another discussion round is required. A parameter
Mazround can be used to limit the number of rounds
if consensus is not achieved.

(4) Advice Generation.

When the degree of consensus is not sufficient, i.e.
cr < p, experts must modify their preferences in or-
der to make them closer to each other in subsequent
rounds of discussion. Hence, this phase is introduced
in the consensus model to automate the tasks carried
out by the human moderator to identify the furthest
experts’ preferences from consensus, and generate the
necessary rules to advise them on how to change such
preferences to increase the level of agreement in the
group. The following steps are considered in the ad-
vice generation phase:

1. A collective preference P, = (p!F),,x,, is computed
by aggregating preference relations:

pl‘.ck - 2111 wipik (7)
ity wi

being w; € [0,1] the importance weight of

e;. Again, weight-based management of non-

cooperative behaviors (see Sect. 3.3), directly af-

fects computations at this step.
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2. Once computed P, the fuzzy clustering-based ap-
proach to manage non-cooperative behaviors in
the current round, and the subsequent manage-
ment of such behaviors, are applied (see Sects.
3.2 and 3.3). The results of applying these pro-
cesses affect computations shown in Eqgs. (4) and
(7), in the following round of the CRP.

3. Proximity matrices PP, = (pp"*)nxrn indicating
the closeness between F; and P., are computed:

ol =1- |l -5 (8)

Proximity values are used to identify the furthest
preferences from P, that should be modified by
some experts.

4. Pairs of alternatives (x;, zx) whose consensus de-
grees cat and ep* are not enough, are identified:

CC = {(z1, mp)|eal <er nep™ <er}  (9)

Based on CC, experts who should change their
opinion on a pair (z;, zx)€ CC are identified. An

average proximity ;_)f)”", given by:

==k _ Z:ll PP?C

pp = (10)

is used to identify them, so that those e;s whose
ppgk < W!k are advised to modify their assess-
ment on pair (z;, zx).

5. Establish change directions: Several direction
rules are applied to suggest the direction of
changes on experts’ assessments, in order to in-
crease the level of agreement in the following
rounds. An acceptability threshold € > 0 can be
used to allow a margin of acceptability when pi*
and p'¥ are close enough to each other.

e DIR.1: If (pi* — p'¥) < —¢, then e; should
increase his/her assessment pi¥.

e DIR.2: If (pi* — pi¥) > &, then e; should
decrease his/her assessment pi*.

e DIR.3: If —¢ < (pif — p¥) < ¢, then e; does
not need to modify his/her assessment pi¥.

3.2. Fuzzy Clustering-based Behavior
Detection

Here, we present the second component of the con-
sensus model proposed in this paper (see Fig. 2(b)):
a method to classify experts’ preferences and detect
subgroups of them who present a behavior contrary
to consensus achievement during the CRP. The aim
of such a method is to deal with non cooperating ex-
perts detected appropriately (see Sect. 3.3), in order
to improve the overall CRP performance.

The method is applied once at each CRP round dur-
ing the Advice Generation phase (see Sect. 3.1). Let
t € {1,..., Mazround—1} be the current round of the

CRP. Then, ¢;’s preference in round ¢ will be denoted
as P!, and each cluster centre in such a round will be
denoted as Cf, h=1,...,N.

The proposed detection method is organized into
two phases, they are described in detail below.

3.2.1. FCM-based classification

Firstly, a clustering technique based on FCM to clas-
sify experts according to their preferences is applied,
considering the following specifications:

e A fuzziness degree b = 2 is taken.

e N clusters are initialized according to the method
proposed in [15], and choosing P; as the centre of
the first cluster, Cf.

o Cluster centres C}, (b > 2) and membership de-
grees pot (P!) are updated iteratively, according
to BEqs. (1) and (2). In order to preserve P! as
the centre of cluster C% when applying detection,
its values are not updated.

o Distances between preference relations and/or
cluster centres are computed. To do so, here
we propose computing the euclidean distance be-
tween two preference relations (resp. cluster cen-
tres), as follows:

LA Ik ik,
> % -

(11)

e The update process ends when all clusters stabi-
lize, i.e. the variation in membership degrees be-
tween two consecutive iterations of FCM, y and
y — 1, tends to zero:

s Y t y—1/pi

E E |#'C;(Pi)—.uq (P:n,)l

Lol = <e (12)
m -

being € = 0 a threshold used as stopping condi-
tion.

3.2.2. Detection of Non-cooperative Behaviors

Once applied the FCM-based classification algorithm,
it is applied a scheme to detect non-cooperative be-
haviors from clusters obtained. To do so, we propose a
fexible rule-based scheme, in which for each cluster C}
(h = 2), a set of rules are checked to decide about the
existence of a non-cooperative behavior. If all rules are
accomplished by such a cluster, then some experts be-
longing to it present a non-cooperative behavior dur-
ing the CRP. Formally, let R; ... Ry be a set of rules in-
dicating a condition or property of a cluster Ct, which
may be either true or false. Then, we propose verifying
the following proposition: “IF Ry A...A B, THEN
Non — cooperative behavior detected”.

The general rule-based approach proposed is flex-
ible, in the sense that rules can be added, modified
and/or removed from the consensus model, according
to the specific GDM problem to solve and the needs
of the group. Nevertheless, in this paper such an
approach will be instantiated, by defining some spe-
cific rules in order to illustrate their use. The cur-
rent scheme will be separated into two phases (see Fig.
3): one for detecting subgroup behaviors and another
one for detecting non cooperating experts within the
subgroup detected. The detection rules presented be-
low are first applied in the second round of the CRP,
i.e. when t = 2, because comparisons with clusters in
round ¢ — 1 are required.

A non cooperating subgroup is detected in a cluster
Ct (h = 2), if it accomplishes rules S1 and S2 (see Fig.
3):

S1. Similar Cluster Composition: This rule deter-
mines whether a cluster is compound by the same
experts across the time. Similarities between a
given cluster C} (h > 2) and each cluster in the

previous round C%! (u = 2,...,N), are com-
puted:
Licd
> ALu(P)
sim(CE, CE Ny =1~ El—m—— (13)

being AL (F;) € [0,1] the variation in P; mem-
bership to both clusters across time, computed
as:

AL (B) = |ub, (P —pi(PEY] (14)

A similarity threshold « € [0,1], whose value
should be close to 1, is defined to decide whether
cluster similarity is enough to accomplish this
rule: if ICEL : sim(CE, CE7Y) > &, then €} and
Ct=! are assumed to represent the same cluster
across the time.

S92, Further Distance to P,: Assume that, based on
rule S1, C} and C% ' are considered the same
cluster. Distances between Cj, and the collective
preference, P. = Cy, in rounds ¢ and ¢t — 1, are
computed as d(C%, C%) and d(Ct*, C4~1) respec-
tively, by means of Eq. (11). Let v € [0,1] be
a threshold so-called minimum distance to ana-
lyze subgroup behaviors, such that if a distance
between two different clusters in round ¢ is lower
than v, then their cluster centres are close enough
to consider that they represent similar opinions.
v should take a low value, normally not higher
than 0.1. If d(C{,CE) > v AND d(C},Cf) =
d(Ct~1,C41), then some experts in cluster Cp
are moving further from the collective opinion F..

Once detected a subgroup non-cooperative behav-
ior, it is necessary to identify those experts in the
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Fig. 3: Rule-based scheme for the detection of non-cooperative behaviors.

subgroup who present such behavior, in order to deal
with them. Consider that e; € C} iff uc: (Ff) =
maxy pog (Pf), w € {1,...,N}. Then, for each e; €
Ct, the following rule is checked to decide whether
he/she takes part in the subgroup behavior detected
(Fig. 3).

I1. Distance to P.: Distance between P, and the col-
lective opinion increases or it is higher than the
average distance to the collective opinion. This
occurs if at least one of these two conditions holds:

i) d{P,Ct) > d', where d' represents the av-
erage distance to P?, computed as:

F Efll d(Pf,Ct)

= (15)

i) d(Pf,Ct) > d(P{~1,C1 ).

3.3. Management of Behaviors Detected

If non-cooperative behaviors are detected, then the fol-
lowing method is proposed to manage experts involved
in them, based on updating their importance weights
w; throughout the CRP.

Initially, w; = 1, Vi. If a subgroup behavior is de-
tected in a cluster Cf in round ¢t > 2, the procedure
applied on experts’ preference relations P! € C%, that
accomplished rule I1 to update their weights is as fol-
lows:

o Compute the new weight w; _, upon current
weight w;:

d(P?,CY)
e = Wi | 1 — ——— 2
B =50 ( max; d(PE, Ct) ()

e Assign w; « wy,,, .
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Notice that w;,,, € [0,w;] C [0,1], wi,., < w;, and
the higher the distance between e;’s preference and the
collective preference, the more penalizing is applied to
his/her importance weight.

As previously shown in Section 3.1, weights are con-
sidered in two steps of the CRP:

e Computing CM from experts’ similarities (Eq.
(4)).

e Computing P, (Eq. (7)).
CM is obtained by aggregating similarity values smg?
for each pair of experts (e;,e;), therefore it is necessary
to combine w; and w; to obtain a weight w;; associ-
ated to such a pair. Assuming that, if at least one
expert in the pair (e;,e;) presents a behavior contrary
to consensus achievement then the importance weight
w;; assigned to smif should be low, we propose com-
puting it as w;; = min{w;, w;).

4. Illustrative Example

This section illustrates the use of an implemented ver-
sion of the consensus model presented, in the reso-
lution of a real-life large-scale GDM problem, where
some experts might present non-cooperative behaviors
during the CRP. The aim of such an example is to
prove the effectiveness of the approach presented in
this paper for fuzzy clustering-based behavior detec-
tion.

The problem is formulated as follows: a group of
41 students from Computer Science M.Se. Degree,
E = {e1,...,eq}, must make an agreed decision
about choosing a place to celebrate their graduation
dinner in Jaén (Spain). The set of proposed restau-
rants X = {z1, 72,73, 74} is:

e x1: 'Santa Catalina’ castle.
e z3: 'Los Caballos’ ranch.

Table 1: Parameters considered for consensus reaching and detection processes.

Parameter description Value
Consensus threshold p=10.85
Maximum number of rounds Mazxround = 10
Acceptability threshold e=0.02
Number of clusters N=4

Fuzziness degree in FCM b=2

Stopping condition threshold in FCM e =0.001
Minkowski distance chosen p=1

Cluster similarity threshold (rule S1) k=109
Minimum distance to analyze group behaviors (rule S2) | v = 0.05

Table 2: Consensus degree cr achieved and detection of non-cooperative behaviors in each CRP round.

t || Without Detection || Non-coop. Behavior Detection
cr er Subgroup detected

1 0.63060 0.63060 -

2 0.66655 0.66614 -

3 0.69543 0.69473 N

4 0.71914 0.74663 N

3 0.72266 0.84651 v

6 0.73317 0.85743

7 0.73525

8 0.74312

9 0.74468

10 0.74427

e 13: 'Pegalajar’ caves.
e x4: 'Juleca’ complex.

Table 1 summarizes parameters considered in the
CRP, FCM algorithm and behavior detection mech-
anisms.

The model is firstly used to solve the GDM problem
without applying the behavior detection and manage-
ment schemes (Sects. 3.2 and 3.3). Then, the prob-
lem is solved again by applying such schemes. Our
hypothesis states that applying a process to detect
and manage non-cooperative behaviors might improve
the CRP performance by increasing the group con-
vergence towards consensus and making a collective
decision which is more adapted to those experts who
contributed to achieve an agreement.

Once conducted the CRP, results are shown and an-
alyzed. Table 2 shows the evolution of the consensus
degree cr achieved in both experiments, as well as be-
haviors detected when applying the proposed method-
ology. When no behavior detection and treatment is
applied, consensus is not achieved, presumably due to
the existence of non cooperating subgroups of experts.
Such behaviors are actually detected when the ap-
proach is applied: a subgroup behavior is first detected
in the third round, therefore importance weights of ex-
perts involved in such a behavior are updated corre-
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spondingly, which causes two beneficial effects in the
CRP:

e The convergence of c¢r towards consensus im-
proves from the fourth round onwards, due to the
effect of updated weights in the computation of
CM.

e The collective preference becomes closer to ex-
perts who cooperate to achieve an agreement, due
to the effect of updated weights in the computa-
tion of F,.

Results have shown the effectiveness and usefulness
of our approach to deal with non-cooperative behav-
iors in CRPs with large groups.

5. Concluding Remarks

In this contribution, we have presented an approach,
based on fuzzy clustering, to detect subgroups of ex-
perts with a behavior contrary to consensus achieve-
ment in consensus reaching processes, and manage
such behaviors to improve the process performance.
Such an approach has been integrated in a consen-
sus model aimed to the resolution of large-scale group
decision making problems, which are increasingly nec-
essary nowadays in emerging contexts, such as social
networks and e-democracy.
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