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Garćıa-Zamora1[0000−0002−0843−4714], Rosa M. Rodŕıguez1[0000−0002−1736−8915],
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Abstract. The resolution of Multi-criteria Decision-Making (MCDM)
problems driven by human knowledge involves collecting their opinions,
which usually implies the emergence of inconsistencies. The Best-Worst
Method (BWM) was proposed to reduce such inconsistencies and, conse-
quently, obtain more reliable solutions for MCDM problems. Classically,
the BWM finds the optimal weights for a set of criteria from the pref-
erences of only one stakeholder, but lately it has been extended to deal
with multi-criteria group decision-making (MCGDM) problems. How-
ever, when several Decision-Makers (DMs) take part in a decision pro-
cess, disagreements may appear among them. If these conflicts are ne-
glected, experts may feel unsatisfied with the solution chosen by the
group or even question the decision process. Therefore, this contribution
proposes an extension of the BWM to smooth disagreements and obtain
consensual solutions in MCGDM problems. To do so, an optimization
model is introduced which derives a collectively agreed solution for the
criteria weights. Additionally, such an optimization model is based on
linear programming, which provides accurate results and the ability to
deal with hundreds or thousands of DMs.
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1 Introduction

The use of human knowledge in some decision-making problems is essential in
contexts in which the available information is neither objective nor quantita-
tive, but uncertain and qualitative [18,25]. In this regard, group decision-making
(GDM) problems aim at improving decision processes by taking into account the
points of view of multiple experts to make a decision. However, when multiple
DMs are involved in the resolution of a decision-making problem, the emergence
of conflicts among them is unavoidable [7]. Therefore, it is usual to include a con-
sensus mechanism in the GDM process to soften these discrepancies and provide
a collectively agreed solution for the group decision situation [13]. According to
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Mart́ınez and Montero [16], the most popular methodology to manage the idea
of consensus may be the notion of Soft Consensus, proposed by Kacprzyk [11],
which is based on the concept of fuzzy majority.

On the other hand, when a human stakeholder is asked to give his/her opin-
ion using pairwise comparison matrices [26], the DM usually does not provide
such comparisons consistently, but by incurring some contradictions. Due to
the fact that such inconsistencies would negatively affect the decision process,
the Best-Worst Method (BWM) [20] was initially proposed as an algorithm to
solve some behavioral errors in similar Multi-criteria Decision-Making (MCDM)
methods and, consequently, reduce the number of pairwise comparisons and in-
consistencies. Concretely, the BWM aims at deriving the weights of the criteria
in a MCDM problem by just considering the pairwise comparisons between the
best and the worst criteria with all the others. To do so, BWM considers an opti-
mization model whose solution provides weights for the criteria that are similar
to the original preferences elicited from the DM.

Even though there are some proposals which aim at adapting the BWM to
GDM [15, 17], they neglect the notion of Soft Consensus [11] and the use of
consensus measures [19] to manage the disagreements among DMs. Therefore,
this contribution aims to simultaneously deal with both the inconsistencies in
the preferences given by human DMs and the conflicts that appear among the
participants in GDM problems. To do so, here it is proposed a reformulation of
classic BWM which allows managing several DMs to provide agreed collective
weights derived from pairwise comparisons involving their opinions about the
best and the worst criteria. Furthermore, the proposed Consensus-based BWM
(C-BWM) is stated in terms of pairwise comparisons given in a 0-1 scale, which
allow linearizing the optimization model to obtain more accurate results than
the ones provided by nonlinear solvers (see Fig 1).

Fig. 1: Scheme of C-BWM model
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In addition, this linearization improves the computational performance with
respect to model resolution, and consequently qualifies the proposal to quickly
manage GDM problems involving hundreds or thousands of DMs [23].

The remainder of the contribution is organized as follows: Section 2 reviews
basic concepts related to GDM, consensus, and BWM. Section 3 introduces the
proposal, a C-BWM for MCGDM. In Section 4, the performance of the proposal
is shown through the resolution of a MCGDM problem. To conclude, Section 5
draws some conclusions together with future research lines.

2 Background

This section is devoted to revising some basic concepts related to the proposal.

2.1 Group Decision-Making and Consensus

Different situations in real-world contexts, such as business, work, social or per-
sonal life, require making a choice among different options [1, 9]. Even though
sometimes the available information regarding such decisions is objective, when
the accessible data is vague or uncertain, the complexity of the decision process
increases, and it is necessary to take into account the knowledge of a group
of human experts to consider multiple views [13, 18]. In particular, when a
group of experts E = {E1, E2, . . . , Em} is asked to evaluate possible alterna-
tives A = {A1, A2, . . . Ar} according to different criteria C = {C1, C2, . . . , Cn},
the decision problem is a MCGDM problem [10,12].

Despite the participation of several DMs in the decision process presents
several advantages, it also gives rise to a relevant phenomenon: the emergence
of disagreements between them [13]. If disagreements are not properly man-
aged before selecting a solution for the decision problem, such a solution may
not satisfy some experts, which could question the trustworthiness of the pro-
cess [7]. To overcome this drawback, Consensus Reaching Processes (CRPs) are
performed before choosing the best alternative to smooth out the possible con-
flicts among experts’ opinions and, in this way, achieve an agreed solution for
the decision problem [8, 18]. In a CRP, experts talk to each other, exchange
views, and, if they consider, change their initial opinions to increase the level
of agreement within the group. This process is usually driven by a modera-
tor, who is in charge of identifying conflicts and suggesting changes to experts
about their opinions [14]. Several consensus approaches have been proposed in
the specialized literature [19]. Some of them include feedback mechanisms, in
which experts are asked if they want to change their preferences [22]. On the
other hand, other proposals provide an automatic process in which experts are
not questioned about modifying their preferences, but they are automatically
modified [2] (see Fig. 2).
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Fig. 2: Schemes of CRPs with and without feedback mechanisms

2.2 Best-Worst Method

The classic BWM [6, 20, 21] aims to determine the priority of the criteria C =
{C1, C2, . . . , Cn} in a certain MCDM problem by reducing inconsistencies in the
elicitation process and obtaining more consistent solutions.
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To do so, the DM should provide, according to his point of view, the best
and the worst criteria, which are denoted CB and CW , respectively. Furthermore,
such DM must point out the comparison of CB and the remaining criteria to
obtain the Best-to-Others (BO) vector,

BO = {aB1, aB2, . . . , aBn},

where aBi ∈ [1, 9] ∩ N denotes the degree of preference of CB over the criterion
Ci. In the same way, the DM also compares all criteria with CW to obtain the
Others-to-Worst (OW) vector,

OW = {a1W , a2W , . . . , anW },

where aiW ∈ [1, 9]∩N denotes the preference degree of the criterion Ci over CW .
These values are then used as the input of an optimization model to obtain

the weights for the criteria {w∗
1 , w

∗
2 , . . . , w

∗
n}:

min
w

max
i=1,2,...,n

{
|aBi −

wB

wi
|, |aiW − wi

wW
|
}

s.t.

{∑n
i=1 wi = 1,

wi ≥ 0, ∀ i = 1, 2, ..., n,

(BWM)

Due to the full consistency of a multiplicative pairwise comparison matrix
in 1-9 Saaty’s scale [24] is given by aij = aikakj ∀ i, j, k ∈ {1, 2, ..., n}, the
weights obtained as output from the BWM allow constructing a fully consistent
multiplicative pairwise comparison matrix (âij := wi

wj
) which is close to the

original preferences BO and OW given by the DM.

3 Consensus-based Best-Worst Method

Let us consider a MCGDM problem in which a group of m ∈ N experts E =
{E1, E2, ..., Em} wants to reach a collective agreed solution about the importance
of n ∈ N criteria. To do so, each expert provides his/her opinions using Best-
Worst preferences, i.e., each expert Ek points out which are the best (Bk) and
the worst (W k) criteria according to his/her point of view and also provides two
pairwise comparison vectors: for the best criteria CBk

BOk = (aBk1, aBk2, ..., aBkn)

and for the worst criteria CWk

OW k = (a1Wk , a2,Wk , ..., an,Wk)

These preferences are given by experts using a 1-9 Saaty scale [24]. To sim-
plify the notation and linearize the optimization model, this information is first
remapped into a linear scale by using the function f : [ 19 , 9] → [0, 1] defined as
f(x) = 1

2 (1 + log9(x)) ∀ x ∈ [ 19 , 9], and then it is stored as follows:
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– A matrix P ∈ Mm,n containing the preferences BOk, where Pki = f(aBki)
∀ 1 ≤ k ≤ m, 1 ≤ i ≤ n,

– A matrix Q ∈ Mm,n containing the preferences OW k, where Qki = f(aiWk)
∀ 1 ≤ k ≤ m, 1 ≤ i ≤ n,

– A vector B = (B1, B2, ..., Bm) ∈ Rm, Bk ∈ {1, 2, ..., n}, containing the best
criterion for each expert,

– A vector W = (W 1,W 2, ...,Wm) ∈ Rm, W k ∈ {1, 2, ..., n}, containing the
worst criterion for each expert.

In the same way, the solution for the collective BWM problem is stored in a ma-
trix with the corresponding individual weights (wki) ∈ Mm×n([0, 1]), where wki

represents the individual weight of the expert Ek for the criterion Ci. Respec-
tively, the collective weights are provided in a vector (g1, g2, ..., gn) ∈ Rn, where
gi =

1
m

∑m
k=1 wki i ∈ {1, 2, ..., n} satisfy the consensus constraint |wki − gi| ≤ ε

∀ i = 1, 2, ..., n, k = 1, 2, ...,m. and ε ∈]0, 1].
When using ratings on a 0− 1 linear scale, the distance between the weights

that the method aims to obtain and the original preferences elicited from the
experts can be defined by ξ : Mm,n ×Mm,n × Rn × Rn ×Mm,n → R+

ξ(P,Q,B,W,w) =

m∑
k=1

n∑
i=1

(|Pki − 0.5−wkBk +wki|+ |Qki − 0.5−wki +wkWk |)

Remark 1 Note that the function ξ stands for an additive distance in a 0-
1 scale, easier to linearize than the original multiplicative distance for a 1-9
Saaty’s scale.

Therefore, for fixed values P,Q,B,W , the C-BWM is defined as

min
w,g

ξ(P,Q,B,W,w)

s.t.


∑n

i=1 wki = 1, ∀ k = 1, 2, ...,m

wki ≥ 0, ∀ i = 1, 2, ..., n, k = 1, 2, ...,m,

gi =
1
m

∑m
k=1 wki ∀ i = 1, 2, ..., n,

|wki − gi| ≤ ε ∀ i = 1, 2, ..., n, k = 1, 2, ...,m.

(C-BWM)

The output of this model consists of individual and collective weights which
minimize the distance function ξ for the given preferences and satisfy a consensus
condition. In addition, the presented model allows considering both preferences
elicited in a 1− 9 Saaty’s scale [24] and preferences in the range [0− 1] (see Fig.
1). Furthermore, the proposed model substitutes the original objective function
in BWM [20] for another one based on linear combinations and absolute values,
which facilitates the linearization of the model to deal with hundreds or even
thousands of DMs and provide more precise results in the numeric resolution [23].

Remark 2 Note that the optimization model C-BWM provides a consensual
solution in which the DMs’ preferences are modified as little as possible, since
it minimizes the distance between the weights that the method obtains and the
original preferences given by the DMs.
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Remark 3 Note that this model considers the function f to remap the 1-9 multi-
plicative scale into a 0-1 additive scale. Consequently, quotient-based expressions
in traditional BWM are now expressed in terms of sums and differences. For
this reason, the aggregation of the weights has been conducted using an arith-
metic mean instead of the geometric mean.

4 Illustrative Example

In this section, the proposed model is applied to select the agreed criteria weights
in a MCGDM problem.

The soft drink company BAT-Cola has started the recruitment process for a
marketing manager. The recruitment team, formed by five experts E = {E1, E2,
E3, E4, E5}, considers that four key aspects should be taken into account in the
selection process: C={C1: Proficiency in languages, C2: Work experience, C3:
Leadership capacity, C4: Age}. However, experts have different opinions about
the importance of these aspects in selecting the best candidate, and the company
would prefer an agreed importance of these criteria. For this reason, before the
selection process, the company asks the team to provide their preferences about
the importance of the skills and, from them, obtain collective consensual weights
for each aspect. These preferences are compiled in Table 1.

Table 1: BO and OW preferences in 1-9 Saaty’s scale.
BO C1 C2 C3 C4 Best

E1 1 2 6 3 1
E2 8 1 6 3 2
E3 1 3 6 3 1
E4 4 1 8 8 2
E5 4 1 4 5 2

OW C1 C2 C3 C4 Worst

E1 6 3 1 2 3
E2 1 8 2 6 1
E3 6 5 1 3 3
E4 2 8 1 5 3
E5 4 5 4 1 4

Experts have provided their preferences using the 1-9 Saaty scale, which are
transformed into a 0-1 scale using the function f : [ 19 , 9] → [0, 1] defined as
f(x) = 1

2 (1+ log9(x)) ∀ x ∈ [ 19 , 9] (see Table 2) to apply the C-BWM lately and
derive the consensual weights.

Table 2: BO and OW preferences in 0-1 scale.
BO C1 C2 C3 C4 Best

E1 0.5 0.66 0.91 0.75 1
E2 0.97 0.5 0.91 0.75 2
E3 0.5 0.75 0.91 0.75 1
E4 0.82 0.5 0.97 0.97 2
E5 0.82 0.5 0.82 0.87 2

OW C1 C2 C3 C4 Worst

E1 0.91 0.75 0.5 0.66 3
E2 0.5 0.97 0.66 0.91 1
E3 0.91 0.87 0.5 0.75 3
E4 0.66 0.97 0.5 0.87 3
E5 0.82 0.87 0.82 0.5 4

From the experts’ preferences, the C-BWM allows obtaining consensual col-
lective weights (ε = 0.05). The approximated results of the optimization model
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are shown in Table 3. To obtain the results, we have used the solver Clp for the
Julia 1.6 programming language [3] on the cloud service Google Colaboratory [4]
(2.20GHz Intel(R) Xeon(R) CPU and 13 GB RAM).

Table 3: Results.
Weights C1 C2 C3 C4

E1 0.42 0.4 0.01 0.17
E2 0.32 0.5 0.09 0.09
E3 0.42 0.4 0.01 0.17
E4 0.32 0.5 0.03 0.15
E5 0.37 0.45 0.1 0.08

Collective 0.37 0.45 0.05 0.13

Therefore, according to the optimization model, the most relevant criterion
is C2: Work Experience (0.45), which makes sense taking into account that the
majority of experts in the group think that this aspect is the most important.
In the same sense, C3: Leadership capacity (0.05) is selected as the worst rated
criterion by the majority of the experts, and this is reflected in the consensual
collective weight. It should be highlighted that, even though some experts have
had to modify their original preferences (for example, E2), these modifications
are the minimum required to satisfy the consensus condition.

To graphically show the significance of including consensus in the classical
BWM approach, the individual weights obtained by applying the classical BWM
to the BO and OW preferences (ε = 1 in the C-BWM) have been compared with
the modified agreed opinions obtained by using the C-BWM with ε = 0.05. Fig. 3
shows the multidimensional scaling (MDS) representation [5] of both non-agreed
and agreed preferences and their respective collective opinion. As expected, the
figure indicates that the preferences corresponding to the consensual approach
are much closer to the group opinion.

To sum up, the introduced optimization model is able to detect and smooth
disagreements in the experts’ preferences in a GDM problem and provide an
agreed solution to derive the criteria weights when managing multiple DMs.

5 Conclusions

This contribution has introduced an extension of BWM for MCGDM, which
allows obtaining agreed weights for the given criteria according to the preferences
of several experts.

To do so, the original optimization-based BWM proposal [20] has been mod-
ified to take into account the preferences of several experts and provide a col-
lectively agreed solution to weight the considered criteria. In addition, this pro-
posal has been presented in terms of linear variables, objective function, and
constraints, which allow providing more precise results than when using nonlin-
ear optimization. Furthermore, this linear approach also implies an improvement
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Fig. 3: Graphic MDS [5] visualization showing the relative distances between the
DMs represented in two dimensions.

of computational efficiency, which guarantees the good performance of the model
when dealing with decision problems which consider hundreds or thousands of
experts.

Future studies should focus on exploring the relationship between this pro-
posal and the recently proposed Comprehensive Minimum Cost Consensus (CMCC)
models [13] as well as introducing new BWM-CMCC models which could be
based on multi-objective optimization or bilevel optimization.
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23. Rodŕıguez, R.M., Labella, Á., Dutta, B., Mart́ınez, L.: Comprehensive minimum
cost models for large scale group decision making with consistent fuzzy preference
relations. Knowledge-Based Systems 215, 106780 (2021)

24. Saaty, T.L.: How to make a decision: the analytic hierarchy process. European
Journal of Operational Research 48(1), 9–26 (1990)

25. Sun, Y., He, S., Leu, J.: Syndicating Web Services: A QoS and user-driven ap-
proach. Decision Support Systems 43 (2007)

26. Thurstone, L.L.: A law of comparative judgment. Psychological review 34(4), 273
(1927)


