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Abstract. While Multi-Criteria Decision Making (MCDM) models are focus on
selecting the best alternative from a finite number of feasible solutions according to
a set of criteria, in Dynamic Multi-Criteria Decision Making (DMCDM) the selec-
tion process also takes into account the temporal performance of such alternatives
during different time periods. In this contribution is proposed a new discriminative
dynamic index to handling differences in temporal behavior of alternatives, which
are not discriminated in preceding dynamic approaches. An example is provided to
illustrate the feasibility and effectiveness of the proposed index.

1 Introduction

A Multi-Criteria Decision Making (MCDM) problem consists of selecting the most
desirable alternative from a given feasible set according to a set of criteria [12, 16].
As a matter of fact, MCDM problems could involve the current and past perfor-
mance of alternatives, they are called Dynamic Multi-Criteria Decision Making
(DMCDM) problems because the time dimension is considered [4, 8, [14].
DMCDM approaches are commonly focused on problems in which the final
decision is performed based on all information collected at multiple time peri-
ods [8, [15, 118, 119, 124, [25]. However, they are not effective in handling situations
including large sets of alternatives or criteria and changes of such sets over the time.
Recently in [4] was introduced a framework for DMCDM that allows to overcome
this weakness by means of a dynamic feedback mechanism. The crucial phase in
the DMCDM framework is the selection of an appropriate associative aggregation
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operator for the computation of dynamic ratings due to its properties can highly
modify the computing cost (e.g.: associativity) and obtain very different results at-
tending to the type of reinforcement supported by the aggregation operator [13,[22].
However using any associative aggregation operator there are situations in which
equal dynamic ratings are generated independently from the temporal performance
of the alternatives. While the associativity property of the aggregation operator
avoids the storing of all past alternatives (dynamic and non-dynamic) rating values,
the lack of such information prevents a final decision based on temporal evolution
of alternatives.

Therefore, this contribution proposes a novel discriminative dynamic index to
extend the general approach in [4] such that the use of this index in the framework
provides a temporal behavior differentiation of alternatives throughout time. The re-
maining of this paper is organized as follows. Sect.[2lreviews DMCDM approaches
with special attention to the framework presented in [4]. In Sect. [3it is introduced
the new discriminative dynamic index to extend the initial approach. Sect. [4] shows
an illustrative example and Sect. [ concludes the paper.

2 Dynamic Multi-criteria Decision Making Approaches

In [3] are stated three common characteristics for a DMCDM problem: alternatives
are not fixed, criteria are not fixed and the temporal profile of an alternative matters
for comparison with other ones. To deal with decision making in dynamic envi-
ronments, some authors have proposed different approaches [8, [15, 118, 119, 124, [25]
that commonly model the problem as a three-dimensional decision matrix which is
firstly transformed into conventional two-dimensional decision matrix by aggregat-
ing the time dimension and next is solving the problem through traditional MCDM
models (or viceversa).

As in MCDM, an important issue in DMCDM is the selection of the aggregation
operator (see [2] for a formal definition) because it directly impacts output values
as well as the final ranking of alternatives. Some proposals have presented time
dependent aggregation operators to deal with the information provided at different
periods. Xu developed in [18] the concept of dynamic weighted averaging operator,
and introduced some methods to obtain the associated weights, while in [19] the
dynamic intuitionistic fuzzy weighted averaging operator and the uncertain dynamic
intuitionistic fuzzy weighted averaging operator is defined.

Previous studies are focused on decision making problems in which the origi-
nal decision information is usually collected at different time periods and a final
decision is needed. Therefore, they are dynamic because the temporal profile of al-
ternatives is considered for such final decision. However, there are other MCDM
problems in which different, separated and interlinked decisions are taken either
frequently, or just at the end of the process. In such context, it is remarkable the
framework for DMCDM recently introduced in [4].

While most of the revised approaches provide solutions based on specific MCDM
techniques oriented to problems dealing with specific types of information and
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where the final decision is performed using all that information collected at mul-
tiple periods; in [4] it is properly formalized the DMCDM, by extending the classic
MCDM model, in a general framework operating without the need of storing all
past information. Such framework is suitable for any dynamic problem, including
consensus problems or situations requiring several steps before reaching a final de-
cision. It is revised in further detail below.

2.1 TheGeneral Framework

Some basic notations from the original framework [4] are reviewed in the following.

LetT ={1,2,...} be the (possibly infinite) set of discrete decision moments, and
A the set of available alternatives at each decision momentt € T.

At each time period t € T, for each available alternative a € A, a non-dynamic
rating Ri(a) € [0,1] is computed. It is usually obtained by using an aggregation
operator Agg; : [0,1]" — [0, 1], that combines the assessments of all criteria, M; =
{my,...,mp} according to their weights w; € [0,1]", ¥y W=1,Vt € T.

The information about the set of alternatives over time is carried out from one
iteration to another in the historical set. Depending on the specific characteristics of
each dynamic problem we may fix a retention policy that is the rule for selecting
alternatives to be remembered in the H, which is defined as:

Ho =0, Ho=JAr, tt'eT. (1)

t'<t

The dynamic nature of the decision process is supported by an evaluation function
Ei(a) itis defined foreacht € T as:

Ei: AtUHi_1 — [0,1]

Re(a), a€ A\ H-1
Ei(a) = ¢ Aggz(Ei—1(a),Rt(a)), a€ AtNHi_1 )
Et,]_(a), ac Ht,l\At

Being Aggs : [0,1]" — [0,1] an associative aggregation operator that can apply dif-
ferent types of reinforcements to the alternatives according to the attitudinal charac-
ter of the decision making problem.

Aggregation operator for scoring alternatives in the non-dynamic part (Aggs) is
completely independent from one used in evaluation function of the dynamic part
(Aggz). It is worth noting that the dynamic rating computation requires the associa-
tivity property for the aggregation operator Aggo, to ensure that repeated application
of the aggregation function will generate, at every particular decision moment, the
same result as application over the whole set of past non-dynamic ratings. Further-
more it is suggested that Agg, should fulfill the reinforcement property [13, 122] in
order to strength high or low ratings in the dynamic context.
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2.2 Drawbacks on Dynamic Evaluation Function Performance

The associativity property of Agg, avoids the storing of all past alternatives (dy-
namic and non-dynamic) rating values and it is simple to calculate the effect of
adding new arguments to the aggregation. As stated in [21] this can be seen as a
kind of Markovian property in which the new aggregated value just depends on the
previous aggregated value and the new argument. However, this advantage brings
out that the original framework outputs equal dynamic ratings for different alter-
natives without a discrimination about their temporal profile because associativity
property does not allow to distinguish the order of such previous and new aggregated
values.

Remark: This drawback arises from the associativity property of the aggregation
operator therefore it appears using any associative aggregation operator.

Without loss of generality and for the sake of simplicity, this problem is illus-
trated in the following situation in which a decision maker wants to select the best
option from alternatives al and a2 considering the retention policy of accumulat-
ing all alternatives in historical set. The dynamic ratings are calculated using the
probabilistic sum operator (which exhibits an upward reinforcement) in order to
corroborate the tendency of previous high non-dynamic ratings. Table [Il shows the
results during five decision periods.

Table 1 Results obtained for alternatives with different temporal profile

Alternative R;=E; Ry =) R3 Ej R4 E4 Rg Eg

al 0.100 0.800 0.820 0.900 0.982 0.200 0.996 0.910 0.999
a2 0.900 0.800 0.980 0.100 0.982 0.200 0.996 0.910 0.999

At t = 3, al increases its rating while a2 decreases it, however both obtain
the same dynamic rating (Es(al) = E3(a2)). Att =4, the rating of al decreases
and the rating of a2 increases, but still both obtain the same dynamic rating
(E4(al) = E4(a2)). Eventually att = 5 the rating of both alternatives performances
the same increment and the dynamic rating is also the same (Es(al) = Es(a2)). At
independent decision periodst = 3,4, 5, the decision maker cannot choose the best
alternative just based on the dynamic rating because:

1. Alternatives obtain equal dynamic rating although they perform different rating
evolution.

2. Alternatives obtain equal dynamic rating despite they perform opposed rating
evolution.

3. Alternatives obtain equal dynamic rating though all of them perform an increas-
ing evolution or decreasing rating evolution.

Different perspectives to solve the problem can be assumed. From a static perspec-
tive, the decision maker can select the alternative with highest rating at the current
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period but this contradictorily implies to loss the dynamic perspective of the DM-
CDM problem.

To overcome this drawback, our aim in this contribution is to extend the original
framework formalizing a new dynamic index that allows the decision maker to dis-
criminate the best alternative according to the rating changes behavior throughout
time.

3 A Discriminative Dynamic Index for DM CDM

To keep the dynamic perspective of the decision making problem when the situations
pointed out in Sect.[Z.2arises, seems logic and suitable to find a solution in which
the temporal profile of an alternative matters for comparison with other alternatives,
as stated in Sect.

To that end, we improve the resolution procedure for DMCDM, as can be seen
in Figure[I] by performing a new aggregation process for computing a discrimina-
tive dynamic index that allows to distinguish alternatives and consequently obtain
rankings for supporting dynamic decisions.

In this general resolution procedure the first step is essentially carried out through
MCDM traditional methods. The second step lies on the DMCDM approach previ-
ously reviewed. The third step consists of computing the discriminative dynamic
index and is performed just if equal dynamic ratings values are generated in the sec-
ond step. These tree steps will finally enable to obtain a final ranking of alternatives.

: { 1) Computing non-dynamic ratings >{ Aggy ]
. |
/] 1 v
S 1
[l} Computing dynamic ratings \{ Age,

< Eda)= Ebi: abetl, "0

[.‘P Computing dynamic indexes ]

o - =
\ H, F [JI Ranking alternatives } 4

Fig. 1 Improved DMCDM resolution procedure

3.1 Computation of the Discriminative Dynamic | ndex

In this subsection we present in detail how to compute the discriminative dynamic
index to perform steps 3) and 4) from the improved DMCDM resolution procedure.
Definition 1. The change in rating, D;(a), is the difference between the ratings at
the current and previous period and is defined as:

0, t=1

Di(@) =4 Ry@) - Res(@), t> 1. ®)
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Since R¢(a),Ri_1(a) € [0, 1], the rating increment/decrement, D¢ (a), at each decision
period is assessed in a bipolar scale Dt(a) € [—1,1] [5]. In which 0 is so-called the
neutral element that represents no change in rating from periodt — 1 to't.

The rating change Dy (a), just encloses the rating behavior fromt — 1 to t, hence
it is necessary to formalize a dynamic mechanism that encloses all rating changes
during all considered periods.

The benefits of computing final results without storing all previous values
(through the associativity) and additionally modulating the importance of these val-
ues in such final results (through the reinforcements) are also used in the discrimi-
native dynamic index proposal, l;(-), due to its features:

e Dynamic: it must represent the rating change over time without storing all of
them.

e Customizable: it should be able to model different behaviors regarding alternative
rating decrements or increments over different periods.

Definition 2. Let D;(a) be the change in rating of an alternative a at a decision period
t and Aggs : [-1,1]?> — [—1,1] be a bipolar aggregation operator, the discriminative
dynamic index, which represents the rating behavior of the alternative until t, is
defined as:

lk: AtUHi_1 — [—1,1]

Dt(a), ac At\Ht,]_
l(@) =  Aggs(k-1(a),Dt(a)), a€ AcNHi1 4)
k_1(a), ae€Hi_1\A.

The index I;(a) performance depends on the alternative, a as:

e ifae A\ Hi_1 then its discriminative dynamic index I¢(a) is the rating change
Dt (a),

e ifae AiNH;_1, then its discriminative dynamic index is computed by Aggs that
aggregates the discriminative dynamic index in the previous iteration with the
current rating change, Aggs(li—1(a), Dt (a)),

o ifaeH_1\A;, then its discriminative dynamic index is obtained from previous
iteration, l;(a) = li_1(a).

Therefore, if different alternatives obtain equal dynamic rating, E¢(.) at a period t,
the final ranking will be generated considering the discriminative dynamic index
values I;(.) that will reflect a dynamic perspective.

The choice of the aggregation operator Aggs will depend on the decision makers’
attitude regarding the dynamic rating change but independent of the others aggrega-
tion operators as Agg; and Aggs.

Table [2] summarizes the key features of aggregation operators used in the three
aggregation processes illustrated in Figure [I which are applied in the resolution
procedure of the DMCDM improved approach. It is noteworthy to point out that
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Table2 Characterization of the aggregation operators to be used in DMCDM

Feature Aggx Agg Agys

Definition [0,1]" = [0,1] [0,1]? —[0,1] 1,1 = [-1,1]
Required Property Associativity Associativity, Bipolarity
Desired Property Reinforcement Reinforcement

there is a key difference between the characterization of Agg, and Aggs: Aggs must
deal with values in a bipolar scale [—1,1] meanwhile Agg, operates in [0, 1].

Consequently it is necessary to extend the latter to the bipolar scale [6] in [—1,1]
in which a remarkable point, e, of the interval plays an specific role as a neutral or an
absorbant element. This fact leads to a bipolar aggregation in which the key feature
is the different effects of arguments above and below e on the aggregated value [23].

Uninorms [17] satisfies this characterization but in [0,1]. A uninorm U is a com-
mutative, associative and increasing binary operator with a neutral elemente € [0, 1].

In [9, 10, [11] the authors development the topic of “pseudo-operations”.
Pseudo-addition and pseudo-multiplication are examples of them. In [6] was pro-
posed a rescaling to consider [—1, 1], such that, given a continuous S : [0,1]? — [0,1]
t-conorm, the symmetric pseudo-addition & is a binary operation on [—1, 1] defined
by:

R1Forx,y > 0:x®y = S(X,y).

R2 For x,y < 0: x®y = —S(—Xx,—Y).

R3Forx € [0,1],y €]-1,0]: x&y =xSs (—Y). Moreover, 16 (—1) =1or —1.

R4 For x <0,y > 0: just reverse x and y.

The structure of the binary operation & is closely related to uninorms. From the
point of view of bipolar scales, the interval [—1,1] is viewed as the union of two
unipolar scales.

Proposition 1.T =& _; g isat-normon [—1,0] (i.e., in particular T (x,0) = x, for
every x € [-1,0]), S= &g, is a t-conormon [0, 1] and H is an average function
H= EB/[,LO]X[071]U[071}X[,130j. They have the following properties:

e Ifx,y€[0,1], thenx®y = S(x,y) > max{x,y}.
e Ifx,ye[-1,0],thenx@y=T(X,y) <min{x,y}.
o If-1<y<0<x<1 theny<xdpy=H(Xxy) <x

The previous proposition provides a performance that can be interpreted as attitudes
to deal with the ratings changes:

e Optimistic: when both values are positive the aggregation acts as an upward re-
inforcement.

e Pessimistic: when both values are negative, it acts as a downward reinforcement.

e Averaging: when one value is negative and the another positive, it acts as an
averaging operator.
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The aggregation function & exhibits conjunctive behavior on [—1,0] and disjunctive
behavior on [0, 1]. On the rest of the domain the behavior is averaging.

Let S be a strict t-conorm S with additive generator s : [0,1] — [0,e] and g :
[—1,1] — [0, 0] the symmetric extension of s, i.e.,

~_ s(x), x>0
a0 ={ & xZ0 )
It is possible to rescal @ to a binary operator U on [0, 1] such that U is a generated
uninorm operator. Then, x @y = g~1(g(x) +g(y)) for any x,y € [~1,1]. We also
introduce another function u : [0,1] — [—oe, o] defined by u(x) = g(2x — 1) that is
strictly increasing and satisfies u(%) =0. Then U(z,t) = u=*(u(z) +u(t)) for any
z,t € [0,1]. U is an uninorm that is continuous (exceptin (0,1) and (1,0)), is strictly
increasing on ]0, 12 and has neutral element % Moreover, the induced t-norm Ty is
the dual of S.

Such an operator should be used if the decision maker’s attitude is influenced by
the number of increment or decrement ratings received. Particularly, when all the
attributes’ ratings are positive, the more these there are, the more positive the agent
becomes in its aggregation. That is similar for negative values and when conflict
occurs, the ratings are aggregated in a risk-neutral way.

4 lllustrative Example

A high-technology manufacturing company desires to select at five different periods,
suitable material supplier to purchase the key components of products. There are six
candidates for initial evaluation but at successive periods, there will be additional
suppliers while others will be unavailable due to market conditions. The company
is interested about supplier’s evolution and considers the following elements:

e Criteria: quality (my), delivery performance (m,), price (m3) and technological
capability (mg).

o Retention policy keeps all alternatives from A; to H;.

e Non-dynamic rating is computed with the weighted sum operator, using the
weighting vector w; = (0.15,0.20,0.25,0.40),Vt € T.

e Dynamic rating is computed with the probabilistic sum operator .

e Discriminative dynamic index is computed with the VVan Melle’s combining func-
tion C : [—1,1]?> — [—1,1] modified in [17] as:

S(x,y) =x+y—xy, ifmin{x,y}>0
Cx,y) =< T(Xy)=x+y-+xy, ifmax{x,y}<0 (6)

I

(X,y) = 17mi>;1+‘yx‘7‘y‘} otherwise
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Fig. 2 Rating behavior of suppliers

4.1 The Resolution Procedure and I ndex Performance

In order to clarify the suppliers behavior Figure 2 depicts their ratings over the five
periods. The difference between time events is not a variable neither for the index
nor for the original approach.

As illustrated in Figure [T} at each period the non-dynamic and dynamic ratings
are computed. These results are shown in Table 3] columns “R;” and “E;” respec-
tively. To better understand the resolution procedure, following we focus on the dis-
criminative dynamic index computations and performance. Index values are shown
in Table[3] column “I;”.

Period t=1:  Here it is not necessary to compute the dynamic ratings.

Period t=2:  Dynamic ratings for az and a4 are equal therefore we have to com-
pute their discriminative dynamic index, for instance:

I2(a3) = C(D2(a3), 11 (as))

D2(a3) = Rz(a3) — Rl(a3) =0.3500 and |1(ag) = Dl(a3) = 0then
I>(a3) = 0.35000.

Note that for both alternatives the index evidences an optimistic attitude.

Period t=3:  The discriminative dynamic index is computed for: a, and as that
present opposed rating evolution; and for as, a4 and ag that present increasing
rating evolution. The index attitude for a, is optimistic while for as is pessimistic.

Period t=4:  All suppliers obtain same dynamic ratings. The discriminative dy-
namic index shows an averaging attitude because a; and a, present increas-
ing ratings in temporal profile but decreasing one at the current period while as
presents the inverse situation. This averaging attitude compensates both values
but does not allow ignore rating decrements at current or previous periods.

Period t=5:  All the suppliers not only obtain equal dynamic rating but also a;
and as present equal improvementfromt =4 tot =5: Ds(a2) = Ds(as). Despite
Ds(a1) > Ds(ayz), their indexes are I5(a1) < Is(az) because 14(a;) was negative.
Furthermore, as Ds(ay) = Ds(as) and I4(as) < 0, ls(a2) > 0 then Is(ay) is bet-
ter than Is(as). Therefore the dynamic index provides for a; and as an average
attitude while for a, presents an optimistic attitude.
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Table 3 Results at each period

Y. Zulueta et al.

Period At my my m3 my R¢ E¢ It
aa 0700 0900 0.100 0.300 0.4000  0.40000 -
a, 0100 0200 0.100 0.050 0.1000  0.10000 -
1 ® 0.200 0300 0.500 0.050 0.2500  0.25000 -
as 0100 0200 0500 0500 0.4000  0.40000 -
a; 0.900 0950 0900 0900 0.8200  0.82000 -
ag 0450 0.150 0.850 0.150 0.5000  0.50000 -
a, 0300 0600 0750 0.600 0.6450 0.78700 -
a 0150 0200 0900 0.800 0.6450  0.68050 0.350000
a3 0.900 0550 0400 0700 0.6000 0.68050 0.100000
t=2 a 0450 0150 0.850 0.150 0.5000  0.70000 -
a; 0.900 0.800 0410 0.400 0.6450 0.93610 -
ag 0800 0.700 0200 0.800 0.6000  0.80000 -
a; 0800 0700 0900 0.900 0.8500  0.85000 -
ag 0700 0.650 0800 0950 0.8200 0.96166 -
a, 0800 0.700 0.800 0900 0.8200  0.94249 0.624625
ag 0500 0.800 0900 0.800 0.8000  0.94000 0.480000
t=3 a 0900 0.900 0.900 0.650 0.8000  0.94000 0.370000
a; 0100 0200 0.100 0.050 0.1000 0.94249  -0.624625
ag 1.000 0500 1.000 0.500 0.7000  0.94000 0.190000
a; 0800 0700 0900 0900 0.8500 0.97750 -
ag 0200 0.100 0050 0.100 0.1000 0.96500  -0.550472
t=4 a, 0100 0.200 0500 0.500 0.4000  0.96500 0.352802
a; 0800 0550 0300 0.300 0.4000 0.96500  -0.463750
ag 0950 0950 1.000 0900 0.9450  0.99800 0.655194
t=5 a, 0950 0.850 1.000 0.950 0.9450  0.99800 0.705525
a; 0850 0950 0900 1.000 0.9450  0.99800 0.151515

4.2 Ranking Alternatives and Results Analysis

In Table[lis depicted the summary of rankings obtained with the original DMCDM
framework as well as with the improved one using the new index.

Table4 Suppliers rankings

Period Original framework Discriminative dynamic index
t=1 ag > adg —a; =ag > azg > ay -

=2 ag - ay=ag=ay —-az=ag = a as-ay »-ag=ay =az=ag = ay
=3 a7z »>ap»~ax =ag > az —a4 — ag az>ai>~a >asg>az > a4 > ag
t=4 a;=ay=as ap >~ as > ay

=5 a=a=as ap > aj > as
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In Sect.[2.2lwere summarized situations in which the original framework can not
discriminate alternatives consequently the main objective of the DMCDM was not
accomplished since the most desirable alternatives can not be selected considering
their current and past performance.

However it is remarkable that in all circumstances the discriminative dynamic
index ranks the alternatives taking into account the desired pessimistic, averaging or
optimistic attitude. Consequently our proposal support the DMCDM by improving
the original framework in such way that the crucial purpose of DMCDM is achieved.

5 Conclusion

In this contribution, we focused on the DMCDM problems. To support consistent
decisions in cases in which the framework in [4] is not effective, we introduced a
novel discriminative dynamic index in a general resolution procedure for DMCDM.
It uses an aggregation process based on associative bipolar operators. This features
allows to exploit their associativity property to represent the rating behavior of al-
ternatives over different periods as well as to model effects of rating changes above
and below neutral element on the final aggregated value.
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and ERDF.
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