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A Feedback Mechanism Based on Granular
Computing to Improve Consensus in GDM

Francisco Javier Cabrerizo, Francisco Chiclana, Ignacio Javier Pérez,
Francisco Mata, Sergio Alonso and Enrique Herrera-Viedma

Abstract Group decision making is an important task in real world activities.

It consists in obtaining the best solution to a particular problem according to the

opinions given by a set of decision makers. In such a situation, an important issue

is the level of consensus achieved among the decision makers before making a deci-

sion. For this reason, different feedback mechanisms, which help decision makers

for reaching the highest degree of consensus possible, have been proposed in the lit-

erature. In this contribution, we present a new feedback mechanism based on gran-

ular computing to improve consensus in group decision making problems. Granular

computing is a framework of designing, processing, and interpretation of informa-

tion granules, which can be used to obtain a required flexibility to improve the level

of consensus within the group of decision makers.
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1 Introduction

Group decision making (GDM) is utilized to get the best solution or solutions for a

given problem using the preferences or opinions expressed by a group of decision

makers [11, 18, 44]. In such a situation, each decision maker usually approaches the

decision process from a different point of view. However, the decision makers have a

common interest in obtaining a consensus or agreement before making the decision.

In particular, in a GDM situation, there is a set of different alternatives to solve the

problem and a group of decision makers that are usually required to express their

opinions about the alternatives by means of a particular preference structure [13,

16].

An important issue in a GDM situation is the level of consensus achieved among

the decision makers before making the decision. Usually, when decisions are made

by a group of individuals, it is advisable that the decision makers are involved in a

discussion process in which they talk about their reasons for making decisions with

the aim of arriving at a sufficient level of consensus acceptable to all [6, 27]. If this

discussion process is not carried out, solutions which are not well accepted by some

decision makers could be obtained [6, 45], and therefore the decision makers might

reject them. Due to it, a consensus process is usually carried out before obtaining a

final solution in a GDM situation [1, 10, 15, 17, 27, 35, 51].

In a consensus process, an important step is the recommendations provided to

the decision makers to improve the level of consensus. From this point of view, the

first consensus approaches presented by the researchers of the GDM field can be

considered as basic approaches because they are based on a moderator who gives

the advice to the decision makers [5, 19, 20, 28–30]. The objective of the modera-

tor in each discussion round is to address the consensus process towards success by

achieving the highest consensus degree and reducing the number of decision mak-

ers outside of the agreement. However, a drawback of these approaches is that the

moderator can introduce some subjectivity in the discussion process. To overcome it,

new consensus approaches have been presented by providing to the moderator with

better analysis tools or substituting the moderator figure. It makes more effective and

efficient the discussion process.

In consensus approaches incorporating a feedback mechanism, which substitutes

the moderator’s actions, proximity measures are computed to evaluate the proximity

between individual decision makers’ opinions and the collective one [7, 22, 24, 25,

49]. These proximity measures are utilized to identify the opinions given by the

decision makers which are contributing less to reach a high consensus level. The

goal of the feedback mechanism is to give advice to those decision makers to find

out the modifications they need to make in their preferences to achieve a solution

with better consensus.

On the other hand, a novel data mining tool [31], the so called action rules [37],

has been incorporated in consensus approaches to support and stimulate the discus-

sion in the group. The aim of an action rule is to show how a subset of flexible

attributes should be modified to achieve an expected change of the decision attribute
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for a subset of objects characterized by some values of the subset of stable attributes.

In such a way, these action rules are utilized to suggest and indicate to the moder-

ator with which decision makers and with respect to which preferences it may be

expedient to deal.

In any case, decisions makers have to allow a certain degree of flexibility and be

ready to make changes on their first opinions to obtain a higher level of consensus.

In such a situation, information granularity [38, 40, 41, 50] may become relevant

because it gives to the decision makers a level of flexibility using some first opinions

that can be adjusted in order to improve the consensus level among the decision

makers.

The objective of this contribution is to develop a new feedback mechanism based

on granular computing to improve the consensus achieved among the decision mak-

ers in a GDM situation. Granular computing is a paradigm that represents and

processes information in form of information granules [2, 38], that are complex

information entities arising in the process of abstraction of data and derivation of

knowledge from information [4]. In particular, an allocation of information granu-

larity is used in the feedback mechanism as a key component to suggest advice to

the decision makers in order to improve the consensus.

This contribution is organized as follows. In Sect. 2, we introduce the description

of a GDM situation and describe the process carried out to solve it. Section 3 presents

the feedback mechanism based on granular computing proposed here to improve

the consensus achieve among the decision makers involved in a GDM situation. An

example of application of the feedback mechanism is illustrated in Sect. 4. Finally,

some conclusions and future work are pointed out in Sect. 5.

2 GDM Process

A GDM process is defined as a situation in which a group of two or more decision

makers, E = {e1, e2,… , em} (m ≥ 2), provide their opinions or preferences about a

solution set of possible alternatives, X = {x1, x2,… , xn} (n ≥ 2), to achieve a com-

mon solution [11, 18, 27]. In particular, if the decision process is defined in a fuzzy

context, the goal is to rank the alternatives from best to worst, associating with the

alternatives some degrees of preferences given in the unit interval.

In the literature we can find different representation structures in which the deci-

sion makers can convey their judgments [13, 14]. Among them, the fuzzy preference

relation [34, 47, 52] has been widely utilized by the researchers because this repre-

sentation structure offers a very expressive representation and, in addition, it presents

good properties allowing to operate with it easily [13, 23].

Definition 1 A fuzzy preference relation PR on a set of alternatives X is a fuzzy set

on the Cartesian product X × X, i.e., it is characterized by a membership function

𝜇PR ∶ X × X → [0, 1].
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A fuzzy preference relation PR is usually represented by the n × n matrix PR =
(prij), being prij = 𝜇PR(xi, xj) (∀i, j ∈ {1,… , n}) interpreted as the preference degree

or intensity of the alternative xi over xj: prij = 0.5 indicates indifference between xi
and xj (xi ∼ xj), prij = 1 indicates that xi is absolutely preferred to xj, and prij > 0.5
indicates that xi is preferred to xj (xi ≻ xj). Based on this interpretation, we have that

prii = 0.5 ∀i ∈ {1,… , n} (xi ∼ xi). Since prii’s (as well as the corresponding ele-

ments on the main diagonal in some other matrices) do not matter, it will be written

as ‘–’ instead of 0.5 [25, 28].

GDM processes are usually faced by carrying out two processes before a final

solution can be provided [1, 30]:

∙ A consensus process referring to how to get the highest degree of agreement

among the decision makers.

∙ A selection process obtaining the final solution using the opinions expressed by

the group of decision makers.

In the following subsections, both the consensus process and the selection process

are described in detail.

2.1 Consensus Process

A consensus process is an iterative and a dynamic discussion process carried out

among the members of a group, coordinated by a moderator who helps them bring

their preferences closer. On the one hand, if the agreement among the decision mak-

ers is lower than a threshold, the moderator would urge them to discuss their prefer-

ences further in an effort to bring them closer. On the other hand, if the consensus

level is higher than the threshold, the moderator would apply the selection process

with the aim of obtaining the final consensus solution to the problem [27, 36].

An important step of a consensus process is the assessment of the agreement

achieved among the group of decision makers. To obtain it, coincidence existing

among the decision makers is computed [8, 21]. Consensus approaches usually

obtain consensus degrees, utilized to evaluate the current level of agreement among

the decision makers’ preferences, given at three different levels of a fuzzy prefer-

ence relation [8, 19]: pairs of alternatives, alternatives, and relation. According to

it, the computation of the consensus degrees is performed as follows once the fuzzy

preference relations have been provided by all the decision makers within the group

[8, 25, 49]:

1. For each pair of decision makers (ek, el) (k = 1,… ,m − 1, l = k + 1,… ,m) a

similarity matrix, SMkl = (smkl
ij ), is defined as:

smkl
ij = 1 − |prkij − prlij| (1)
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2. Then, a consensus matrix, CM = (cmij), is calculated by aggregating all the (m −
1) × (m − 2) similarity matrices using an aggregation function, 𝜙:

cmij = 𝜙(smkl
ij ), k = 1,… ,m − 1, l = k + 1,… ,m (2)

Here, the arithmetic mean is utilized as aggregation function. However, different

aggregation operators could be utilized according to the particular properties that

we want to implement.

3. Once the consensus matrix has been calculated, the consensus degrees are

obtained at the three different levels of a fuzzy preference relation:

a. Consensus degree on the pairs of alternatives.The consensus degree on a pair

of alternatives (xi, xj), called cpij, is defined to measure the consensus degree

among all the decision makers on that pair of alternatives. In this case, this

is expressed by the element of the collective similarity matrix CM:

cpij = cmij (3)

The closer cpij to 1, the greater the agreement among all the decision makers

on the pair of alternatives (xi, xj).
b. Consensus degree on the alternatives. The consensus degree on the alterna-

tive xi, called cai, is defined to measure the consensus degree among all the

decision makers on that alternative:

cai =
∑n

j=1;j≠i(cpij + cpji)
2(n − 1)

(4)

c. Consensus degree on the relation. The consensus degree on the relation,

called cr, expresses the global consensus degree among all the decision mak-

ers’ opinions. It is computed as the average of all the consensus degree for

the alternatives:

cr =
∑n

i=1 cai
n

(5)

The consensus degree of the relation, cr, is the value used to control the consensus

state. The closer cr is to 1, the greater the agreement among all the decision makers’

preferences.

2.2 Selection Process

Once the consensus level is higher than a specified threshold, the selection process

is carried out in two sequential steps:
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1. Aggregation step defining a collective fuzzy preference relation that indicates the

global preference between every pair of alternatives.

2. Exploitation step transforming the global information about the alternatives into

a global ranking of them, from which a set of alternatives is derived.

In what follows, we present in more detail both the aggregation step and the

exploitation step of a selection process.

2.2.1 Aggregation Step

The aim of this step is to obtain a collective fuzzy preference relation, PRc = (prcij),
by aggregating all individual fuzzy preference relations, {PR1

,… ,PRm}, given by

the decision makers involved in the problem. Each value prcij represents the pref-

erence of the alternative xi over the alternative xj according to the majority of the

decision makers’ assessments. To do so, an OWA operator is used [53].

Definition 2 An OWA operator of dimension n is a function 𝜙 ∶ [0, 1]n ⟶ [0, 1],
that has a weighting vector associated with it, W = (w1,… ,wn), with wi ∈ [0, 1],
∑n

i=1 wi = 1, and it is defined according to the following expression:

𝜙W (a1,… , an) = W ⋅ BT =
m∑

i=1
wi ⋅ a𝜎(i) (6)

being 𝜎 ∶ {1,… , n} ⟶ {1,… , n} a permutation such that p
𝜎(i) ≥ a

𝜎(i+1),

∀i = 1,… , n − 1, i.e., a
𝜎(i) is the i-highest value in the set {a1,… , an}.

OWA operators fill the gap between the operators Min and Max. It can be imme-

diately verified that OWA operators are commutative, increasing monotonous and

idempotent, but in general not associative.

In order to classify OWA aggregation operators with regards to their localization

between “or” and “and”, Yager [53] introduced the measure of orness associated

with any vector W expressed as:

orness(W) = 1
n − 1

n∑

i=1
(n − i)wi (7)

This measure, which lies in the unit interval, characterizes the degree to which

the aggregation is like an “or” (Max) operation. Note that the nearer W is to an “or”,

the closer its measure is to one; while the nearer it is to an “and”, the closer is to zero.

As we move weight up the vector we increase the orness(W), while moving weight

down causes us to decrease orness(W). Therefore, an OWA operator with much of

nonzero weights near the top will be an “orlike” operator (orness(W) ≥ 0.5), and

when much of the weights are nonzero near the bottom, the OWA operator will be

“andlike” (orness(W) < 0.5).
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A natural question in the definition of the OWA operator is how to obtain the

associated weighting vector. In [53], it was defined an expression to obtain W that

allows to represent the concept of fuzzy majority [28] by means of a fuzzy linguistic

non-decreasing quantifier Q [58]:

wi = Q
( i
n

)

− Q
( i − 1

n

)

, i = 1,… , n (8)

The membership function of Q is given by Eq. (9), with a, b, r ∈ [0, 1]. Some

examples of non-decreasing proportional fuzzy linguistic quantifiers are: “most”

(0.3, 0.8), “at least half” (0, 0.5), and “as many as possible” (0.5, 1).

Q(r) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 if r < a

r−a
b−a

if a ≤ r ≤ b

1 if r > a

(9)

When a fuzzy quantifier Q is used to compute the weights of the OWA operator

𝜙, it is symbolized by 𝜙Q.

2.2.2 Exploitation Step

The aim of this step is to obtain a rank of the alternatives. To do so, the concept

of fuzzy majority (of alternatives) and the OWA operator are used to compute two

choice degrees of alternatives: the quantifier-guided dominance degree (QGDD) and

the quantifier-guided non-dominance degree (QGNDD) [9, 26]. They will act over

the collective preference relation resulting in a global ranking of the alternatives,

from which the solution will be obtained.

∙ QGDDi: It quantifies the dominance that one alternative has over all the others in

a fuzzy majority sense. It is obtained as follows:

QGDDi = 𝜙Q(prci1, pr
c
i2,… , prci(i−1), pr

c
i(i+1),… , prcin) (10)

∙ QGNDDi: It gives the degree in which each alternative is not dominated by a fuzzy

majority of the remaining alternatives. It is obtained as follows:

QGNDDi = 𝜙Q(1 − ps1i, 1 − ps2i,… , 1 − ps(i−1)i, 1 − ps(i+1)i,… , 1 − psni) (11)

where psji = max{prcji − prcij, 0} represents the degree in which xi is strictly dom-

inated by xj. When the fuzzy quantifier represents the statement “all”, whose
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algebraic aggregation corresponds to the conjunction operator Min, this non-

dominance degree coincides with Orlovski’s non-dominated alternative

concept [34].

Two different policies can be used to carry out the application of both choice

degrees: a sequential policy or a conjunctive policy [12, 26]. In the sequential policy,

one of the choice degrees is selected and applied to the set of alternatives according

to the opinions given by the decision makers, obtaining a selection set of alternatives.

If there is more than one alternative in this selection set, then, the other choice degree

is applied to select the alternative of this set with the best second choice degree. In

the conjunctive policy, both choice degrees are applied to the set of alternatives,

obtaining two selection sets of alternatives. The final selection set of alternatives

is obtained as the intersection of these two selection sets of alternatives. As it is

possible to get and empty selection set, the latter conjunction selection process is

more restrictive than the former sequential selection process.

3 A Feedback Mechanism Based on Granular Computing

In the discussion process, if the consensus achieved among the decision makers is

lower than a consensus threshold, the decision makers must discuss and modify their

opinions. It is done by a feedback mechanism, which gives advice to the decision

makers on how to change their preferences in order to increase the consensus. In

addition, the feedback mechanism usually substitutes the moderators’ actions with

the aim of avoiding the subjectivity that the moderator can introduce in the discussion

process.

In order to improve the consensus, the decision makers have to accept some mod-

ifications in their initial preferences by allowing a certain flexibility. If fuzzy prefer-

ence relations are used to represent the assessments provided by the decision makers,

this flexibility could be brought by allowing the fuzzy preference relations to be gran-

ular rather than numeric. That is, the feedback mechanism proposed here assumes

that the entries of a fuzzy preference relation are information granules instead of

plain numbers. In such a way, the feedback mechanism elevates the fuzzy preference

relations to their granular format.

To emphasize that the feedback mechanism uses granular fuzzy preference rela-

tions, the notation G(PR) is employed. Here, G(.) represents a specific granular for-

malism being utilized. For example, as information granules we could use fuzzy sets

[54–57], rough sets [46], probability density functions [59], intervals [3], and others.

In particular, information granularity is used here by the feedback mechanism as an

important computational and conceptual resource being exploited as a means to give

advice to the decision makers in order to improve the consensus among them. That

is, granularity is used as synonymous of flexibility. It facilitates the increase of the

agreement achieved among the group of decision makers.
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In this contribution, the feedback mechanism uses intervals to articulate the gran-

ularity of information. Therefore, the length of the intervals can be sought as a level

of granularity 𝛼. In addition, because interval-valued fuzzy preference relations are

used, G(PR) = P(PR), where P(.) denotes a family of intervals.

The concept of interval-valued fuzzy preference relations is employed by the feed-

back mechanism to generate recommendations to the decision makers in order to

improve the consensus among them. Specifically, the level of consensus achieved

among the decision makers is used as a performance index.

In what follows, we give the details both the performance index to be optimized

and its optimization, which, given the nature of the required task, is carried out by

the Particle Swarm Optimization (PSO) framework [32].

3.1 The Performance Index

The level of granularity is used by the feedback mechanism to improve the agree-

ment achieved among the decision makers by generating recommendations in order

to bring all preferences close to each other. Decision makers should feel comfort-

able when accepting the modifications provided by the feedback mechanism located

within the bounds established by the fixed level of granularity 𝛼.

Advice is generated by the feedback mechanism by maximizing the global con-

sensus degree among the decision makers. It is calculated in term of the consensus

degree on the relation (see Sect. 2.1):

O = cr (12)

The optimization problem reads as follows:

MaxPR1
,PR2

,…,PRm∈P(PR)O (13)

This maximization problem is performed by the feedback mechanism for all

interval-valued fuzzy preference relations that are possible according to the fixed

level of information granularity 𝛼. This truth is emphasized by incorporating the

granular form of the fuzzy preference relations, that is, PR1
,… ,PRm

, are elements

of the family of interval-valued fuzzy preference relations, P(PR).

Due to the nature of the not straight relationship between the optimized fuzzy pref-

erence relations, this optimization problem is not an easy task. The optimized fuzzy

preference relations are chosen from a quite large search space formed by P(PR) and,

therefore, it requires the use of an advanced technique of global optimization.

Among the different techniques of global optimization, the PSO framework [32]

is used in this contribution because it does not come with a prohibitively high level

of computational overhead as this is the case of other global optimization techniques
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and it offers a substantial level of optimization flexibility, being a viable alterna-

tive for this problem. However, it should be noted that other techniques as genetic

algorithms, evolutionary optimization, simulated annealing, and so on, could be also

used.

3.2 PSO Framework

As aforementioned, the PSO environment is employed in the feedback mechanism

to optimize the fuzzy preference relations coming from the space of interval-valued

fuzzy preference relations because this technique is a viable alternative for the prob-

lem at hand.

PSO is an evolutionary computational method based on the social behavior

metaphor, which was developed by Kennedy and Eberhart [32, 33]. In this tech-

nique, a population of random candidate solutions, called particles, is initialized.

Then, a randomized velocity is assigned to each particle, which is iteratively moved

though the search-space according to simple mathematical formulae over the parti-

cle’s velocity and position. The movement of each particle is attracted towards the

position of the best fitness achieved so far by the particle itself (zp) and by the posi-

tion of the best fitness achieved so far across the whole population (zg) [32, 48] (see

Fig. 1).

An important issue in the PSO framework is how to find a suitable mapping

between the representation of the particle and the problem solution. In a GDM con-

text, each particle represents a vector in which the elements are located in the unit

interval. That is, if the GDM problem is set up with a group of m decision makers

and a set of n alternatives, the number of elements of the particle will be m ⋅ n(n − 1).
Let us consider an element prij and assume a level of granularity 𝛼 located in the

[0, 1] interval. If we use an initial fuzzy preference relation expressed by a decision

maker, the interval of admissible values of this element of P(PR) is equal to:

[a, b] = [max(0, prij − 𝛼∕2),min(1, prij + 𝛼∕2)] (14)

As an example, if we have prij = 0.8, being the level of granularity 𝛼 equal to 0.2
and the corresponding element of the particle x equal to 0.3, then, the corresponding

interval of the interval-valued fuzzy preference relation calculated using Eq. (14) is

[a, b] = [0.70, 0.90]. Using the expression z = a + (b − a)x, the modified value of

prij becomes equal to 0.76.

Another important question in the PSO framework is how to assess the perfor-

mance of each particle during its movement. To do so, a performance index or fitness

function is used. In the GDM context considered in this contribution, the PSO aims

to maximize the level of agreement achieved among the decision makers involved in

the problem. Hence, the following fitness function f will be used:

f = O (15)
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Fig. 1 PSO flowchart

whereO is the optimization criterion presented previously. Here, the higher the value

of f is, the better the particle is.

It should be pointed out that the generic form of the PSO framework is employed

in this contribution. Therefore, the updates of the velocity of a particle are performed

in the form v(t + 1) = w × v(t) + c1a ⋅ (zp − z) + c2b ⋅ (zg − z). Here, ⋅ means a vec-

tor multiplication carried out coordinate-wise, “t” is an index of the generation, zg



382 F.J. Cabrerizo et al.

denotes the best position overall and developed so far across the swarm, and zp is

the best position obtained so far for the particle under study. The inertia compo-

nent, called w, scales the actual velocity v(t) and stresses some effect of resistance to

modify the actual velocity. Its value is usually 0.2 and it is kept constant through the

process [39]. On the other hand, a and b represents vectors of random numbers that

are drawn from the uniform distribution over the unit interval. These vectors help

from a proper mix of the components of the velocity. Finally, in iteration “t + 1”, the

particle’s position is calculated as: z(t + 1) = z(t) + v(t + 1).
Once the PSO algorithm has optimized the fuzzy preference relations coming

from the space of interval-valued fuzzy preference relation, the feedback mechanism

advise the decision makers the modifications that they should put into practice in

their opinions in order to improve the consensus among them.

4 An Illustrative Example

An example of application of the proposed feedback mechanism is presented in this

section. It helps quantifying the improvement of the consensus when the feedback

mechanism is applied.

Let us suppose that a patient presents some symptoms, being all of them common

to several diseases, and some doctors, who are specialist in different diagnosis, have

to jointly diagnose the disease that the patient has contracted. This situation can be

defined as a GDM problem in which there are a set of four possible diseases (alter-

natives), {x1, x2, x3, x4}, and a set of four doctors (decision makers), {e1, e2, e3, e4}.

4.1 First Consensus Round

At the first stage of the discussion process, the four doctors express the following

fuzzy preference relations:

PR1 =
⎛
⎜
⎜
⎜
⎝

− 0.30 0.70 0.50
0.70 − 0.70 0.60
0.40 0.20 − 0.30
0.70 0.30 0.80 −

⎞
⎟
⎟
⎟
⎠

PR2 =
⎛
⎜
⎜
⎜
⎝

− 0.30 0.60 0.70
0.80 − 0.70 0.20
0.20 0.40 − 0.50
0.20 0.60 0.50 −

⎞
⎟
⎟
⎟
⎠

PR3 =
⎛
⎜
⎜
⎜
⎝

− 0.80 0.50 0.20
0.20 − 0.60 0.90
0.50 0.30 − 0.70
0.60 0.20 0.20 −

⎞
⎟
⎟
⎟
⎠

PR4 =
⎛
⎜
⎜
⎜
⎝

− 0.90 0.20 0.70
0.30 − 0.60 0.30
0.90 0.40 − 0.50
0.40 0.90 0.50 −

⎞
⎟
⎟
⎟
⎠
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4.1.1 Consensus Measures

Once the doctors have provided their opinions, the consensus measures are calcu-

lated as described in Sect. 2.1.

The consensus matrix is equal to:

CM =
⎛
⎜
⎜
⎜
⎝

− 0.62 0.73 0.72
0.63 − 0.93 0.60
0.63 0.88 − 0.80
0.72 0.60 0.70 −

⎞
⎟
⎟
⎟
⎠

The element (i, j) of the consensus matrix represents the consensus degrees on

the pair of alternatives (xi, xj).
The consensus degrees on the alternatives are:

ca1 = 0.67
ca2 = 0.71
ca3 = 0.78
ca4 = 0.69

And the consensus on the relation is:

cr = 0.71

Assuming a minimum consensus threshold equal to 0.75, the selection process

cannot be applied because the consensus achieved among the doctors is lower than

the minimum consensus threshold. Therefore, the feedback mechanism has to be

applied in order to improve the agreement.

4.1.2 Feedback Mechanism

The aim of the feedback mechanism is to support the doctors’ changes in their fuzzy

preference relations in order to increase the consensus.

First, it should be pointed out that, as a result of an intensive experimentation, the

following values of the parameters were selected in the PSO algorithm:

∙ 50 particles formed the swarm. This value was found to obtain stable results. That

is, identical or similar results were obtained in successive runs of the PSO algo-

rithm.

∙ 200 generations or iterations were carried out as it was observed that were no

further modifications of the values of the fitness functions after this number of

iterations.

∙ c1 and c2 were set as 2 because these values are commonly found in the existing

literature.
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Considering a given level of granularity 𝛼 = 0.4, the recommended fuzzy prefer-

ence relations generated by the feedback mechanism are as follows:

PR1 =
⎛
⎜
⎜
⎜
⎝

− 0.31 0.60 0.57
0.63 − 0.58 0.63
0.35 0.22 − 0.31
0.73 0.40 0.80 −

⎞
⎟
⎟
⎟
⎠

PR2 =
⎛
⎜
⎜
⎜
⎝

− 0.33 0.61 0.69
0.85 − 0.60 0.27
0.26 0.39 − 0.50
0.15 0.61 0.50 −

⎞
⎟
⎟
⎟
⎠

PR3 =
⎛
⎜
⎜
⎜
⎝

− 0.78 0.45 0.13
0.19 − 0.49 0.78
0.46 0.35 − 0.65
0.58 0.13 0.30 −

⎞
⎟
⎟
⎟
⎠

PR4 =
⎛
⎜
⎜
⎜
⎝

− 0.88 0.20 0.66
0.25 − 0.65 0.36
0.81 0.53 − 0.46
0.48 0.86 0.50 −

⎞
⎟
⎟
⎟
⎠

4.2 Second Consensus Round

In the second consensus round, we assume that the doctors agree the advice gener-

ated by the feedback mechanism. Then, the consensus measures are computed again.

4.2.1 Consensus Measures

The consensus matrix is equal to:

CM =
⎛
⎜
⎜
⎜
⎝

− 0.64 0.77 0.71
0.60 − 0.92 0.70
0.71 0.84 − 0.82
0.69 0.60 0.75 −

⎞
⎟
⎟
⎟
⎠

The element (i, j) of the consensus matrix represents the consensus degrees on

the pair of alternatives (xi, xj).
The consensus degrees on the alternatives are:

ca1 = 0.68
ca2 = 0.72
ca3 = 0.80
ca4 = 0.71

And the consensus on the relation is:

cr = 0.73
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Because the consensus achieved among the doctors is lower than the minimum

consensus threshold, the feedback mechanism has to be applied again in order to

increase the consensus.

4.2.2 Feedback Mechanism

Considering the same values of the parameters in the PSO algorithm as in the first

round, the new recommended fuzzy preference relations provided by the feedback

mechanism are the following:

PR1 =
⎛
⎜
⎜
⎜
⎝

− 0.31 0.60 0.57
0.63 − 0.58 0.63
0.35 0.22 − 0.31
0.73 0.40 0.80 −

⎞
⎟
⎟
⎟
⎠

PR2 =
⎛
⎜
⎜
⎜
⎝

− 0.33 0.61 0.69
0.85 − 0.60 0.27
0.26 0.39 − 0.50
0.15 0.61 0.50 −

⎞
⎟
⎟
⎟
⎠

PR3 =
⎛
⎜
⎜
⎜
⎝

− 0.78 0.45 0.13
0.19 − 0.49 0.78
0.46 0.35 − 0.65
0.58 0.13 0.30 −

⎞
⎟
⎟
⎟
⎠

PR4 =
⎛
⎜
⎜
⎜
⎝

− 0.88 0.20 0.66
0.25 − 0.65 0.36
0.81 0.53 − 0.46
0.48 0.86 0.50 −

⎞
⎟
⎟
⎟
⎠

4.3 Third Consensus Round

As in the above round, it is assumed that the doctors accept the preferences gener-

ated by the feedback mechanism and, therefore, the consensus measures are obtained

again.

4.3.1 Consensus Measures

The consensus matrix is equal to:

CM =
⎛
⎜
⎜
⎜
⎝

− 0.65 0.78 0.71
0.60 − 0.90 0.82
0.68 0.84 − 0.82
0.69 0.64 0.78 −

⎞
⎟
⎟
⎟
⎠

The element (i, j) of the consensus matrix represents the consensus degrees on

the pair of alternatives (xi, xj).
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The consensus degrees on the alternatives are:

ca1 = 0.69
ca2 = 0.75
ca3 = 0.81
ca4 = 0.75

And the consensus on the relation is:

cr = 0.75

In this round, the consensus is equal to the minimum consensus threshold and,

therefore, the selection process can be applied in order to rank the alternatives.

4.4 Selection Process

The goal of the selection process is to obtain a ranking of the alternatives from best

to worst according to the preferences given by the doctors. To do so, an aggregation

step and an exploitation step are carried out.

4.4.1 Aggregation

The OWA operator is used to aggregation the fuzzy preference relations given by

the doctors. We make use of the linguistic quantifier “most”, defined in Sect. 2.2.1,

which, applying Eq. (8), generates a weighting vector of four values to obtain each

collective preference value prcij. As example, the collective preference value prc12 is

computed as follows:

w1 = Q(1∕4) − Q(0) = 0 − 0 = 0
w2 = Q(2∕4) − Q(1∕4) = 0.4 − 0 = 0.4
w3 = Q(3∕4) − Q(2∕4) = 0.9 − 0.4 = 0.5
w4 = Q(1) − Q(3∕4) = 1 − 0.9 = 0.1
prc12 = w1 ⋅ pr412 + w2 ⋅ pr312 + w3 ⋅ pr212 + w4 ⋅ pr112 = 0.51

Then, the collective fuzzy preference relation is:

PRc =
⎛
⎜
⎜
⎜
⎝

− 0.51 0.48 0.56
0.40 − 0.58 0.46
0.38 0.35 − 0.46
0.49 0.46 0.48 −

⎞
⎟
⎟
⎟
⎠
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4.4.2 Exploitation

Using again the same linguistic quantifier “most” and Eq. (8), we obtain the following

weighting vector W = (w1,w2,w3):

w1 = Q(1∕3) − Q(0) = 0.07 − 0 = 0.07
w2 = Q(2∕3) − Q(1∕3) = 0.73 − 0.07 = 0.66
w3 = Q(1) − Q(2∕3) = 1 − 0.73 = 0.27

Using, for example, the quantifier guided dominance degree, QGDDi, we obtain

the following values:

QGDD1 = 0.51
QGDD2 = 0.45
QGDD3 = 0.38
QGDD4 = 0.47

Finally, applying the sequential policy with the quantifier guided dominance

degree, the following ranking of alternatives is obtained:

x1 ≻ x4 ≻ x2 ≻ x3

Therefore, according to the doctors’ judgments, the patient’s symptoms corre-

spond to the first disease.

Finally, it should be pointed out that here a granularity level of 0.4 has been used.

However, the higher the level of granularity is, the higher the level of flexibility is

and, hence, the possibility of obtaining a higher consensus. Anyway, if the level of

granularity is very high, the fuzzy preference relations generated by the feedback

mechanism could be very different in comparison with those provided by the deci-

sion makers and, in such a way, they could reject them.

5 Conclusions and Future Work

In this contribution, we have presented a feedback mechanism based on granular

computing to improve the consensus achieved among the decision makers in a GDM

situation. The feedback mechanism assumes the concept of granular fuzzy preference

relation and accentuates the role of information granularity, which is regarded as an

important resource to be exploited as a means to improve the consensus achieved

among the decision makers involved in the problem. In particular, the granularity

level has been treated as synonymous of flexibility, which has been used to opti-

mize a certain optimization criterion capturing the essence of reconciliation of the

individual preferences. It has also been shown that the PSO environment is a suit-

able optimization framework for this purpose. However, it should be noted that the
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PSO optimizes the fitness function but there is no guarantee that the result is optimal

rather that the solution is the best one being formed by the PSO environment.

In the future, it is worth continuing this research in several directions:

∙ In this contribution, intervals have been used as information granules in the granu-

lar representation of the fuzzy preference relations. However, other formalism as,

for instance, rough sets or fuzzy sets, could be utilized in the granular representa-

tion of the preferences.

∙ The feedback mechanism has been proposed in a fixed framework, that is, in a

situation in which the decision makers and the alternatives do not change during

the decision making process. However, with the aim of making the process more

realistic, the approach should be able to deal with changeable elements. In such a

way, the feedback mechanism should be able to deal with a dynamic environment

[42, 43].
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