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Abstract
In group decision-making, a consensus-reaching process (CRP) is critical to minimize conflicts among decision-makers.
Non-cooperative behaviors during the CRP may slow the consensus achievement or even lead to consensus failure. Previous
research has not thoroughly identified various non-cooperative behaviors nor has it developed distinct management strategies
for different CRP stages. This study aims to provide a systematic approach for identifying and addressing non-cooperative
behaviors at different CRP stages, employing tailored management for each behavior type. We introduce and apply a concept
named ‘comprehensive score’ to facilitate varied responses to non-cooperative behaviors throughout the CRP. A null-norm
operator-based self-management weight generation mechanism is proposed to monitor experts’ historical performance, while
a systematic analysis of experts’ characteristics enables detailed classification of non-cooperative behaviors. Through the
research, we find that there are seven types of non-cooperative researches which needs to be respectively addressed according
to its effects. The proposed management scheme improves the efficiency of CRP. Besides, the current research enriches the
mechanisms for identifying and handling non-cooperative behaviors. It offers methodological references for non-cooperative
behaviors management in more complex decision-making scenarios.

Keywords Group decision making · Consensus reaching process · Non-cooperative behaviors · Preference relation

1 Introduction

Group decision making (GDM) is common in various
domains of life and work [1, 2]. The GDM process typi-
cally involves collecting a broad range of preferences from a
group of experts, followed by an aggregation process and an
exploitation process to determine the best solution. Various
aggregationmethods are employed to gather individual opin-
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ions, and the most preferred option is selected based on the
group’s aggregated opinion [3]. Since conflictsmay arise dur-
ing GDM, a consensus-reaching process (CRP) is necessary
to ensure that the decision outcome is accepted by the group
[4]. In the traditional definitionofCRP, experts are required to
achieve complete consensus on preferences, which is known
as “hard consensus" [5]and is extremely difficult to achieve
in real-world setting. Recognizing the complex uncertainties
inherent in real-life GDM, the concept of “soft consensus"
was introduced [6], in which the CRP only necessitates that
the consensus degree reaches a predetermined value. This
approach is much more practical and achievable than com-
plete consensus in most real-world GDM situations. During
the past few decades, researches on CRP have been carried
out from different aspects. For instance, Zhang et al. [7] con-
structed minimum adjustment and personalized individual
semantic based consistency improving models to accelerate
the CRP. Li et al. [8] discussed the CRP in multi-criteria
social network GDM.

Due to varying levels of expertise, knowledge back-
ground, social status, and economic position, not all experts
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are willing to contribute to the consensus, and some may
refuse to change their initial preferences towards the con-
sensus due to personal interests, resulting failing processes
and in time-consuming CRPs [9]. Hence, it seems adequate
to manage such non-cooperative behaviors to avoid previ-
ous problems. So far, researchers have developed various
management schemes. Quesada et al. [10] proposed a man-
agement scheme based on a uninorm operator to reduce
the weights of non-cooperative experts. Gou et al. [11]
used double hierarchy (DHLPR) clustering and expert rat-
ings to reduce the weight of non-cooperative experts and
introduced a consensus-reaching model to address three
types of non-cooperative behaviors. Palomares et al. [12]
defined a fuzzy clustering scheme to address non-cooperative
behavior in individuals and subgroups. Chao et al. [13]
introduced a consensus method based on similarity mea-
sures of heterogeneous preferences and a weighting process
to manage non-cooperative behavior in large-scale group
decision-making. Du et al. [14] summarized four punish-
ment approaches for non-cooperative behavior and proposed
an independent consensus-reaching model, which was com-
binedwith a supervised consensus-reachingmodel to create a
mixed model for managing non-cooperative behavior. Man-
dal et al. [15] applied a grey clustering method and defined
the non-cooperative degree using a cluster consensus index
and a group consensus index to manage non-cooperative
behavior. Dong et al. [16] categorized non-cooperative
behavior into three different classes and presented a mech-
anism for dynamically generating weights of experts using
multi-attribute mutual evaluation matrices (MMEMs) pro-
vided by experts in the proposed consensus model. Later,
Dong et al. [17] extended the behavior management scheme
to address non-cooperative behavior in large-scale group
decision making(LSGDM). Li et al. [18] combined the
similarity of preferences and the degree of cooperation to
cluster experts and proposed a dynamic weight punishment
mechanism for non-cooperative experts to make the weight
proportional to the degree of cooperation. Xu et al. [19]
developed a consensus model for large-group emergency
decision-making, which addressed non-cooperative behav-
ior and minority opinions. Tian et al. [20] applied social
network analysis to develop a consensus framework for
managing non-cooperative behavior. Despite the significant
amount of research on managing non-cooperative behavior,
it is important to point out that previous works have several
limitations.

1. In most studies, non-cooperative behavior in different
stages and periods of the CRP has been addressed in the
samemanner, despite the fact that non-cooperative behav-
ior in later rounds may pose a more substantial threat to
consensus reaching.

2. The weight determination scheme based on
non-cooperative behavior in CRPs is typically presented
based on the performance of individuals or sub-groups
in a single moment or round. However, the emergence
of non-cooperative attitudes is often traceable over time.
The existing weight generation scheme based on a mutual
evaluation matrix [16] only considers the expert’s perfor-
mance in a single moment or round, which may result in
the loss of valuable information.

3. The current identification of non-cooperative behaviors is
oversimplified and does not fully capture the complexity
of practical CRPs, limiting the validity and reliability of
GDM results.

To address these limitations, we propose a mutual eval-
uation matrix-based consensus model, which works in con-
junction with a self-management weight generation scheme
to distinguish experts’ non-cooperative behavior at different
periods. Additionally, a systematic identification scheme of
non-cooperativeness is introduced to facilitate different treat-
ments regarding different behaviors.

The proposed approach introduces several novel
contributions:

1. A comprehensive score that distinguishes the effect of
non-cooperative behavior in different CRP stages and
periods. This score is calculated by applying a specific
function on the mutual evaluation matrix provided by
experts. By incorporating the comprehensive score, non-
cooperative behavior in different periods can be addressed
differently, and mutual evaluations can be applied more
comprehensively.

2. To ensure that the consensus decision result is more reli-
able,we propose a null-normoperator based on themutual
evaluation matrix to determine experts’ weights, which
considers not only their performance in a single round
but also their previous performance during the CRP.

3. It is also proposed a systematic identification scheme for
non-cooperative behavior in a CRP, considering factors
such as cooperative attitude, reliability, professional level,
ability, fairness, not over-collaboration, and not conspir-
acy of experts. A corresponding self-management weight
determination strategy is presented to manage different
types of behavior in different ways. This non-cooperative
behavior management scheme is integrated with a new
consensus model.

To illustrate the feasibility of the proposed consensus
model cooperates with the novel non-cooperative behaviors
identification and management scheme, it is applied to deal
with the fresh logistics enterprises selection problem. Com-
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parative analysis with existing literature has been carried out
from both theoretical and numerical aspects.

The remaining parts of this study are as follows: Section 2
introduces some basic concepts related to the proposal.
Section3proposes a comprehensive self-managementweight
generation scheme in CRP, and the consensus resolution
framework. Section 4 clarifies how to identify and deal with
different non-cooperative behaviors, comparative analysis
with existing researches is conducted. Section 5 presents the
CRP algorithm with non-cooperative behavior management
scheme. In Section 6, a case study is presented to show the
performance of the proposal, and finally Section 7 points out
some conclusions and future works.

2 Preliminairies

Before introducing the consensusmodel and non-cooperative
behaviors classification and management mechanism, we
present some basic knowledge which are closely related to
the current research, such as GDM, CRP, and null-norm
operator.

2.1 Group decisionmaking

GDMproblems widely exist in human-being’s daily life. In a
GDM problem there are more than one participant involved
to select the best alternative from an alternative set, or to
select the best solution from a set of solutions to the prob-
lem. Formally, a GDM problem consists of: [1]: (1) A set
of alternatives/solutions X = {x1, x2, ..., xn}, in which the
best one needs to be chosen according to a certain decision
scheme. (2) A set of experts E = {e1, e2, ..., em}, who are
usually experts in the field of GDM, will provide evalua-
tions/preference upon the alternatives or solutions. If every
expert provides his/her preference over one alternative upon
another, all preferences can be collected by means of a n×n
preference matrix. If the expert provides preferences under
the framework of fuzzy set theory [21], the preferences could
be gathered to form a fuzzy preference relationmatrix, which
has been widely applied to deal with uncertain information
in GDM.

Definition 1 [22] Suppose that X = {x1, x2, · · · , xn} is the
alternative set, Pi is the fuzzy preference relation provided
by expert ei , it forms a set of fuzzy sets on X × X, which can
be characterized by a membership function μPi : X × X →
[0, 1]. If n is a finite value, Pi can be written as below.

Pi =
⎛
⎜⎝

− . . . p1ni
. . .

...

pn1i −

⎞
⎟⎠

where plki = μpi (xl , xk) ∈ [0, 1] is the preference of alter-
native xl over xk , l, k ∈ 1, . . . , n, l �= k. Here, plki < 0.5
indicates that ei prefer xk over xl , plki > 0.5 indicates that ei
prefer xl over xk , plki = 0.5 indicates that for ei , the prefer-
ence of xk and xl is the same. In the current work, in order
to better deal with the consistency preference relations, we
assume that the fuzzy preference relations satisfy the addi-
tion consistency property, i.e., if plki = x, x ∈ [0, 1], l �= k,
then pkli = 1 − x .

A traditional GDM process contains two main steps:
(1) Aggregation of the preferences provided by experts,
by selecting and applying some aggregation operators; (2)
Exploitation of the most appropriate alternative, by apply-
ing some selection criterion. The exploitation result can be a
single alternative or a subgroup of the alternatives.

2.2 Consensus reaching process

In traditional GDM, the solution obtained from the gathered
opinion may not satisfy all experts, since some of them may
feel that their own preferences have been ignored [10]. A
CRP is necessary, to decrease this feeling in GDM, by set-
ting a negotiation process among experts before the selection
process, which makes the decision result closer to expecta-
tion of experts. CRP is a dynamic evolution process, which
is usually reached after several rounds of discussion. The
moderator in a consensus model takes responsibility for the
supervision and regulation of the whole consensus process.
Reaching a consensus needs the support of each expert, who
collaborates with each other, has the ability to modify the
preference according to the feedback, and willing to find an
appropriate solution for the group. A CRP mainly includes
the following steps [23]:

(1) Preference gathering
Every expert ez is requested to provide his/her preferences

upon all alternatives, in form of fuzzy preference relations,
or other various forms.

(2) Consensus degree measurement
There are different ways to determine the consensus

degree, for instance, based on the use of similarity or distance
measures of experts’ preferences, to obtain the consensus
degree of the group. The consensus degree cr is usually a
value in the interval [0, 1].

(3) Consensus control
A pre-established threshold μ ∈ [0, 1] is applied to deter-

mine if the consensus is reached or not. If cr ≥ μ, we say
that consensus has been reached among the experts, then the
selection process should be carried out. Otherwise, another
round of adjustment should be carried out. In order to avoid
too many rounds of discussion, a maximum number of dis-
cussion rounds is set as Maxround ∈ N.

(4) Feedback generation
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During the CRP, the individual preferences of the experts
will be gathered to form a collective preference Pc. The
experts whose preferences are farthest from the collective
one should be identified, and modified to increase the con-
sensus degree in the following rounds.

2.3 Nullnorm operator

Nullnormoperatorwas first proposed in 2001 [24]. This oper-
ator combines relevant properties of t-norms and t-conorms,
and it has been successively applied in various practical
fields.

Definition 2 [25] A nullnorm operator is a function NU :
[0, 1] × [0, 1] −→ [0, 1], which satisfies the following
properties:

• Commutativity: NU (x, y) = NU (y, x);
• Monotonicity: NU (x, y) ≤ NU (x, d),if y ≤ d;
• Associativity: NU (x, NU (y, d)) = NU (NU (x, y), d);
• Annihilator element: ∃u ∈ [0, 1],s.t. NU (x, u) = u

In the consensus model which will be proposed in the cur-
rent paper, the weights of experts will be determined based
on their performance in both the current round and the previ-
ous rounds during the CRP. The main purpose is to make use
of historical information to provide a more comprehensive
weight determination process [10]. To realize the goal, we
need to apply an operator satisfying the properties: commu-
tativity, monotonicity and associativity. Obviously, nullnorm
operators can be the choice. Without loss of generality, a spe-
cific nullnorm operator in [26] is applied in the current work
and presented as below.

NU (x, y) =
⎧⎨
⎩
uS( xu ,

y
u ) x, y ∈ [0, u]2

u + (1 − u)T ( x−u
y−u ,

1−y
1−u ), x, y ∈ (u, 1]2

u, otherwise

(1)

where S and T are t-norm and t-conorm, product t-norm
T (x, y) = xy and t-conorm S(x, y) = x + y − xy are
adopted.

2.4 Self-managementmechanisms for
non-cooperative behaviors

During the CRP, some experts may exhibit non-cooperate
behaviors, motivated by personal benefits, interest, or other
complex factors. Effectivelymanaging such behaviors is cru-
cial for enhancing the efficiency and reasonable decision
making [14]. A self-management mechanism is usually con-
sisted of the following contents.

(1) Identification of non-cooperative behaviors
Different mechanisms for identifying non-cooperative
behaviors have been proposed in the literature. These
mechanisms usually categorize behaviors into two or
three categories, as discused in existing studies [16, 27–
30].

(2) Weight updating of experts
The self-management of non-cooperate behaviors is
usually achieved by adjusting weights of the experts
according to their performance in CRP. MMEM [16]
has been used as a tool to update the weights for experts
according to their non-cooperative behaviors, and to
realize the self-management during the CRP in GDM
[16] and LSGDM [17].

3 A consensus model dealing with
non-cooperative behaviors by using
a self-management weight generation
scheme

In this section, to deal with non-cooperative behaviors during
the CRP, a group consensus model with a self-management
weight determination mechanism based on comprehensive
score is proposed, as shown in Fig. 1.

3.1 CRP in GDM problemwith non-cooperative
behaviors

During CRP in GDM, some of the experts may seek for
personal benefits rather than the group benefit, and perform
non-cooperative behaviors. They may reject the manager’s
suggestions to achieve the group consensus, or act in a per-
functorymanner. In order to speed up the CRP, it is necessary
to identify non-cooperative behaviors for individuals in a
reasonable manner and deal with different types of non-
cooperative behaviors (such as, low professional level, over
collaborate, and so on, which will be discussed in Section
4.1) in an effective way. The current work aims to propose
a consensus model which deals with non-cooperative behav-
iors efficiently.

Let X = {x1, x2, ..., xn}(n ≥ 2) be a set of alterna-
tives, E = {e1, e2, ..., em} be a set of experts, and P(z,t) =
(p(z,t)

i j )n×n be the preference relations provided by expert

ez in round t . Let W = (w(1,t), w(2,t), . . . , w(m,t))T be the
weighting vector, where w(z,t) is the weight of expert ez
in round t during the CRP, and Ŵ = (ŵ(1,t), ŵ(2,t), . . . ,
ŵ(m,t))T be the normalized weighting vector, which satisfies
that

∑m
i=1 ŵ(i,t) = 1. To facilitate the understanding of this

study, some frequent applied mathematical symbols that will
be used in the consensus model are listed in Appendix A.1,
Table 4.
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Collective 
preference

matrix

Weighted
aggregation

Fig. 1 Consensus model with a novel weight generation scheme

The established weight generation mechanism is inte-
grated into the consensus model to form the framework to
handle GDM problems.

(1) Consensus degree measurement
Following a widely applied strategy to deal with CRP in
GDM, this paper applies a consensus measure based on
experts’ weights, to determine whether the GDM prob-
lem has reached the consensus, and whether some of
the experts should adjust their preferences or not. The
consensus measure proposed by Palomares et al. [31] is
adapted to measure the consensus degree of the group.
The similarity matrix for a pair of experts (ez, eh) in
round t is defined by

SM (zh,t) = (sm(zh,t)
i j )n×n (2)

where

sm(zh,t)
i j = 1 − |p(z,t)

i j − p(h,t)
i j | ∈ [0, 1] (3)

is the similarity degree between the preferences of
experts ez and eh on alternatives xi over x j in round
t .
In round t , the consensus matrix CMt = (cmt

i j )n×n is
obtained by considering the weights of experts, where
cmt

i j means the consensus level of the pair of alternatives

(xi , x j ), and it is computed by

cmt
i j =

∑m−1
z=1

∑m
h=z+1 wt

zhsm
(zh,t)
i j∑m−1

z=1
∑m

h=z+1 wt
zh

(4)

where w(z,t) and w(h,t) ∈ [0, 1] are the experts’, ez and
eh , weights in round t, respectively, which are deter-
mined by the mutual evaluation matrix in Section 3.2
and the null-norm operator based on self-management
weight generation scheme provided in Section 3.3 and
wt
zh = min(w(z,t), w(h,t)). Subsequently, the consensus

level in different dimensions can be computed according
to the consensus matrix as follows.

i) Consensus level of all experts on alternative xi ,

cati =
∑n

j=1, j �=i cm
t
i j

n − 1
(5)

ii) Collective consensus level (group consensus level) of
all experts on all alternatives,

clt =
∑n

i=1 ca
t
i

n
, clt ∈ [0, 1] (6)

A larger value of clt indicates a higher consensus level
among all experts. If clt = 1, it indicates that all experts
reach a full consensus. A threshold value cl is set, if
clt > cl, the consensus is reached, otherwise the pref-
erences of all experts need to be adjusted according to
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the suggestions provided by the moderator, to be closer
to the collective preference.

(2) Collective preference computation.
Individual preferences will be aggregated, by consider-
ing the weights of experts in round t , and the collective
preference can be obtained as below.

p(c,t)
i j = W A(p(1,t)

i j , p(2,t)
i j ), . . . , p(m,t)

i j ) =
m∑
z=1

w(z,t) p(z,t)
i j

(7)

(3) Feedback generation
Let the preference matrix of expert ez in round t be
P(z,t) = (p(z,t)

i j )n × n(z = 1, 2, . . . ,m), and let the

collective preference matrix in round t be P(c,t) =
(p(c,t)

i j )n × n. Let the adjusted preference of P(z,t)

in round t + 1 be P(z,t+1) = (p(z,t+1)
i j )n × n(z =

1, 2, . . . ,m), and the adjustment rule is presented as (8),
which is adapted from the strategy proposed in [31].

{
p(z,t+1)
i j ∈[min(p(z,t)

i j ,p(c,t)
i j ),max(p(z,t)

i j ,p(c,t)
i j )] i f i≤ j

p(z,t+1)
i j = 1 − p(z,t+1)

j i , i f i > j

(8)

(4) Non-cooperative behaviors identification
It should be noticed that (8) is the suggestion provided
by moderator to experts, however not all experts are
glad to or have the ability to do adjustments accord-
ing to it. That is to say, non-cooperative behaviors
exist. The non-cooperative behaviors will be classified
into 7 different types, which will be discussed in a
detailed way in Section 4.1. To deal with these behav-
iors, non-cooperative behaviormatrixwill be established
as is presented in Section 4.2, and a self-management
mechanism for updating experts’ weights is provided in
Section 4.3.

(5) The exploitation process

The selection process is carried out following the strat-
egy introduced by Herrera-Viedma et al. in [32]. Denote the
collective preference relation by P(c,t) = (p(c,t)

i j )n×n and

based on P(c,t) = (p(c,t)
i j )n×n , the collective preference for

alternative xi is computed by

pr (c,t)
i = OW A

(
pr (c,t)

i1 , pr (c,t)
i2 ), . . . , pr (c,t)

in

)
(9)

where OWA is the ordered weighted aggregation operator
based on a linguistic quantifier [33, 34] to do the aggre-
gation(see Appendix D). The alternative with the largest
collective preference value will be chosen as the solution

to the decision problem, it can be not unique. The collec-
tive preference vector over X can be denoted by Pr (c,t) =
(pr (c,t)

1 , pr (c,t)
2 ), . . . , pr (c,t)

n )T .

3.2 Generation of experts’ comprehensive scores

In this subsection, we define the comprehensive score based
on the expert’s multi-attribute mutual evaluation matrix
(MMEMs). In the later round in CRP, the demanding for
cooperation should be higher than in the previous ones. It
is easy to explain, suppose that an expert always cooperates
in the first rounds, and his weight keeps growing through
several rounds of feedback, but in the last rounds of CRP
suddenly he/she changes the attitude heavily, the harm to
consensus reaching will be much more larger than the harm
caused by the expert performs non-cooperative at the begin-
ning of CRP. Our proposal for a comprehensive score that
will reflect the different demanding for cooperation at dif-
ferent stages of CRP, i.e., the demanding the later rounds of
CRP is higher. For this reason, the comprehensive score will
be used to obtain experts’ weights. The initial mutual eval-
uation score is established based on the subjective judgment
of each expert regarding their peers, considering various fac-
tors such as the knowledge reserve, professional experience,
history performance, etc.

Recall that X = {x1, x2, ..., xn}(n ≥ 2) is a set of
alternatives, E = {e1, e2, ..., em} is a set of experts. Let
A = {a1, a2, ..., al}(l ≥ 1) be a set of attributes related to
non-cooperative behaviors of experts, λ = {λ1, λ2, ..., λl}T
be the weight vector of attributes in A, each component
of the weight vector represents the importance of a non-
cooperate behavior during the determination process of
experts’ weights. In round t of the CRP, let P(z,t) =
(p(z,t)

i j )n ×n (i, j ∈ {1, · · · , n}) be the preference rela-
tion of expert ez , experts are allowed to provide mutual
score on each other according to attributes that are asso-
ciated with non-cooperative behaviors. Based on that, let
V (z,t) = (v

(z,t)
i j )m ×l (i ∈ {1, · · · ,m}, j ∈ {1, · · · , l}) be

the MMEM provided by expert ez , v
(z,t)
i j represents the eval-

uation score of the expert ei regarding the expert ez on the
attribute a j . If the expert evaluates himself/herself, the score
value is assigned as "null". According to the approach in [35],

the items in the normalizedMMEM V
(z,t) = (v

(z,t)
i j )m×l can

be obtained by:

i) for benefit attribute a j , v
(z,t)
i j = v

(z,t)
i j∑m

i=1,i �=z v
(z,t)
i j

;

ii) for cost attributes a j , v
(z,t)
i j =

(
1

v
(z,t)
i j

)
/

(
1∑m

i=1,i �=z v
(z,t)
i j

)

=
∑m

i=1,i �=z v
(z,t)
i j

v
(z,t)
i j

;

iii) for any attribute a j , v
(z,t)
i j = null(i = z).
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In the current work, without loss of generality, we use
attributes in the MMEM according to the classification
of non-cooperate behaviors in Section 4, as: cooperative
attitude, reliability, cooperative ability, professional level,
fairness, not over collaborate, and not conspiracy. All of them
are benefit attributes, that is, the more cooperative an expert
is, the larger the related value of item is in the MMEM. For
the convenience of discussion, when we mention v

(z,t)
i j in the

following contents, it means the normalized mutual score,
i.e., v(z,t)

i j .
In round t , the mutual score of expert ez defined in [17],

can be denoted byμ(z,t) and computed by using the following
equation.

μ(z,t) = 1

m − 1

m∑
i=1,i �=z

⎛
⎝

l∑
j=1

λ jv
(z,t)
i j

⎞
⎠ (10)

The mutual score reflects the importance degree of
expert ez according to other experts’ evaluations about non-
cooperative degree. It is easy to achieve that μ(z,t) ∈ [0, 1].
Afterwards, a specific function is applied in the current
work,1 to define the comprehensive score based on mutual
score.

σk (y) = y − yk·n

(k · n − 1)(1 − y)
(11)

where k, n ∈ N+.
The comprehensive score of the expert ez in round t is

expressed as σ (z,t), which is obtained by

σ
(z,t)
k = σk(μ

(z,t)) ∈ [0, 1] (12)

The mutual score can be transformed into a comprehen-
sive score through the OPE function σk(see Appendix A,
Fig. 9). With a fixed consensus round n, the value of compre-
hensive score increases when mutual score increases. The
value of mutual score is closely related to the cooperative
degree of experts, there is a direct proportionality relation.
Thatmeans, themore cooperative an expert is, the larger com-
prehensive score function. Meanwhile, with a fixed mutual
score, the value of the comprehensive score decreases with

1 Considering that if k = 1, function σk has ever been applied
to describe the relationship between the orness of the pessimistic
exponential OWA operator[36, 37], we call σk the orness pessimistic
exponential(OPE) function (see Fig. 9) in the current work. The reason
why we choose OPE function is that: supposed that k is fixed, i) for
a fixed y, the value of σk (y) decreases as value n increases, ii) for a
fixed n, the value of σk (y) increases as value y increases. Taking use
of these two properties, we can realize the distinguished treatment for
non-cooperative behaviors in different periods of CRP by applying (12).

the increase of the number of consensus rounds. That is to say,
to achieve the same comprehensive score in the later round
of CRP, the mutual score should be higher. In the later round
of CRP, the expectation for cooperative degree is higher, the
comprehensive score is defined to reflect this demanding.
In the following sections, the application of comprehensive
score contributes to achieve the goal that: for the same level
non-cooperation, the punishment in the later period of CRP
is greater than that in the earlier period, during the weight
determination process.

Hyper-parameter k can be used to control the degree
that moderator of CRP holds opinion that “non-cooperative
behavior in later rounds of CRP is more harmful than such
behavior in early rounds". The larger k is, the more moder-
ator supports that “punishment on weights of experts who
perform non-cooperative behaviors in later rounds should be
larger than in the beginning rounds". For a fixed n(n > 1),
the larger k is, the larger the difference in value of σk(y)with
n = 1 and n = n0(n0 > n). For instance, in Fig. 9we present
the OPE functions with k = 1 and k = 2, respectively. For a
fixed y and a fixed n, we have σ1(y) > σ2(y), that means for
a fixed mutual score on an expert, the comprehensive score
computed by (12) by σ2 is smaller then the comprehensive
score computed by σ1. Then, the weight of this expert will
also be reduced more (by the scheme introduced in Section
3.4, (13)-(16)). In the following contents, we use k = 2 with-
out lost of generation, and denote OPE function with k = 2.
i.e. σ2 by σ for simplicity.

Experts only need to provide evaluations inMMEMonce,
afterwards mutual score and comprehensive score are com-
puted by (10) and (12), respectively. From the second round
of the CRP, the item in MMEM will be updated by applying
(31) and (32), which will be detailed in Section 4.2, based on
which the mutual score and the comprehensive score could
be updated, correspondingly.

3.3 Generation of experts’weights
based on comprehensive score

In the current subsection, the comprehensive score will be
applied to obtain the weights for experts, and a weight
dynamic iterativemodelwill be set up to promote the achieve-
ment of consensus.

An expert’s weight should not only be related to the com-
prehensive score in the current round, which reflects the
cooperative level in that round, but also to the comprehen-
sive score in the previous round, which reflects the historical
cooperative level. By applying the nullnormoperator denoted
byNU, the cooperation behavior in the previous round can be
further concerned to determine the weights, to take use of the
information in a more comprehensive way. Considering the
information collected in the current round and the previous
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one, we have

w(z,t) =
{

σ (z,t), t = 1
NU

(
σ (z,t), σ (z,t−1)

)
, t ≥ 2

(13)

w(z,t) represents theweight of expert ez in round t , it can be
computed from the comprehensive score σ (z,t) in round t and
the score σ (z,t−1) in the previous round t − 1. Equation (13)
establishes a link between the comprehensive score of experts
and their weights. In the current round of CRP, if an expert
is more cooperative than in the previous one, then his/her
comprehensive score is higher, and then the weight should
be increased; If an expert is less cooperative than in previous
round, the expert’s comprehensive score should be lower, and
then theweight should be reduced. If in the previous round an
expert was cooperative, implies a high comprehensive score
as well as a high value of weight, then his/her weight in the
current round should be kept or increased; If an expert was
uncooperative, implies a low comprehensive score as well as
a low value of weight, then the expert’s weight in the cur-
rent round should be reduced. In this way, during the weight
determination process, not only the comprehensive score in
the current round could be considered, but also the compre-
hensive score reflected by the weight in the previous round
could be taken into consideration. The application of null-
norm operator can help us achieve the purpose of controlling
the impacts of non-cooperative behaviors of experts.

If the information collected in the current round and
previous two consecutive rounds (i.e., 3 rounds in all) are
considered by the moderator, (13) can be further developed

as

w(z,t) =
⎧⎨
⎩

σ (z,t), t = 1
NU

(
σ (z,t), σ (z,t−1)

)
, 3 ≥ t ≥ 2

NU
((

σ (z,t), σ (z,t−1)
)
, σ (z,t−2)

)
t ≥ 3

(14)

The commutativity, monotonicity and associativity prop-
erty of nullnorm operator ensures that i) if one of the element
increases, the computation result increases; ii) the value of
σ (z,t), σ (z,t−1) and σ (z,t−2) has the same impact on the com-
putation result. If more rounds of information (such as η

rounds) need to be considered, it is suggested that

w(z,t) =

⎧⎪⎪⎨
⎪⎪⎩

σ (z,t), t = 1
NU

(
σ (z,t), σ (z,t−1)

)
, 3 ≥ t ≥ 2

· · · · · ·
NU

(
NU

(· · · NU
((

σ (z,t), σ (z,t−1)
)
, σ (z,t−2)

) · · · ) , σ (z,t−η+1)
)
t ≥ η

(15)

Here, the associativity property of the nullnorm operator
ensures that the value of comprehensive score in each has the
same impact on the computation result.

The weight w(z,t) should be normalized at this stage, and
denoted by ŵ(z,t).

ŵ(z,t) = w(z,t)
∑m

i=1 w(z,t)
(16)

The normalized weights will be applied in the preferences
aggregation process and the consensus degree calculation

t-5  t-4   t-3   t-2   t-1  t Eq.(16)

Eq.(15)

Eq.(14)

Mutual score

Comprehensive 
score

Weights of 
experts

y

x

X axis: rounds in CRP
Y axis: negative impacts of a 
non-cooperative behavior on 
consensus reaching

So and so

Very harmful

Axis: rounds in CRP

Null norm operator: to consider
historical noncooperative behaviors

OPE function: to distinguish the
impacts of a non-cooperative behavior 

at different times

t-5  t-4   t-3   t-2   t-1   t

t-5  t-4   t-3   t-2   t-1   t

Fig. 2 Mechanism for establishing the weights of experts
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process. Figure 2 indicates the application of OPE function
and null-norm operator in determining weights of experts in
a intuitive way.

4 Management of non-cooperative
behaviors and its effects in CRP

We have previously mentioned that in specialized literature
non-cooperative behaviors are similar managed in spite of
such behaviors may come from different reasons. In this

section, seven experts’non-cooperative behaviors during the
CRP are identified according to the nature of the behav-
ior. Hence, different penalty coefficients are designed, to
effectively manage different types of the non-cooperative
behaviors see Fig. 3.

4.1 Non-cooperative behaviors identification

From the second round of the CRP, preference could be
provided by experts considering the feedback information,
therefore, in the following discussion to identify seven types

Non-cooperative behaviors 1 Negative cooperative attitude

Non-cooperative behaviors 2 Low reliability

Suggested preference 
in round t

Expert preference 
in round t-1

The degree modify in round t

Non-cooperative behaviors 3 Lack  of  cooperative  ability

Average preferenceIndividual preference

The gap is too large

Non-cooperative behaviors 4 Low  professional  level

Non-cooperative behaviors 5 Lack  of  fairness

Preference adjustment

The number of preferences for the target change

The number of preferences that actually changed

Round t

Non-cooperative 
coefficient

1 2 3 4 Experts preference 
in round t-1

Suggested preference 
in round t

Actual changed 
preference in round t

Non-cooperative behaviors 6 Over  collaborate

Non-cooperative behaviors 7 Vandalism

Actual changed 
preference in round t

Experts preference 
in round t-1

Suggested preference 
in round t

Suggested modified directionActual modified direction

Threshold

Fall short of the 
requirement

Expert preference in round t-1

Suggested preference in round t

Actual changed preference in round t

Collective ranking

Bias the collective ranking

The gap is too large

Individual ranking

Fig. 3 The seven types of non-cooperative behavior of experts defined in this study
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of non-cooperative behaviors,we assume that the round t ≥ 2
[16].

(1) Non-cooperative behavior a1: negative cooperative atti-
tude
During the CRP, if experts are requested to modify
their preferences to pursue a consensus, but the experts
choose not to modify their preferences at all, the behav-
ior is called non-cooperative behavior 1, which can be
defined by introducing the cooperation coefficient. Let
#ADV (z,t) be the number of preferences that the expert
ez is advised tomodify in round t . #ACP(z,t) is the num-
ber of preferences that the expert accepts to change, that
is, the expert modifies his/her preferences according to
the feedback process in round t(t ≥ 2) during the CRP.
The cooperation coefficient of experts in round t(t ≥ 2)
is denoted by CC (z,t) and defined by (17).

CC (z,t) =
{
1, #ADV (z,t) = 0
#ACP(z,t)

#ADV (z,t) , else
(17)

Correspondingly, the coefficient of noncooperation is
denoted by NC(a1)(z,t) and defined by

NC(a1)
(z,t) = 1 − CC (z,t) (18)

The higher the value of non-cooperation coefficient
NC(a1)(z,t), the less cooperative the expert’s ez behav-
ior is in round t(t ≥ 2). Let δ(a1) (δ(a1) ∈ (0, 1)) be an
pre-established threshold. If NC(a1)(z,t) > δ(a1), we
call that the expert ez performs non-cooperative behav-
ior a1 in round t(t ≥ 2).

(2) Non-cooperative behavior a2: low reliability
The experts’ non-cooperation coefficient may change
during the CRP. In a healthy CRP scheme, the non-
cooperative behavior of most experts are expected to
be lower and lower with the increase of the number of
rounds. However, it is possible that the non-cooperation
coefficient of some experts may increase abruptly in a
certain round, although he/she keeps performing coop-
erative in previous several rounds. Such a behavior is
conspiratorial unco-ordination, the expert is identified
as a conspirator/schemer, who aims to slow down con-
sensus.
The non-cooperation coefficient of expert ez in round t
related to a2 is denoted by NC(a2)(z,t) and defined by
(19).

NC(a2)
(z,t) = NC(a1)

(z,t) −
∑t−1

i=1 NC(a1)(z,i)

t − 1
(19)

The higher of non-cooperation coefficient NC(a2)(z,t),
the more conspiratorial the expert ez is in round t . Let

δ(a2) (δ(a2) ∈ (0, 1)) be an pre-established threshold.
If NC(a2)(z,t) > δ(a2), we call the expert ez in round
t(t ≥ 2) performs non-cooperative behavior a2.

(3) Non-cooperative behavior a3: lack of cooperative abil-
ity
If some experts receive feedback to do modifications,
they would like to cooperate but only a little bit, and the
modification result is still too far form the suggestion,
the behavior will also lead to difficulty for the group to
reach consensus. This kind of behavior is classified into
non-cooperative behavior 3.
Suppose that the preference matrix provided by expert
ez in round t is P(z,t) = (p(z,t)

i j )n×n , where p(z,t)
i j is

the preference of expert ez in round t , corresponding to
the item on position row i , column j in the matrix. Let
p(c,t)
i j be the collective preference of all experts in round

t , corresponding to the item on position row i , column
j , which is also the target that expert ez is advised to
modify to in round t .
Let

D(z,t) =
n∑

i=1

n∑
j=1

|p(z,t)
i j − p(z,t−1)

i j | (20)

and

D(z,t)
c =

n∑
i=1

n∑
j=1

|p(c,t−1)
i j − p(z,t−1)

i j | (21)

where D(z,t) represents the adjustment amount of expert
ez’s preference in round t , D(z,t)

c represents the recom-
mended amount of modifications for expert ez in round
t .
Let the coefficient

NC(a3)
(z,t) = 1 − D(z,t)

D(z,t)
c

(22)

where D(z,t)

D(z,t)
c

represents the ratio of the expert ez’s prac-

tical adjustment to the recommended adjustment. If
D(z,t)
c = 0, set NC(a3)(z,t) = 0. The higher the

value NC(a3)(z,t), the greater the degree to which the
expert failed to adjust as recommended in round t . Let
δ(a3) (δ(a3) ∈ (0, 1)) be an pre-established threshold. If
NC(a3)(z,t) > δ(a3), the behavior of expert ez in round
t is non-cooperative behavior a3.

(4) Non-cooperative behavior a4: low professional level
If there is an expert whose preferences are always sig-
nificantly different from those of other experts, we infer
that this expert has major problems in professional com-
petence and his/her opinion may generate serious errors
in the final results. The preferences of individuals and
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the average preferences will be compared. Let p(a,t)
i j be

the preference obtained by computing the average of the
group preferences, as is shown by (23).
Let

p(a,t)
i j = 1

m

m∑
z=1

p(z,t)
i j (23)

where p(z,t)
i j is ez respect to the preferences of xi and x j

in round t , then p(a,t)
i j is the average preference about xi

to x j in round t .
And the distance from the preference of expert ez and
the average opinion can be reflected by coefficient
NC(a4)(z,t) and computed by

NC(a4)
(z,t) = 1

n2

n∑
i=1

n∑
j=1

|p(z,t)
i j − p(a,t)

i j | (24)

Let δ(a4) (δ(a4) ∈ (0, 1)) be a pre-established thresh-
old. If NC(a4)(z,t) > δ(a4), we call the behavior of
expert ez in round t is non-cooperative behavior a4.

(5) Non-cooperative behavior a5: lack of fairness
Some experts may hide their true preferences during the
CRP in GDM, and intend to profit from it. For exam-
ple, an expert may reduce the priority of an alternative
deliberately elevating the ranking of other alternatives.
This behavior will not only reduce the efficiency of
consensus, but also leads to biased decision making
results. Dong et al. [17] figured out this type of non-
cooperative behavior, and in this proposal we view it as
non-cooperative behavior a5.
Let Pr (c,t−1) = (pr (c,t−1)

1 , pr (c,t−1)
2 , ..., pr (c,t−1)

n )T

be the preference vector obtained from the collective
assessments of the group in round t − 1, in which
OWA operator is applied to do the aggregation, and
Pr (z,t) = (pr (z,t)

1 , pr (z,t)
2 , ..., pr (z,t)

n )T be the prefer-
ence vector obtained from the expert ez in round t , which
is also based on the OWA operator.
Let

O(z,t) = (o(z,t)(x1), o
(z,t)
2 (x2), ..., o

(z,t)(xn))
T (25)

be the ranking vector obtained from the preference of
expert ez , where o(z,t)(xi ) is the position of the alter-
native xi in X according to Pr (z,t). For example, if
Pr (z,t) = (0.2, 0.6, 0.4)T , we have O(z,t) = (3, 1, 2)T .
Besides, O(c,t) = (o(c,t)(x1), o

(c,t)
2 (x2), ..., o(c,t)(xn))T

is the ranking vector obtained from the collective
preference.

By applying a pre-established threshold δ(a5)(δ(a5) ∈
(0, 1)), a coefficient NC(a5)(z,t) is defined as below.

NC(a5)
(z,t) =

{
1, i f |o(z,t)(xo) − o(c,t−1)(xo)|>round(δ(a5)×n)

0, else

(26)

where round is a round operator, and o(z,t)(xo) is the
rank value of xo(xo ∈ [x1, · · · , xn]), where x0 satis-
fies the condition that o(c,t−1)(xo) = 1. The coefficient
NC(a5)(z,t) is computed by considering the alternative
ranks first based on the collective preference.
For example, suppose that Pr (1,t) = (0.2, 0.6, 0.4)T

and Pr (c,t−1) = (0.5, 0.2, 0.4)T . Based on Pr (c,t−1),
we have o(c,t−1)(xo) = o(c,t−1)(x1) = 1. According to
(25), we can obtain o(1,t) = (3, 1, 2)T and o(c,t−1) =
(1, 3, 2)T , so o(1,t)(x1) = 3, we set δ(a5) = 0.4, from
|3−1| > round(1.2), we get NC(a5)(1,t) = 1, then we
know that expert e1 performs non-cooperative behavior
a5 in round t .

(6) Non-cooperative behavior a6: over collaborate
Let us recall (8), under normal circumstance, the adjust-
ment rule is presented as

{
p(z,t)
i j ∈ [min(p(z,t−1)

i j , p(c,t−1)
i j ),max(p(z,t−1)

i j , p(c,t−1)
i j )], i f i ≤ j

p(z,t)
i j = 1 − p(z,t)

j i , i f i > j

(27)

Suppose that in round t of CRP, the preference of
ez over (xi , x j ) is suggested to be modified from

p(z,t−1)
i j to p(c,t−1)

i j , however if the expert ez’s modifi-

cation goes beyond the interval [min(p(z,t−1)
i j , p(c,t−1)

i j ),

max(p(z,t−1)
i j , p(c,t−1)

i j )] in practice, that is, expert does
over modification, this type of behavior is viewed as a
type of non-cooperative behavior which is caused by
over collaboration.
A coefficient NC(a6)(z,t) is defined as below.

NC(a6)
(z,t) =

{
1, i f p(z,t−1)

i j < p(c,t−1)
i j < p(z,t)

i j or p(z,t)
i j < p(c,t−1)

i j < p(z,t−1)
i j , #(p(z,t)

i j ) ≥ 1
2 n

2

0, else

(28)

Here, #(p(z,t)
i j ) is the number of items in the preference

relation of ez in round t , and (28) indicates that if more
than half of the preference values of an expert satisfies
p(z,t−1)
i j < p(c,t−1)

i j < p(z,t)
i j or p(z,t)

i j < p(c,t−1)
i j <

p(z,t−1)
i j , then this expert is identified performing behav-

ior a6. That is, if NC(a6)(z,t) = 1, we call the behavior
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of expert ez in this round t is non-cooperative behavior
a6.

(7) Non-cooperative behavior a7: conspiracy
Let us recall (27), suppose that in round t of CRP, the
preference of ez over (xi , x j ) is suggested to bemodified

from p(z,t−1)
i j to p(c,t−1)

i j , however the expert goes into
the opposite direction to the suggested one, this type of
behavior is viewed as a type of non-cooperative behavior
which is related to conspiracy. This behavior has been
pointed out in our previous research [38, 39], it is mod-
eled as below.

A coefficient NC(a7)(z,t) is defined as below.

NC(a7)
(z,t) =

⎧⎪⎨
⎪⎩

1, i f p(z,t−1)
i j < p(c,t−1)

i j and p(z,t)
i j < p(z,t−1)

i j or

i f p(z,t−1)
i j < p(z,t)

i j and p(c,t−1)
i j < p(z,t−1)

i j #(p(z,t)
i j ) ≥ 1

3 n
2

0, else.

(29)

This equation indicates that if more than one thrid of the
preference valus of an expert satisfies p(z,t−1)

i j < p(c,t−1)
i j and

p(z,t)
i j < p(z,t−1)

i j , or satisfies p(z,t−1)
i j < p(z,t)

i j and p(c,t−1)
i j <

p(z,t−1)
i j , that is, NC(a7)(z,t) = 1, we call the behavior of

expert ez in this round t is non-cooperative behavior a7.
Seven types of non-cooperative behaviors have been intro-

duced. Besides, during the CRP process in a real decision
making problem, sometimes not all types of behaviors are
necessary to be considered. Without loss of generality, the
attributes set corresponding to non-cooperate behaviors are
denoted by A = {a1, a2, . . . , al}. A non-cooperative behav-
ior matrix NC (t) = (rz f )m×l in round t during CRP is estab-
lished to describe the performance of experts {e1, e2, . . . , em}
in different behaviors, in which rz f = 1 if the expert ez per-
forms non-cooperative behavior a f , and rz f = 0 indicates
that the expert ez does not perform non-cooperative behavior
a f .

NC (t) =

⎛
⎜⎜⎜⎜⎝

r11 r12 . . . r1q
r21 r22 . . . r2q
. . . . . . . . . . . .

. . . . . . . . . . . .

rm1 rm2 . . . rmq

⎞
⎟⎟⎟⎟⎠

(30)

4.2 The adjustment mechanism of MMEM for
dealing with non-cooperative behavior

In a practical GDM problem, it is hard to predict what
kind of non-cooperative behavior experts will perform, so in
each round of CRP it is necessary to distinguish the behav-
ior of experts first, and then deal with different behaviors
accordingly. By introducing a self management mechanism

Table 1 Penalize factors for different non-cooperative behaviors

Attributes a1 a2 a3 ... al

Penalize factor θ(a1) θ(a2) θ(a3) ... θ(al )

to control the weights of attribute to do preferences aggrega-
tion during the CRP, the non-cooperative behavior of experts
can be well addressed.

In this proposal, the attributes in the MMEM are listed
as follows: Cooperative Attitude(a1), Reliability(a2), Coop-
erative Ability(a3), Fairness(a4), Professional level(a5), Not
over collaborate (a6), andNot conspiracy (a7). Each attribute
corresponds to a kind of non-cooperative behavior which is
mentioned in Section 4.1, and each non-cooperative behavior
corresponds to a penalty factor. Once the expert is identi-
fied performing a non-cooperative behavior, the evaluation
value in the MMEM with the corresponding attribute will
be adjusted by applying the following strategy. The adjusted
MMEM is then applied to update the weights of experts dur-
ing the CRP.

Let θ be the penalize factor function, which can be
viewed as a fuzzy set defined on the universe of attributes
{a1, a2, · · · , al}, as is shown by Table 1.

In the current work, l = 7. If an expert ez is identi-
fied performing a non-cooperative behavior a1 − a4 j( j ∈
{1, · · · , 4}), the evaluation on this expert regarding to the
attribute a j is modified by

v
(z,t+1)
i j =

⎧⎪⎨
⎪⎩

null, i f i = z

v
(z,t)
i j × (1 − θ(a j )), i f i �= z and NC(a j )

(z,t) ≥ δ(a j )

v
(z,t)
i j , i f i �= z and NC(a j )

(z,t) < δ(a j )

(31)

If an expert is identified as performing a non-cooperative
behavior a5 − a7 j( j ∈ {5, 6, 7}), the evaluation on this
expert should be decreased by

v
(z,t+1)
i j =

⎧⎪⎨
⎪⎩

null, i f i = z

v
(z,t)
i j × (1 − θ(a j )), i f i �= z and NC(a j )

(z,t) = 1

v
(z,t)
i j , i f i �= z and NC(a j )

(z,t) = 0

(32)

4.3 Effect of different non-cooperative behaviors
on the weight generation scheme in CRP

The mechanism established in this study is mainly used to
regulate seven different kinds of non-cooperative behaviors
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Fig. 4 Mechanism to update experts’ weights based on non-cooperative behaviors in CRP

of experts in the consensus process, so as to promote con-
sensus results faster and more efficient. The non-cooperative
behaviors identification basis and the weights updating
scheme is shown by Fig. 4. For instance, the behavior “lack
of fairness" of an expert in round t + 1 is identified based on
the collective preference in round t and his/her preference in
in round t + 1. The main process of the mechanism is sum-
marized as follows: (1) Calculate the consensus degree of
the group in the first round of CRP, based on the initial pref-
erence matrix and MMEMs provided by experts; (2) From
the second round of the CRP, evaluate that whether some
of the experts perform non-cooperative behaviors, accord-
ing to the preference modification of experts. Furthermore,
determine which type of non-cooperative behavior each non-
cooperative expert belongs to; (3) If an expert performs
non-cooperative behavior, the expert’s score on the attribute
corresponding to the MMEM will be reduced by the estab-
lished mechanism introduced in Section 4.2; (4) Through the
weight generationmechanism based on comprehensive score
introduced in Sections 3.2 and 3.3, the weights of experts
will be updated in the next round of CRP, experts who per-
form non-cooperative behaviors will be reduced, therefore
the consensus can be reached faster.

4.4 Comparative analysis

This subsection presents a comparative analysis among the
current proposal and some existing non-cooperate behav-
ior management schemes. The comparison has been carried
out from aspects of non-cooperative behavior identification
mechanisms, punishment strategies for different types of
non-cooperative behaviors, and experts’ weights determina-
tion strategies, as is shown by Table 2.

1. Non-cooperative behavior identification. Although the
non-cooperative behaviors identified in existing
researches can describe the problems that may occur
during the decision making, they are not comprehensive
enough. Considering the following issues: (1) whether
there is non-cooperative behavior reflected by the num-
ber or proportion of experts’ modified preferences; (2)
whether experts have unexpected preference adjustment
abnormalities. The current paper identifies seven pos-
sible non-cooperative behaviors during the CRP, so as
to facilitate non-cooperative behaviors management and
control.

2. Determination of expert weight. Dong et al. [16] initiated
application of MMEMs to obtain the weight of experts in
the consensus process, and this papermade innovations on
the basis of it. (1) Through the application of OPE func-
tion, the mutual score of experts are processed, so as to
achieve the result that if the experts perform the same non-
cooperative behavior, the punishment in the later period
is greater than in the earlier period. (2) This proposal also
takes the historical evaluation of experts into consider-
ation when determining the weight of experts by using
the null-norm operator, which further facilitates different
treatments of experts’ non-cooperative behaviors at dif-
ferent periods.

3. In most existing approaches in literature, the same pun-
ishment strategy are taken to deal with different kinds of
non-cooperative behaviors. However, it is more convinc-
ing that different non-cooperative behaviors may have
different impacts on the decision results. Therefore, the
current proposal distinguishes the punishment factors of
non-cooperative behaviors according to their effects, so
as to achieve more reliable decision result.
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Table 2 Comparison with existing GDM approaches dealing with non-cooperative behaviors

Method Non-cooperative behavior identification Weight determination Strategy

Quesada et al. [40] One type: If the ratio of the number It is determined by the degree

of changed preference exceeds of collaboration, based on The same update manner

a threshold, the expert is uninorm operator

judged to be non-cooperative

Xu et al. [41] One type: The level of cooperation and Update weights through

Non-cooperative behavior of experts confidence is determined by the the same manner.

determine the weights. adjustment quantity proportion

according to the cluster result.

Xu et al. [42] One type: The expert weight is equalized Update "adjust coefficient”

The established distance formula through the same manner.

is applied to identify

non-cooperative experts

Mandal Prasenjit One type: It is determined Update weights

and Madhumangal [43] The group consensus index based on the number of experts through the same manner.

was used to determine in the cluster

whether the expert was non-cooperative

Xiang [44] One type: It is determined by

It is determined by the consistency of Q-learning algorithm Update weights through

intra-group and inter-group opinions the same manner.

Xu et al. [45] One type: Randomly generated

Randomly generate according to a normal distribution Update weights through

the coefficient of non-cooperation the same manner.

Li et al. [46] One type: It is determined by

Random, illogical preference relation the consistency index Consistency driven

Xu et al. [27] Two types: Based on point centrality and Update non-collaborate coefficient

(1) General non-cooperative behaviors personal proximity centrality. through the same manner

(2) Serious non-cooperative behaviors

Dong et al. [16] Three types: The weight is obtained through Update weights through the

(1) According to the modification degree the mutual evaluation matrix. same manner

(2) According to the cooperation degree

(3) According to professional technology

Gou et al. [28] Three types: The expert weights are obtained by

(1) According to the modification degree combining the group cluster result and Update weights through

(2) According to adjustment direction the mutual evaluation matrix. the same manner.

(3) According to cooperation degree

Shi et al. [29] Three types: It is determined by the degree

(1) Cooperative leadership behavior of collaboration, based on Update weights through

(2)Non-Cooperative leadership behaviors uninorm operator the same manner.

(3) Ordinary behaviors

Xiong et al. [30] Three types: The expert weights are obtained by

(1) According to the modification degree the group cluster result Update weights through

(2) According to the difference the same manner.

between sub-groups and large group

(3) According to cooperation degree

The current proposal Seven types: Weights are updated based on Different types of behavior

Determined by different attributes. comprehensive evaluation score. are dealt in different

manner determined by a function.
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5 CRP algorithm

This section presents the CRP algorithm with proposed the
non-cooperative behaviors identification and management
scheme.

Algorithm 1

Input: The preference relations P(z,t) = (p(z,t)
i j )n×n , the MMEMs

V (z,t) = (v
(z,t)
i j )m×l , the weights λ = {λ1, λ2, ..., λl }T for attributes

related to non-cooperative behaviors of experts, the pre-established con-
sensus threshold cl, and the maximum number of rounds tmax ≥ 1.
Output: The adjusted preference relations P(z,t+1) = (p(z,t+1)

i j )n×n ,

the adjusted MMEMs V (z,t+1) = (v
(z,t+1)
i j )m×l , the number of itera-

tions t .
Step 1. Let t = 0, P(z,t) = P(z,0), V (z,t) = V (z,0), z = 1, 2, . . . ,m;
Step 2. By (10), compute the mutual score of each expert ez in round t
as μ(z,t) = 1

m−1

∑m
i=1,i �=z(

∑l
j=1 λ jv

(z,t)
i j );

Step 3. By (12), compute the comprehensive score of each expert ez in
round t as σ

(z,t)
k = σk(μ

(z,t)) ∈ [0, 1];
Step 4. By (13), compute the weight of each expert ez in round t as

w(z,t) =
{

σ (z,t), t = 1
NU

(
σ (z,t), σ (z,t−1)

)
, t ≥ 2

;

Step 5. Apply (6) to obtain the consensus degree of this round clt , if
clt ≥ cl or t ≥ tmax , go to Step 8; otherwise, continue with the next
step;
Step 6. By (7), compute the collective preferences pc,ti j , and then

use (8) to adjust experts’ preferences in round t + 1 as P(z,t+1) =
(p(z,t+1)

i j )n×n ;

Step 7. Update MMEM of expert ez(z = 1, 2, . . . ,m), V (z,t+1) =
(v

(z,t+1)
i j )m×l based on (31) and (32), according to the performances

identified by (18)-(29); Let t = t + 1, then go back to Step 2;
Step 8. Output the adjusted preference relations P(z,t∗+1) =
(p(z,t∗+1)

i j )n×n which make the consensus degree reaches the pre-set

threshold cl, and the adjusted MMEMs V (z,t∗+1) = (v
(z,t∗+1)
i j )m×l ,

here the number of iterations is t∗.

6 Case study

In this section, a real life GDM problem is presented and
handled by applying the proposed model.

6.1 GDM problem formulation

The rapid spread of COVID-19 in 2019 has brought unprece-
dented challenges to the fresh market. Due to the increasing
convenience of electronic payment in China, community
group e-purchasing has become the main form of selling
fresh products, and the scope of community group purchas-
ing are gradually expanded. With the increasing challenge
in the fresh e-commerce supply chain, the high loss rate
and relative low logistic distribution efficiency of fresh pro-
duces transportation has been attracted people’s attention.
The choice of a suitable fresh distribution enterprise for a
specific product becomes more significant for a seller com-
pany which chooses group purchasing as its main model
of operation. Suppose that a company needs to make a
choice among fresh distribution enterprises, eight experts
in the field of logistics and supply chain are invited to
take part into the decision on the choice of logistics dis-
tributor. After preliminary discussion, six fresh distribution
enterprises stand out. In this case, the main purpose is to
choose the best one from the six enterprises. Experts in
E = {e1, e2, ..., e8}, try to reach an agreement about the
selection from fresh logistics cooperation alternatives X =
{x1 = Zhengming, x2 = SF Express, x3 = Suning, x4 =
JD Express, x5 = Rokin, x6 = Xiahui}, as shown in
Fig. 5. Based on experts’ judgement, among the seven
non-cooperative behaviors which are declared in Section 4,
non-cooperative behaviors a1, a2, a3 , a4 , a5 ,a6 and a7 may

Fresh logistics 
companies
evaluation

Eight experts

Self-evaluation

…

MMEMs

…

Preference matrices a1 a2  …  a7
e1 
e2 
…

e8

a1 a2 … a7
e1 
e2 
…

e8

a1 a2  …  a7
e1 
e2 
…

e8
…

x1 x2    …   x6
x1 
x2 
…

x6

x1 x2    …   x6
x1 
x2 
…

x6

x1 
x2 
…

x6

x1 x2    …   x6

…

(2,1)
(1) (2)

(8)

(1,1)

(8,1)

Fig. 5 The initial information provided by experts in fresh products community selection
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Table 3 Penalize factor for seven types of non-cooperative behaviors

Penalize factor θ(a1)∗ θ(a2)∗ θ(a3)∗ θ(a4)∗ θ(a5)∗ θ(a6)∗ θ(a7)∗

- 0.3 0.35 0.25 0.2 0.2 0.15 0.1

turn out to be on the consensus reaching in the current case,
so it is set that θ(a1)∗ -θ(a7)∗ with values as is shown by
Table 3. In this case, δ1−7 = 0.18, 1, 0.8, 0.93, 0.35, 0.5,
0.33, cl = 0.85.

6.2 The solving process

At the beginning, preference relations are requested to be
provided by experts E = {e1, e2, ..., e8}, and are listed as
below. P(i) denotes the initial preference relation provided
by expert ei .

P(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.6 0.7 0.8 0.4 0.9
0.4 0.5 0.8 0.6 0.9 0.7
0.3 0.2 0.5 0.6 0.7 0.8
0.2 04 0.4 0.5 0.4 0.3
0.6 0.1 0.3 0.6 0.5 0.7
0.1 0.3 0.2 0.7 0.3 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.7 0.8 0.6 0.4 1
0.3 0.5 0.7 0.4 0.8 0.6
0.2 0.3 0.5 0.7 0.3 0.6
0.4 0.6 0.3 0.5 0.8 0.9
0.6 0.2 0.7 0.2 0.5 0.3
0 0.4 0.4 0.1 0.7 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.59 0.22 0.3 0.46 0.9
0.41 0.5 0.14 0.25 0.17 0.8
0.78 0.86 0.5 0.73 0.7 0.95
0.7 0.75 0.27 0.5 0.73 0.93
0.54 0.83 0.3 0.27 0.5 0.98
0.1 0.2 0.05 0.07 0.02 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(4) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.3 0.46 0.73 0.28 0.17
0.7 0.5 0.73 0.87 0.79 0.81
0.54 0.27 0.5 0.7 0.24 0.46
0.27 0.13 0.3 0.5 0.13 0.17
0.72 0.21 0.76 0.87 0.5 0.54
0.83 0.19 0.54 0.83 0.45 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(5) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.65 0.45 0.15 0.6 0.4
0.35 0.5 0.8 0.75 0.3 0.7
0.55 0.2 0.5 0.55 0.6 0.45
0.85 0.25 0.45 0.5 0.9 0.6
0.4 0.7 0.4 0.1 0.5 0.7
0.6 0.3 0.55 0.4 0.3 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(6) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.8 0.65 0.9 0.7 0.8
0.2 0.5 0.6 0.7 0.3 0.55
0.35 0.4 0.5 0.6 0.7 0.35
0.1 0.3 0.4 0.5 0.65 0.3
0.3 0.7 0.3 0.35 0.5 0.7
0.2 0.45 0.65 0.7 0.3 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(7) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.44 0.35 0.81 0.76 0.83
0.56 0.5 0.2 0.27 0.79 0.9
0.65 0.8 0.5 0.9 0.86 0, 95
0.19 0.73 0.1 0.5 0.3 0.65
0.24 0.21 0.14 0.7 0.5 0.77
0.17 0.1 0.05 0.35 0.23 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(8) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.22 0.38 0.43 0.63 0.11
0.78 0.5 0.56 0.73 0.85 0.33
0.62 0.44 0.5 0.7 0.73 0.75
0.57 0.27 0.3 0.5 0.6 0.9
0.37 0.15 0.27 0.4 0.5 0.77
0.89 0.67 0.25 0.1 0.23 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

At the same time, MMEMs are also established based on
experts’ mutual evaluations on each other considering seven
attributes: cooperative attitude(a1), reliability(a2), cooper-
ative ability(a3), professional ability(a4), fairness(a5), not
over adjustment(a6), and not contingency(a7). The original
MMEMs are provided by the experts listed as below.

V (1,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

null null null null null null null
85 86 88 99 94 91 94
89 98 96 93 93 99 89
100 96 98 89 93 99 88
93 92 98 99 89 99 96
90 97 90 99 97 96 100
86 97 86 100 93 85 95
92 85 90 87 100 92 99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (2,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

91 92 87 95 98 97 92
null null null null null null null
98 98 95 99 88 99 92
93 85 96 97 85 94 94
96 89 94 88 92 92 93
86 91 85 96 93 90 93
89 99 87 93 89 91 94
92 92 99 97 98 99 98

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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V (3,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

87 95 85 85 86 97 91
89 87 89 99 86 95 87
null null null null null null null
100 86 93 96 85 97 91
91 99 87 86 99 90 91
91 85 86 91 92 97 85
89 85 92 97 97 92 100
85 86 99 85 87 94 93

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (4,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

94 99 89 87 88 98 86
97 92 96 96 89 87 85
87 85 89 87 90 93 85
null null null null null null null
85 96 93 97 94 86 98
92 99 99 91 89 88 85
95 86 89 98 98 93 98
89 91 94 85 99 87 95

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (5,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

85 94 92 93 98 90 87
97 98 92 89 95 88 96
87 95 91 85 100 88 93
89 90 89 86 92 97 98
null null null null null null null
87 98 95 95 85 90 85
96 85 92 95 99 95 100
100 96 86 85 93 96 97

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (6,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

85 99 96 85 92 87 90
94 85 92 89 99 99 87
88 87 99 96 89 98 91
88 97 85 99 96 92 90
94 95 87 96 94 99 93
null null null null null null null
97 96 94 97 96 94 89
98 97 95 96 96 95 91

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (7,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

86 98 95 100 98 88 85
85 89 89 99 97 97 92
93 97 86 92 96 90 94
92 98 93 96 95 90 89
86 91 94 92 98 97 86
93 94 87 90 94 89 97
null null null null null null null
93 91 89 99 87 100 90

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (8,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

98 97 83 94 98 98 83
97 88 85 95 96 95 78
95 88 93 83 96 85 85
92 92 94 93 96 85 86
90 93 95 98 95 92 89
85 95 95 96 93 98 97
85 96 95 97 82 94 99
null null null null null null null

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1) Based on V (1,1) to V (8,1), experts’ weights are com-
puted by (13) in the current example, as it shown in

Table 5. In the first round, by (6), it is obtained that the
initial consensus degree cl0 = 0.7284. Denote V (z,t)

as the MEEM of expert ez in rount t , the MMEMs in
round 1 are also the original MMEMs, that is to say,
V (z,1) = V (z)(z = 1, 2, . . . , 8). And the collective pref-
erence relation P(c,0) is computed by (7) as below.

P(c,0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5369 0.5008 0.5898 0.5294 0.6375
0.4631 0.5 0.5661 0.5716 0.6128 0.6737
0.4992 0.4339 0.5 0.6852 0.6042 0.6637
0.4102 0.4284 0.3148 0.5 0.5635 0.5938
0.4706 0.3872 0.3958 0.4365 0.5 0.6827
0.3625 0.3263 0.3363 0.4062 0.3161 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

When P(z,1) = (p(z,1)
i j )n×n(z = 1, 2, . . . , 8) is con-

structed, p(z,1)
i j is suggested to be adjusted to a value

in interval [p(z,0)
i j , p(c,0)

i j ](i ≤ j), i.e., p(z,1)
i j ∈ [p(z,0)

i j ,

p(c,0)
i j ](i ≤ j). However, in order to simulate better

the real life situation, it should be noticed that not
every expert will obey this suggestion. For instance,
p(1,1)
i j = 0.3815 /∈ [0.5005.0.9]. Suppose that in round

1, experts’ preference relations are adjusted as is shown
in Appendix A(A.1). The collective preference relation
after the adjustments in round 1 is denoted by P(c,1) and
presented as below.

P(c,1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.6380 0.5465 0.6128 0.5096 0.6009
0.3620 0.5 0.5872 0.5582 0.6076 0.6546
0.4535 0.4128 0.5 0.5851 0.6385 0.6013
0.3872 0.4418 0.4149 0.5 0.5921 0.5584
0.4904 0.3924 0.3615 0.4079 0.5 0.6649
0.3991 0.3454 0.3987 0.4416 0.3351 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

By applying (6), the consensus degree is achieved as
cl1 = 0.8007.
Based on P(1,1) − P(8,1), according to the punish rules
we set for non-cooperative behaviors, the experts’non-
cooperative behavior matrix in round 1 is computed by
(30) and shown as below, and the experts who perform
non-cooperate behavior will be punished in the second
round by decreasing their weights.

NC (1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1
1 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Here, NC (1)
i j = 1 indicates that expert ei performs non-

cooperative behavior j in round 1, while NC (1)
i j = 0

indicates that expert ei does not perform behavior j in
round 1. Afterwards, the experts’ weights are updated
by applying (13) based on V (1,1), V (2,1), . . . , V (8,1), as
is shown by Table 6.

(2) In round 2, when P(z,2) = (p(z,2)
i j )n×n(z = 1, 2, . . . , 8)

is constructed, p(z,2)
i j is suggested to be adjusted to val-

ues in interval [p(z,1)
i j , p(c,1)

i j ] if p(z,1)
i j ≤ p(c,1)

i j ), or

[p(c,1)
i j , p(z,1)

i j ] if p(c,1)
i j ≤ p(z,1)

i j ). In order to simu-
late better the real life situation, not every expert will
obey this suggestion. For instance, p(8,2)

i j = 0.0314 /∈
[0.512, 0.6475]. Suppose that in round 2, experts’ pref-
erence relations P(z,2)(z = 1, 2, . . . , 8) are adjusted as
is shown in Appendix A(A.2). The collective prefer-
ence relation after adjustments in round 2 is obtained
as P(c,2),

P(c,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.6175 0.5292 0.6016 0.4903 0.5071
0.3825 0.5 0.58977 0.5654 0.6499 0.6651
0.4708 0.4103 0.5 0.6210 0.6234 0.5883
0.3984 0.4346 0.3790 0.5 0.5293 0.5526
0.5097 0.3501 0.3766 0.4707 0.5 0.5179
0.4929 0.3349 0.41177 0.4474 0.4821 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

The non-cooperative behavior matrix of the experts in the
second round, i.e., NC (2) is computed by (30) and shown
as follows, and the weights of experts who do not cooperate
will be punished in the third round.

NC (2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0
1 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 0 0 1 0 0
1 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

According to NC (2), the MMEMs will be updated as
below, by applying (31) and (32).

V (1,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

null null null null null null null
59.5 86 88 99 75.2 91 84.6
89 98 96 93 74.4 99 89
100 96 98 89 74.4 99 88
93 92 98 99 71.2 99 96
90 97 90 99 77.6 96 100
86 97 86 100 93 85 95
92 85 90 87 64 92 89.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (2,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

91 92 87 95 98 97 82.8
null null null null null null null
98 98 95 99 70.4 99 92
93 85 96 97 68 94 94
96 89 94 88 73.6 92 93
86 91 85 96 74.4 90 93
89 99 87 93 89 91 94
92 92 99 97 62.72 99 88.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (3,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

87 95 85 85 86 97 81.9
62.3 87 89 99 68.8 95 78.3
null null null null null null null
100 86 93 96 68 97 91
91 99 87 86 79.2 90 91
91 85 86 91 73.6 97 85
89 85 92 97 97 92 100
85 86 99 85 55.68 94 83.7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (4,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

94 99 89 87 88 98 77.4
67.9 92 96 96 71.2 87 76.5
87 85 89 87 72 93 85
null null null null null null null
85 96 93 97 75.2 86 98
92 99 99 91 71.2 88 85
95 86 89 98 98 93 98
89 91 94 85 63.36 87 85.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (5,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

85 94 92 93 98 90 78.3
67.9 98 92 89 76 88 86.4
87 95 91 85 80 88 93
89 90 89 86 73.6 97 98
null null null null null null null
87 98 95 95 68 90 85
96 85 92 95 99 95 100
100 96 86 85 59.52 96 87.3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (6,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

85 99 96 85 92 87 81
65.8 85 92 89 79.2 99 78.3
88 87 99 96 71.2 98 91
88 97 85 99 76.8 92 90
94 95 87 96 75.2 99 93
null null null null null null null
97 96 94 97 96 94 89
98 97 95 96 61.44 95 81.9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (7,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

86 98 95 100 98 88 76.5
59.5 89 89 99 77.6 97 82.8
93 97 86 92 76.8 90 94
92 98 93 96 76 90 89
86 91 94 92 78.4 97 86
93 94 87 90 75.2 89 97
null null null null null null null
93 91 89 99 55.68 100 81

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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V (8,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

98 97 83 94 98 98 74.7
67.9 88 85 95 76.8 95 70.2
95 88 93 83 76.8 85 85
92 92 94 93 76.8 85 86
90 93 95 98 76 92 89
85 95 95 96 74.4 98 97
85 96 95 97 82 94 99
null null null null null null null

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Experts’ weights are updated based on V (1,2), V (2,2), . . . ,
V (8,2), by applying (13), as is shown by Table 7.

We obtain that cl2 = 0.852 > cl, the consensus is
reached. Afterwards, based on the collective preference in
round 2, the collective ranking of alternatives is x2 > x3 >

x1 > x4 > x5 > x6, so “SF Express” is suggested to be
chosen finally.

6.3 The numerical comparison

A numerical comparison is carried out between the cur-
rent proposal and the non-cooperate behaviors management
strategy based on mutual score proposed by Dong et al. in
[16]. The same consensus measure and feedback rule are
adopted in both proposals. Whereas, the weight updating
scheme based on mutual score in [16] and the scheme based
on comprehensive score in the current proposal are applied,
respectively. It should be noticed that the identificationmech-
anisms are different, the one in the current proposal is more
comprehensive than the one in [16], since only three types of
non-cooperative behaviors can befigured out in [16],whereas
7 types can be identified in this paper. Among these 7 types,
3 types share the similar meaning, i.e.,“cooperate ability" is
similar to “cooperation ",“fairness" is similar to “fairness",
“low professional level" is similar to “skill"(“cooperation ",

Iteration round=2

Iteration round=3

Consensus threshold

Consensus Rounds

G
ro
up
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on
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ns
us
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ev

el

The proposal model

Dong et.al. [16]

Fig. 6 The iteration and group consensus level based on two models

“fairness" and “skill" are features considered in [16]). To
make the comparison feasible, we assume that the initial
mutual scores provided by experts on these 3 features are
the same. The initial MMEM for Dong et al’s proposal can
be rewritten here, for the convenience of readers to check.
More computation details can be found in Appendix C. The
performance of consensus models can be evaluated by differ-
ent features such as, number of rounds, consensus level, etc.
[47] It is shown by Fig. 6 the consensus degree in each round,
and the consensus reaching needs less rounds by apply-
ing our proposed non-cooperative behaviors management
scheme.

6.4 Discussion

As is shown by Fig. 6, by applying Dong et al’s approach the
consensus can be reached in 3 iteration rounds. By apply-
ing the proposed approach the consensus can be reached in 2
rounds, and the group consensus level in each round is higher.
The reason for a quicker consensus reaching by applying the
current proposal is that our proposal provides a more com-
prehensive recognize strategy, as well as a more effective
management strategy for dealing with non-cooperate behav-
iors, bywhich both the performance in the current CRP round
and historical performance can be considered,meanwhile the
non-cooperate behaviors in different time periods can be han-
dled in different manners.

Another experiment has been carried out to illustrate the
advantage of the current proposal. Here, we carry out the
CRP with the same penalty factor for different behaviors
as θ(ai )(i = 1, 2, · · · , 7), and then compare the CRP with
the case when θ(ai )∗ in Table 1 is applied. It is shown by
Fig. 7 that the consensus can be reached in 2 rounds by
applying different penalty factors indicated by θ(ai )∗, while
3 rounds are needed if the same penalty factor is used for
different behaviors. Meanwhile, the group consensus level is
higher in each rounds of the CRP. This means that the pro-
posed scheme, which involves managing different behaviors
differently, increases flexibility and, as a result, enhances the
effectiveness of the CRP.

Sensitive analysis is conducted here to demonstrate how
the different penalty factors corresponding to different
non-cooperate behaviors affect the CRP. The value of a
penalty factor θ(ai )∗ is variet from {θ(ai )∗ − 0.5, θ(ai )∗ −
0.4, · · · , θ(ai )∗ + 0.4, θ(ai )∗ + 0.5}, while keeping the
penalty factor for other behaviors constant. In this research,
seven types of non-cooperative behaviors have been identi-
fied. Therefore, the experiment is carried out seven times,
each addressing one penal factor of these distinct behav-
iors. The results in Fig. 8 show that with θ(ai )∗ (see Table
1), the consensus level is higher in each round, that is
also the reason why we set θ(ai )∗ as it is in Table 1.
For instance, in each round the group consensus level
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Fig. 7 CRP based on same and different penalty factors for various non-cooperative behaviors

when θ(a1)∗ = 0.3 (see Fig. 8, subfigure (a))is always
higher than the group consensus level when θ(a1)∗ =
0.25, 0.26, 0.27, 0.28, 0.29, 0.31, 0.32, 0.33, 0.34, 0.35.
The proposed mechanism allows for flexibility in choosing
different penalty factors for different non-cooperative behav-
iors, and the value of θ(a1)∗ can be determined through such
experiments.

7 Conclusion

This study presents an effective strategy for managing the
non-cooperative behaviors of experts in GDM problems.
The proposed mechanism determines experts’ weights by
identifying seven types of non-cooperative behaviors and
developing different punishment strategies for each. Com-

prehensive scores are introduced by synthesizing the effects
of non-cooperative behavior to enable different treatments of
non-cooperative behavior in different periods of theCRP.The
proposed consensusmodel based on amutual comprehensive
scorematrix providesmore persuasive preference adjustment
directions before consensus is reached. To demonstrate the
practical application of the proposed model, it is applied to
solve a logistics enterprise selection problem. Comparative
analysis with existing schemes addressing non-cooperative
behaviors in GDM is conducted and it shows that the pri-
mary strength of the current work is that the identification of
the non-cooperative behaviors is more comprehensive, and
the strategy to address these behaviors is more flexible. The
experiments results demonstrate that the efficiency of CRP
can be enhanced by employing different penalty schemes for
different behaviors.

Non-cooperative 1 2evitarepooc-noNedutittaevitarepoocevitageN Low reliability Non-cooperative 3 Lack of cooperate ability

Non-cooperative 4 5evitarepooc-noNlevellanoisseforpwoL 6evitarepooc-noNssenriaffokcaL 7evitarepooc-noNetaroballocrevO Conspiracy
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In future studies, the proposed non-cooperative behavior
management strategies based on comprehensive score is sug-
gested to be extended to handle large-scale GDM problems
with more complex non-cooperative behaviors. To accom-
modate practical decision situations, it is also suggested to
increase the diversity and flexibility of the linguistic infor-
mation expression scope of experts.

Appendix A: Some figures and tables

A.1 List of mathematical notations

The list of mathematical notations in the proposed consensus
model is presented by Table 4.

Table 4 List of mathematical notations in the proposed consensus model

Mathematical symbol Meaning

X = {x1, x2, ..., xn} A set of alternatives

E = {e1, e2, ..., em} A set of experts

NU Null-norm operator

Wt = (w(1,t), w(2,t), . . . , w(m,t))T Weighting vector of experts in round t

SM (zh,t) = (sm(zh,t)
i j )n×n The similarity matrix for a pair of experts (ez, eh) in round t

cmt
i j The consensus level of the pair of alternatives (xi , x j ) in round t

cati The consensus level of all experts on alternative xi in round t

clt The consensus level of all experts on all alternatives in round t

P(z,t) = (p(z,t)
i j )n×n Fuzzy preference relation of expert ez in round t

P(c,t) = (p(c,t)
i j )n×n The collective fuzzy preference relations in round t

Pr (z,t) = (pr (z,t)
1 , pr (z,t)

2 ), . . . , pr (z,t)
n )T The fuzzy preference of expert ez in round t

Pr (c,t∗) = (pr (c,t∗)
1 , pr (c,t∗)

2 ), . . . , pr (c,t∗)
n )T The collective fuzzy preference after consensus reaching

V (z,t) = (v
(z,t)
i j )m×l The mutual evaluation matrices by expert ez in round t

μ(z,t) The mutual score of expert ez in round t

σ (z,t) The comprehensive score of expert ez in round t

NC(al ) l ∈ (1, 2, . . . , 7) Identification coefficients for 7 non-cooperative behaviors

#ADV (z,t) The number of preferences that ez is advised to modify in round t

#ACP(z,t) The number of preferences that ez accepts to change in round t

CC (z,t) The cooperation coefficient of expert ez in round t

NCC (z,t) The non-cooperation coefficient of expert ez in round t

D(z,t) The adjustment amount of expert ez in round t

D(z,t)
c The recommended adjustment amount of expert ez in round t

p(a,t)
i j The average of group preferences on alternative xi over x j in round t

O(z,t) = (o(z,t)(x1), o
(z,t)
2 (x2), ..., o(z,t)(xn))T The ranking vector of expert ez in round t

NC (t) The non-cooperative matrix in round t
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Fig. 9 OPE function σk with k = 1 and k = 2

A.2 Figures for OPE function

A.3 Tables in the case study

Tables in the case study is presented as below (see Table 5 to
Table 7).

Table 5 The original expert mutual evaluation score, comprehensive score and expert weight

Experts Mutual Score(1) Comprehensive Score(1) Expert’s weight(1)

e1 0.1420 0.1420 0.1243

e2 0.1419 0.1419 0.1242

e3 0.1418 0.1418 0.1240

e4 0.1429 0.1429 0.1251

e5 0.1438 0.1438 0.1258

e6 0.1425 0.1425 0.1247

e7 0.1442 0.1442 0.1262

e8 0.1438 0.1438 0.1258

Table 6 The first round of expert mutual evaluation score, comprehensive score and expert weight

Experts Mutual Score(2) Comprehensive Score(2) Expert’s weight(2)

e1 0.1449 0.0563 0.1250

e2 0.1402 0.0542 0.1238

e3 0.1446 0.0562 0.1248

e4 0.1412 0.0547 0.1246

e5 0.1421 0.0550 0.1253

e6 0.1408 0.0545 0.1243

e7 0.1470 0.0573 0.1268

e8 0.1420 0.0550 0.1253
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Table 7 The second round of expert mutual evaluation score, comprehensive score and expert weight

Experts Mutual Score(3) Comprehensive Score(3) Expert’s weight(3)

e1 0.1456 0.0341 0.1255

e2 0.1344 0.0310 0.1226

e3 0.1426 0.0333 0.1248

e4 0.1438 0.0336 0.1249

e5 0.1446 0.0338 0.1256

e6 0.1434 0.0335 0.1245

e7 0.1499 0.0353 0.1276

e8 0.1386 0.0322 0.1245

Appendix B: Adjusted preference relation
matrix during the CRP process

B1. Experts’ adjusted preference relations in round 1.

P(1,1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5524 0.9851 0.7522 0.4677 0.6381
0.4476 0.5 0.7952 0.5599 0.7749 0.7
0.0149 0.2048 0.5 0.6 0.6282 0.6765
0.2478 0.4401 0.4 0.5 0.5594 0.3394
0.5323 0.2251 0.3718 0.4406 0.5 0.6895
0.3619 0.3 0.3235 0.6606 0.3105 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(2,1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.6286 0.5619 0.5988 0.4 0.2869
0.3714 0.5 0.6654 0.4597 0.7205 0.6
0.4381 0.3346 0.5 0.6912 0.4829 0.6
0.4012 0.5403 0.3088 0.5 0.6924 0.7236
0.6 0.2795 0.5171 0.3076 0.5 0.4930

0.7131 0.4 0.4 0.2764 0.5070 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(3,1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5900 0.4271 0.8215 0.4857 0.9
0.4100 0.5 0.5170 0.4635 0.4703 0.8
0.5729 0.4830 0.5 0.7154 0.6897 0.7144
0.1785 0.5365 0.2846 0.5 0.6812 0.7779
0.5143 0.5297 0.3103 0.3188 0.5 0.7061
0.1 0.2 0.2856 0.2221 0.2939 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(4,1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.3268 0.4787 0.66767 0.2700 0.7997
0.6732 0.5 0.5810 0.8282 0.6554 0.7636
0.5213 0.4190 0.5 0.6935 0.4719 0.4600
0.3324 0.1718 0.3065 0.5 0.3586 0.1700
0.7300 0.3446 0.5281 0.6414 0.5 0.5920
0.2003 0.2364 0.5400 0.8300 0.4080 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(5,1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5944 0.4500 0.4621 0.5602 0.5212
0.4056 0.5 0.7846 0.1825 0.3 0.7
0.5500 0.2154 0.5 0.2532 0.6010 0.5153
0.5379 0.8175 0.7468 0.5 0.8399 0.5971
0.4398 0.7 0.3990 0.1601 0.5 0.6852
0.4788 0.3 0.4847 0.4029 0.3148 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(6,1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.6548 0.5566 0.4595 0.6253 0.7818
0.3452 0.5 0.6 0.6854 0.4361 0.6148
0.4434 0.4 0.5 0.6664 0.6910 0.3500
0.5405 0.3146 0.3336 0.5 0.6081 0.3904
0.3747 0.5639 0.3090 0.3919 0.5 0.6842
0.2182 0.3852 0.6500 0.6096 0.3158 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(7,1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.8679 0.4730 0.7049 0.6814 0.7477
0.1321 0.5 0.2 0.5693 0.7900 0.7282
0.5270 0.8 0.5 0.9 0.8094 0.7511
0.2951 0.4307 0.1 0.5 0.4223 0.6235
0.3186 0.2100 0.1906 0.5777 0.5 0.7022
0.2523 0.2718 0.2489 0.3765 0.2978 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(8,1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.8842 0.4413 0.4348 0.5822 0.1302
0.1158 0.5 0.5600 0.7177 0.7111 0.3300
0.5587 0.4400 0.5 0.1610 0.7300 0.7392
0.5652 0.2823 0.8390 0.5 0.5771 0.8434
0.4178 0.2889 0.2700 0.4229 0.5 0.7643
0.8698 0.6700 0.2608 0.1566 0.2357 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

B2. Experts’ adjusted preference relations in round 2.

P(1,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5921 0.6919 0.6366 0.5082 0.6026
0.4079 0.5 0.6836 0.5592 0.9733 0.6973
0.3081 0.3164 0.5 0.6 0.6316 0.6434
0.3634 0.4408 0.4 0.5 0.5603 0.4603
0.4918 0.0267 0.3684 0.4397 0.5 0.6820
0.3974 0.3027 0.3566 0.5397 0.3180 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(2,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.6288 0.5507 0.5988 0.4393 0.2869
0.3712 0.5 0.6654 0.5031 0.7186 0.6126
0.4493 0.3346 0.5 0.5913 0.5680 0.6008
0.4012 0.4969 0.4087 0.5 0.6191 0.7098
0.5607 0.2814 0.4320 0.3809 0.5 0.2022
0.7131 0.3874 0.3992 0.2902 0.7978 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠
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P(3,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5902 0.5332 0.8129 0.4996 0.0301
0.4098 0.5 0.5227 0.5205 0.5908 0.7988
0.4668 0.4773 0.5 0.7154 0.6618 0.6104
0.1871 0.4795 0.2846 0.5 0.6608 0.6184
0.5004 0.4092 0.3382 0.3392 0.5 0.3346
0.9699 0.2012 0.3896 0.3816 0.6654 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(4,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.3929 0.5032 0.6332 0.3605 0.7997
0.6071 0.5 0.5816 0.6707 0.6364 0.6727
0.4968 0.4184 0.5 0.8046 0.5525 0.4600
0.3668 0.3293 0.1954 0.5 0.4557 0.2567
0.6395 0.3636 0.4475 0.5443 0.5 0.5975
0.2003 0.3273 0.5400 0.7433 0.4025 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(5,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.6210 0.4500 0.5768 0.5310 0.5541
0.3790 0.5 0.7124 0.3109 0.3860 0.6754
0.5500 0.2876 0.5 0.2845 0.6010 0.5345
0.4232 0.6891 0.7155 0.5 0.3357 0.4907
0.4690 0.6140 0.3990 0.6643 0.5 0.6852
0.4459 0.3246 0.4655 0.5093 0.3148 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(6,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.6411 0.4562 0.4847 0.6253 0.7293
0.3589 0.5 0.5975 0.6854 0.5979 0.6322
0.5438 0.4025 0.5 0.6664 0.6386 0.4373
0.5153 0.3146 0.3336 0.5 0.6066 0.4561
0.3747 0.4021 0.3614 0.3934 0.5 0.6808
0.2707 0.3678 0.5627 0.5439 0.3192 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(7,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.7950 0.5414 0.4659 0.5106 0.7324
0.2050 0.5 0.3869 0.5605 0.6790 0.7058
0.4586 0.6131 0.5 0.7403 0.6828 0.7136
0.5341 0.4395 0.2597 0.5 0.4223 0.5886
0.4894 0.3210 0.3172 0.5777 0.5 0.2499
0.2676 0.2942 0.2864 0.4114 0.7501 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(8,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.6757 0.5064 0.6063 0.4466 0.3118
0.3243 0.5 0.5723 0.7142 0.6173 0.5238
0.4936 0.4277 0.5 0.5645 0.6491 0.7040
0.3937 0.2858 0.4355 0.5 0.5790 0.8434
0.5534 0.3827 0.3509 0.4210 0.5 0.7104
0.6882 0.4762 0.2960 0.1566 0.2896 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

Appendix C: Computation process
when Dong et al’s approach is applied

C1. Experts’ adjusted preference relations and MMEMs in
round 2.

P(1,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.6 0.4958 0.8105 0.4 0.9
0.4 0.5 0.7250 0.5683 0.9 0.6726

0.5042 0.2750 0.5 0.5966 0.5994 0.6570
0.1895 0.4317 0.4034 0.5 0.5714 0.3
0.6 0.1 0.4006 0.4286 0.5 0.6887
0.1 0.3274 0.3430 0.7 0.3113 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(2,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5969 0.8094 0.5896 0.4 0.6191
0.4031 0.5 0.5649 0.4 0.6021 0.6771
0.1906 0.4351 0.5 0.7 0.3 0.6679
0.4104 0.6 0.3 0.5 0.8013 0.9
0.6 0.3979 0.7 0.1987 0.5 0.2987

0.3809 0.3229 0.3321 0.1 0.7013 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(3,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5925 0.2006 0.5152 0.4695 0.9
0.4075 0.5 0.1400 0.2500 0.1700 0.7305
0.7994 0.8600 0.5 0.7323 0.6786 0.9729
0.4848 0.7500 0.2677 0.5 0.5617 0.9300
0.5305 0.8300 0.3214 0.4383 0.5 0.9194
0.1 0.2695 0.0271 0.0700 0.0806 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(4,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.2919 0.4600 0.7300 0.2700 0.6742
0.7081 0.5 0.7300 0.7095 0.7900 0.8213
0.5400 0.2700 0.5 0.6842 0.2118 0.4556
0.2700 0.2905 0.3158 0.5 0.1097 0.6056
0.7300 0.2100 0.7882 0.8903 0.5 0.5400
0.3258 0.1787 0.5444 0.3944 0.4600 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(5,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.6522 0.4869 0.1353 0.6012 0.4
0.3478 0.5 0.8 0.5533 0.3 0.7
0.5131 0.2 0.5 0.5500 0.6 0.6726
0.8647 0.4467 0.4500 0.5 0.9 0.6
0.3988 0.7 0.4 0.1 0.5 0.7018
0.6 0.3 0.3274 0.4 0.2982 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(6,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.8 0.6500 0.9142 0.7104 0.6268
0.2 0.5 0.6 0.7 0.2898 0.5500

0.3500 0.4 0.5 0.6 0.6212 0.6734
0.0858 0.3 0.4 0.5 0.5568 0.3000
0.2896 0.7102 0.3788 0.4432 0.5 0.7
0.3732 0.4500 0.3266 0.7000 0.3 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(7,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.4400 0.5029 0.8100 0.7600 0.6915
0.5600 0.5 0.5801 0.5937 0.7900 0.9136
0.4971 0.4199 0.5 0.9000 0.8768 0.9500
0.1900 0.4063 0.1000 0.5 0.5749 0.5939
0.2400 0.2100 0.1232 0.4251 0.5 0.7767
0.3085 0.0864 0.0500 0.4061 0.2233 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(8,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.2200 0.3800 0.4300 0.5283 0.3451
0.7800 0.5 0.5600 0.7400 0.8500 0.3241
0.6200 0.4400 0.5 0.6846 0.6018 0.7407
0.5700 0.2600 0.3154 0.5 0.5625 0.9
0.4717 0.1500 0.3982 0.4375 0.5 0.7740
0.6549 0.6759 0.2593 0.1 0.2260 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

V (1,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

null null null
88 94 99
96 93 93
98 93 89
98 89 99
90 97 99
86 93 100
90 100 87

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (2,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

87 98 95
null null null
95 88 99
96 85 97
94 92 88
85 93 96
87 89 93
99 98 97

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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V (3,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

85 86 85
89 86 99
null null null
93 85 96
87 99 86
86 92 91
92 97 97
99 87 85

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (4,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

89 88 87
96 89 96
89 90 87
null null null
93 94 97
99 89 91
89 98 98
94 99 85

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (5,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

92 98 93
92 95 89
91 100 85
89 92 86
null null null
95 85 95
92 99 95
86 93 85

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (6,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

96 92 85
92 99 89
99 89 96
85 96 99
87 94 96
null null null
94 96 97
95 96 96

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (7,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

95 98 100
89 97 99
86 96 92
93 95 96
94 98 92
87 94 90
null null null
89 87 99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (8,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

83 98 94
85 96 95
93 96 83
94 96 93
95 95 98
95 93 96
95 82 97
null null null

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C2. Experts’ adjusted preference relations and MMEMs
in round 3.

P(1,3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5220 0.4958 0.8105 0.5282 0.6467
0.4780 0.5 0.7250 0.5683 0.5721 0.6726
0.5042 0.2750 0.5 0.5885 0.5994 0.6516
0.1895 0.4317 0.4115 0.5 0.5714 0.2925
0.4718 0.4279 0.4006 0.4286 0.5 0.6887
0.3533 0.3274 0.3484 0.7075 0.3113 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(2,3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5972 0.4956 0.5864 0.4000 0.6191
0.4028 0.5 0.5649 0.4000 0.5913 0.6771
0.5044 0.4351 0.5 0.7000 0.5714 0.6679
0.4136 0.6000 0.3000 0.5 0.5636 0.9218
0.6000 0.4087 0.4286 0.4364 0.5 0.2925
0.3809 0.3229 0.3321 0.0782 0.7075 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(3,3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5973 0.2006 0.5152 0.4938 0.6386
0.4027 0.5 0.1400 0.2334 0.1700 0.7305
0.7994 0.8600 0.5 0.6817 0.5568 0.9729
0.4848 0.7666 0.3183 0.5 0.5612 0.9300
0.5062 0.8300 0.4432 0.4388 0.5 0.9194
0.3614 0.2695 0.0271 0.0700 0.0806 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(4,3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.2839 0.4593 0.6206 0.2700 0.6457
0.7161 0.5 0.7315 0.5636 0.6236 0.8313
0.5407 0.2685 0.5 0.6821 0.2118 0.4385
0.3794 0.4364 0.3179 0.5 0.2381 0.6056
0.7300 0.3764 0.7882 0.7619 0.5 0.5759
0.3543 0.1687 0.5615 0.3944 0.4241 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(5,3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.6432 0.4869 0.6391 0.5986 0.4000
0.3568 0.5 0.8075 0.5670 0.2916 0.7000
0.5131 0.1925 0.5 0.6854 0.5957 0.6694
0.3609 0.4330 0.3146 0.5 0.9000 0.5996
0.4014 0.7084 0.4043 0.1000 0.5 0.6682
0.6000 0.3000 0.3306 0.4004 0.3318 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(6,3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.8261 0.4920 0.7864 0.5108 0.6490
0.1739 0.5 0.6000 0.5572 0.5783 0.5420
0.5080 0.4000 0.5 0.6833 0.6212 0.6734
0.2136 0.4428 0.3167 0.5 0.5568 0.2857
0.4892 0.4217 0.3788 0.4432 0.5 0.7003
0.3510 0.4580 0.3266 0.7143 0.2997 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(7,3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.4400 0.5035 0.8100 0.7600 0.6915
0.5600 0.5 0.5801 0.5948 0.8004 0.9136
0.4965 0.4199 0.5 0.8968 0.8808 0.7006
0.1900 0.4052 0.1032 0.5 0.5749 0.5939
0.2400 0.1996 0.1192 0.4251 0.5 0.7767
0.3085 0.0864 0.2994 0.4061 0.2233 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(8,3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5467 0.3800 0.4300 0.5283 0.3451
0.4533 0.5 0.5600 0.7436 0.8500 0.6903
0.6200 0.4400 0.5 0.6829 0.6040 0.7207
0.5700 0.2564 0.3171 0.5 0.5617 0.6346
0.4717 0.1500 0.3960 0.4383 0.5 0.7199
0.6549 0.3097 0.2793 0.3654 0.2801 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

V (1,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

null null null
88 74 99
96 73 73
98 73 89
98 69 79
90 77 99
86 73 100
90 80 67

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (2,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

87 78 95
null null null
95 68 79
96 65 97
94 72 68
85 73 96
87 69 93
99 78 77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (3,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

85 66 85
89 66 99
null null null
93 65 96
87 79 66
86 72 91
92 77 97
99 67 85

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (4,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

89 68 87
96 69 96
89 70 87
null null null
93 74 77
99 69 91
89 78 98
94 79 65

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (5,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

92 78 93
92 75 89
91 80 65
89 72 86
null null null
95 65 95
92 79 95
86 73 65

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (6,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

96 72 85
92 79 89
99 69 76
85 76 99
87 74 76
null null null
94 76 97
95 76 76

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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V (7,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

95 78 100
89 77 99
86 76 72
93 75 96
94 78 72
87 74 90
null null null
89 67 79

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (8,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

83 78 94
85 76 95
93 76 63
94 76 93
95 75 78
95 73 96
95 62 97
null null null

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C3. Experts’ adjusted preference relations and MMEMs
in round 4.

P(1,4) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5216 0.4958 0.8105 0.5198 0.6467
0.4784 0.5 0.7250 0.5683 0.5724 0.7193
0.5042 0.2750 0.5 0.5885 0.5800 0.6850
0.1895 0.4317 0.4115 0.5 0.5719 0.4713
0.4802 0.4276 0.4200 0.4281 0.5 0.6887
0.3533 0.2807 0.3150 0.5287 0.3113 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(2,4) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5972 0.4376 0.5864 0.3985 0.6227
0.4028 0.5 0.5649 0.4000 0.5914 0.6736
0.5624 0.4351 0.5 0.7000 0.5714 0.6679
0.4136 0.6000 0.3000 0.5 0.5633 0.9218
0.6015 0.4086 0.4286 0.4367 0.5 0.2925
0.3773 0.3264 0.3321 0.0782 0.7075 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(3,4) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5973 0.3246 0.5152 0.4938 0.6386
0.4027 0.5 0.1018 0.2962 0.1700 0.7305
0.6754 0.8982 0.5 0.6816 0.5607 0.9968
0.4848 0.7038 0.3184 0.5 0.5612 0.9401
0.5062 0.8300 0.4393 0.4388 0.5 0.8228
0.3614 0.2695 0.0032 0.0599 0.1772 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(4,4) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.2839 0.4607 0.6370 0.2700 0.6457
0.7161 0.5 0.7336 0.5636 0.6236 0.8078
0.5393 0.2664 0.5 0.6821 0.4025 0.4143
0.3630 0.4364 0.3179 0.5 0.2148 0.6057
0.7300 0.3764 0.5975 0.7852 0.5 0.6736
0.3543 0.1922 0.5857 0.3943 0.3264 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(5,4) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.6432 0.4413 0.6530 0.5986 0.3970
0.3568 0.5 0.8075 0.5670 0.2818 0.7192
0.5587 0.1925 0.5 0.6874 0.5957 0.6694
0.3470 0.4330 0.3126 0.5 0.9000 0.5991
0.4014 0.7182 0.4043 0.1000 0.5 0.6682
0.6030 0.2808 0.3306 0.4009 0.3318 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(6,4) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.8261 0.4933 0.7670 0.5108 0.6503
0.1739 0.5 0.5949 0.5344 0.5665 0.5420
0.5067 0.4051 0.5 0.6826 0.6216 0.6734
0.2330 0.4656 0.3174 0.5 0.5604 0.4299
0.4892 0.4335 0.3784 0.4396 0.5 0.6632
0.3497 0.4580 0.3266 0.5701 0.3368 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(7,4) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.4400 0.5035 0.6509 0.4935 0.6916
0.5600 0.5 0.5798 0.5990 0.5520 0.9136
0.4965 0.4202 0.5 0.6907 0.8924 0.7006
0.3491 0.4010 0.3093 0.5 0.5749 0.5939
0.5065 0.4480 0.1076 0.4251 0.5 0.7767
0.3084 0.0864 0.2994 0.4061 0.2233 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

P(8,4) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5467 0.3790 0.4300 0.5283 0.3389
0.4533 0.5 0.5600 0.7479 0.8500 0.7181
0.6210 0.4400 0.5 0.6995 0.6040 0.6813
0.5700 0.2521 0.3005 0.5 0.5667 0.6374
0.4717 0.1500 0.3960 0.4333 0.5 0.6645
0.6611 0.2819 0.3187 0.3626 0.3355 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

V (1,4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

null null null
88 54 99
96 53 53
98 53 89
98 49 79
90 77 99
86 53 100
90 80 67

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (2,4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

87 78 95
null null null
95 48 59
96 45 97
94 52 68
85 73 96
87 49 93
99 78 77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (3,4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

85 66 85
89 46 99
null null null
93 45 96
87 59 66
86 72 91
92 57 97
99 67 85

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (4,4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

89 68 87
96 49 96
89 50 67
null null null
93 54 77
99 69 91
89 58 98
94 79 65

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (5,4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

92 78 93
92 55 89
91 60 45
89 52 86
null null null
95 65 95
92 59 95
86 73 65

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (6,4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

96 72 85
92 59 89
99 49 56
85 56 99
87 54 76
null null null
94 56 97
95 76 76

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (7,4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

95 78 100
89 57 99
86 56 52
93 55 96
94 58 72
87 74 90
null null null
89 67 79

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V (8,4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

83 78 94
85 56 95
93 56 43
94 56 93
95 55 78
95 73 96
95 42 97
null null null

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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C4. Collective preference and consensus degree.
In round 1, the collective preference is,

P(c,1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5375 0.5013 0.5901 0.5294 0.6386
0.4625 0.5 0.5661 0.5710 0.6128 0.6741
0.4987 0.4339 0.5 0.6853 0.6037 0.6635
0.4099 0.4290 0.3147 0.5 0.5637 0.5940
0.4706 0.3872 0.3963 0.4363 0.5 0.6820
0.3614 0.3259 0.3365 0.4060 0.3168 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

.
The non-cooperative behavior matrix is,

NC (1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The consensus level reaches cl1 = 0.7284
In round 2, the collective preference matrix is,

P(c,2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5375 0.5013 0.5901 0.5294 0.6386
0.4625 0.5 0.5661 0.5710 0.6128 0.6741
0.4987 0.4339 0.5 0.6853 0.6037 0.6635
0.4099 0.4290 0.3147 0.5 0.5637 0.5940
0.4706 0.3872 0.3963 0.4363 0.5 0.6820
0.3614 0.3259 0.3365 0.4060 0.3168 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

The non-cooperative matrix is,

NC (2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The consensus degree reaches cl2 = 0.7721.
In round 3, the collective preference matrix is,

P(c,3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5253 0.5038 0.6253 0.5176 0.6471
0.4747 0.5 0.5912 0.5663 0.5918 0.6773
0.4962 0.4088 0.5 0.6822 0.5593 0.7215
0.3747 0.4337 0.3178 0.5 0.5772 0.6355
0.4824 0.4082 0.4407 0.4228 0.5 0.6702
0.3529 0.3227 0.2785 0.3645 0.3298 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

The non-cooperative matrix is,

NC (3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 0 0
1 1 0
1 0 0
1 0 0
1 1 0
1 0 0
1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The consensus degree reaches cl3 = 0.8287.
In round 4, the collective preference matrix is,

P(c,4) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 0.5585 0.4427 0.6522 0.5122 0.5779
0.4415 0.5 0.5952 0.5346 0.5674 0.7176
0.5573 0.4048 0.5 0.6995 0.5818 0.6833
0.3478 0.4654 0.3005 0.5 0.5663 0.5991
0.4878 0.4326 0.4182 0.4337 0.5 0.6655
0.4221 0.2824 0.3167 0.4009 0.3345 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

The non-cooperative behavior matrix is,

NC (4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 0 0
1 1 0
1 0 0
1 0 0
0 0 0
1 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The consensus level reaches cl4 = 0.8517.

AppendixD:TheOWAoperatorapplied in the
current work

Definition 3 [48] Suppose that {c1, c2, . . . , cN } is a set of
values to be aggregated, the OWA operator is defined by

OW A(c1, c2, . . . , cN ) =
N∑
z=1

πzbz (D1)

bk is the value of the z-th largest of {c1, c2, . . . , cN }, π =
(π1, π2, . . . , πN )T is a weight vector, πz ∈ (0, 1) and∑N

z=1 πz = 1.

In [33, 34], π = (π1, π2, . . . , πN )T can be obtained by
linguistic quantifier as below.

πz = Q
( z

N

)
− Q

(
z − 1

N

)
(D2)
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Q(z) =
⎧⎨
⎩
0 z < a
z−a
b−a , a < z < b, a, b, z ∈ (0, 1]
1, z > b

(D3)

with parameters a = 0.5 and b = 1.
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