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Chapter 1

Introduction

1.1 Motivation

Classical mathematic models fail to deal with daily life decision making (DM) prob-

lems that contain uncertain information. Although several mathematic models,

such as fuzzy set theory, rough set theory and vague set theory, have been proposed

and extensively applied in DM problems under uncertainty, they suffer from one

common limitation when they are used in an isolated way, that is, lack of parame-

terization tools. This limitation indicates that individually these models are unable

to consider alternatives from different parameters aspects. Molodstov [50] proposed

a model called soft set, that successfully overcomes this limitation. Afterwards, to

enhance the ability of soft sets dealing with different kinds of uncertainties, various

generalization models of soft sets have been proposed by combining soft sets with

other models.

Popular hybrid soft sets can be divided into two main categories: (i) hybrid

models obtained from combination of fuzzy sets (and generalization models of fuzzy

sets) with soft sets; and (ii) hybrid models obtained from combination of rough sets

(and generalization models of rough sets) with soft sets. Fuzzy soft sets belong to the

first category, while rough soft sets and soft rough sets belong to the second category.

These hybrid models of soft sets are typical and simple, therefore, researchers have

proposed more complex hybrid models to generalize the previous ones. For instance,

intuitionistic fuzzy soft sets [36] and interval-valued intuitionistic fuzzy soft sets [28]

could be viewed as extended models of fuzzy soft sets. Jiang et al. [27] and Zhang

et al. [85] extended Feng et al.’s DM approach based on fuzzy soft sets [14] to come

up with an intuitionistic fuzzy soft sets based DM approach and an interval-valued

intuitionistic fuzzy soft set based DM approach, respectively.

The two most popular fuzzy soft set based DM approaches are: i) the fuzzy

choice value based approach [30] and ii) the score based approach [61]. Up to present,

3



4 1.1. Motivation

there are still arguments about which one is more reasonable [14, 30], and both of

these approaches still have some limitations. For instance, the score based approach

proposed by Roy and Maji in [61] requests a large amount of computations when pa-

rameters are added or deleted during the DM process, which causes some drawbacks

to those problems that deal with dynamic information. The research on rough soft

sets based DM and group decision making (GDM) approaches is still in an initial

stage. Besides, there is not methods apply assessments on alternatives provided by

decision makers to make the decision based on the combination of rough sets and

soft sets yet, the previous ones request an optimal decision made by each decision

maker before a GDM process is carried out. Based on the above concern, we think

it is necessary to carry out a systematic research that aims at the improvement of

DM approaches based on fuzzy soft sets and rough soft sets in order to overcome

such limitations.

Although various algorithms based on soft rough set models and their fuzzy

extensions have been proposed to solve DM problems [81, 82, 83], no researches

have been carried out systematically on the inner-relationships among these models

yet. In order to make more flexible the application of various soft rough sets models

in DM and make it more convenient the selection of suitable models in practical DM

circumstances according to properties of different models, it is necessary to carry

out a research on their inner-relationships.

In some real world DM problems, decision makers may use linguistic information

rather than crisp values to provide their assessments over alternatives. Among vari-

ous hybrid soft set models, linguistic value soft set is the only one that could be used

to deal with linguistic information under the framework of soft sets, however if this

model is applied, it requests that decision makers always provide their assessments

by means of a single linguistic term, which might be hard, since decision makers

may hesitate among several linguistic terms and the use of only one linguistic term

would not be enough to reflect their knowledge in a proper way. Therefore, it seems

convenient to define new models of soft sets able to deal with not only with single

linguistic terms, but also with linguistic expressions.

To deal with linguistic information in DM problems, the fuzzy linguistic approach

has been successfully applied [78]. It models the uncertainty by linguistic variables

rather than numerical values. In fuzzy linguistic approach, words mean different

things to different people, therefore a fuzzy set is adopted to capture uncertainty

contained in a word. However, most linguistic models [39, 40] only use single and

simple linguistic terms to express preferences of decision makers, which fails to

reflect decision makers’ real opinion in context with a high level of uncertainty.

To overcome this limitation, recently a model called hesitate fuzzy linguistic term
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set (HFLTS) has been introduced [58]. A context-free grammar was proposed to

generate comparative linguistic expressions (CLEs), that are close to cognition of

human-being. By using a transformation function, CLEs can be easily translated

into HFLTSs [58]. The application of CLEs based on HFLTSs allows experts to

provide more complex, elaborated and flexible assessments than single linguistic

terms. Therefore, it seems worthy to research the use of CLEs to define new soft

sets models able to deal with linguistic expressions.

Within our research in hybridizing soft sets and linguistic expressions, and the

need of computing with such expressions, it was noted that in a similar way to lin-

guistic terms in computing with words (CW), the comparative linguistic expressions

(CLEs) also mean different things to different people. Hence, to deal with the un-

certainty contained in a CLE, suitable representation model for HFLTSs should be

constructed. So far, the representation models for HFLTSs are based on linguistic

intervals [58] or type-1 fuzzy sets [33]. None of these models take into account the

hesitancy and fuzzy uncertainty contained in HFLTSs, which might cause loss of

information when CLEs are applied in DM. Therefore, it is necessary to construct

new representation models for HFLTSs which can reflect and deal with linguistic

uncertainties in a more comprehensive way.

1.2 Objectives

Based on the motivation and considerations raised in the previous section, the pur-

pose of this research is focused on the improvement of application methodologies of

hybrid mathematic models in DM, especially in linguistic DM.

Based on this purpose, we set the following objectives:

1. To make a comparative study on the existing DM approaches based on fuzzy

soft sets and rough soft sets, point out their limitations and analyze the reasons

why they have such limitations. Afterwards, to present new methodologies to

overcome these limitations. It is also important to explore new approaches

based on these hybrid models to meet different demands of applications.

2. To make a comparative study on the existing soft rough set models as well as

their fuzzy extensions, studying the inner-relationships among different models

and point out the potential use of these relationships in DM. To explore new

ways to combing soft set theory and rough set theory and propose new soft

rough set models. To study the application of the new constructed soft rough

set models in DM.

3. To define a new hybrid soft set model able to deal with CLEs to improve the
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elicitation of linguistic information. To construct some novel algorithms based

on the new constructed model to solve DM and GDM problems. Afterwards,

to examine the performance of the proposed algorithm in GDM by comparing

it with existing algorithms based on other hybrid soft sets.

4. To construct a new fuzzy representation model for CLEs, such a model can

be used to reflect and deal with linguistic uncertainties contained in CLEs.

Since CLEs could be transformed into HFLTSs, the new representation model

in form of type-2 fuzzy sets should reflect and deal with both fuzzy uncer-

tainties and hesitancy contained in HFLTSs. Furthermore, to examine the

performance of the new representation model for CLEs in linguistic DM, it

should be compared with other existing representation models.

1.3 Structure

To achieve the objectives set out in the previous section, taking into account the

article 23, point 3, of the current regulations for Doctoral Studies at the University of

Jaén, in accordance with the program established in the RD 99/2011, this research

memory will be presented as a set of articles published by the Phd student.

Two articles have been published in International journals indexed by JCR

database, produced by ISI. And other two articles have been submitted to two In-

ternational journals indexed by JCR. In summary, the report is composed of a total

of four articles which have been published or submitted in prestigious International

journals.

Next, we make a brief description of the structure of this research memory:

• Chapter 2: It revises some theoretical concepts that are used in our proposals

to achieve the objects presented: the notions of soft sets, fuzzy soft sets,

rough soft sets and several other hybrid soft sets models; the concepts of fuzzy

linguistic approach, HFLTSs and comparative linguistic expressions generated

by a context-free grammar.

• Chapter 3: It introduces in short the proposals of the published or on-going

articles that form the research memory. For each article, a brief discussion of

the obtained results is presented.

• Chapter 4: This chapter acts as the core of the doctoral thesis, which contains

the publications obtained as result of the research. For each publication, the

quality indexes where the proposals have been published are indicated.
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• Chapter 5: It points out the final conclusions drawn from this research, and

discusses some future works as the development of the current research.
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Chapter 2

Basic Concepts and Background

2.1 Decision making under uncertainty

In this section, the concept of decision making (DM) under uncertainty will be

reviewed. Some mathematic models, soft sets and hybrid soft sets, which could be

applied to solve DM problems with uncertain information are revised. Afterwards,

several approaches based on hybrid soft set which are applied to DM problems with

vague and uncertain information are briefly discussed.

2.1.1 Decision making under uncertainty and difficulties

DM problems appear frequently in many daily life fields of human being, such as in

political agencies [19], engineering [20], business [56], governmental [64], social and

economic sciences [71], etc. A DM problem consists of several alternatives and a

decision maker who has to make a choice to obtain the best one(s) as solution of

the problem. Classical DM problems contain the following elements:

• objectives to be reached;

• several alternatives to be chosen for reaching the objectives;

• a decision context to formulate the decision problem;

• a function to determine the utility values of alternatives under the decision

context.

DM problems are classified by means of the decision context as follows: (i)

under certain environment; (ii) under risk environment; (iii) under uncertainty en-

vironment. In the current research, we focus on the DM problems under uncertain

environment, in which it is hard to have probabilistic knowledge about alternatives.

9



10 2.1. Decision making under uncertainty

Increasing complexity of the socio-economic environment makes that real-life

DM problems are full of uncertainty and imprecise information. In such situations,

classical mathematics cannot handle this type of uncertainty, because they require all

mathematical notions to be exact, otherwise, precise reasoning would be impossible.

From the mathematic modeling point of view, the main difficulties for dealing

with DM problems under uncertainty are:

1. Lack of mathematic models to deal with uncertain information.

Fuzzy set theory, fuzzy linguistic approach, rough set theory and soft set

theory have been proved as effective approaches to deal with different types

of uncertainties. The applications of these models are limited since each of

them usually only deals with a single type of uncertainty, however in DM

problems different types of uncertainties might exist at the same time. To face

this situation, it is necessary the construction of new hybrid models taking

the advantages of each specific model and dealing with more complex DM

situations.

2. Lack of methodologies to apply mathematic models to solve DM problems.

Although some hybrid models such as fuzzy rough soft sets and rough fuzzy

soft sets have been proposed by researchers, DM algorithms or DM approaches

based on these models still need to be explored. The existing DM approaches

by using hybrid soft sets are few, and the application scope of each approach is

usually very limited, since it can only be used to deal with specific situations,

therefore new approaches need to be developed to meet the demands of various

DM situations.

2.1.2 Soft sets and hybrid soft sets: mathematic models for dealing

with uncertainty

Soft sets and hybrid soft sets are useful mathematic models for dealing with un-

certainty. In this section, we make a brief review on the notion of soft sets and

introduce a list with some popular hybrid soft sets models.

2.1.2.1 Soft sets

Let U be the universe and E the set of all possible parameters under consideration

with respect to U . (U,E) is called a soft space. Usually, parameters are attributes,

characteristics, or properties of objects in U . A soft set is defined as follows:

Definition 1 [50] A pair (F,A) is called a soft set over U , where A ⊆ E and F is

a mapping given by F : A→ P (U).
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A soft set over U is a parameterized family of subsets of U . For e ∈ A, F (e)

may be considered as the set of e-approximate elements of the soft set (F,A).

2.1.2.2 Hybrid soft sets.

To enhance the ability of soft sets in dealing with uncertainty, it has been studied

the combination of soft sets with other models. Most of the hybrid soft sets models

come from the combination of soft set theory with fuzzy set theory [77] and rough

set theory [55]. Several popular hybrid soft set models are revised.

1. Fuzzy soft sets.

Maji et al. [37] initiated the study on hybrid structures involving both fuzzy

sets and soft sets and introduced the notion of fuzzy soft sets:

Definition 2 [37] Let (U,E) be a soft space. A pair (F,A) is called a fuzzy

soft set over U , where A ⊆ E and F is a mapping given by F : A→ F (U).

Fuzzy soft sets are a fuzzy generalization of soft sets. Compared to soft sets,

in fuzzy soft sets, fuzzy sets on the universe U are used as substitutes for the

crisp subsets of U . Therefore, every soft set could be considered as a fuzzy

soft set.

2. Rough soft sets

Considering the approximations of soft sets in a Pawlak approximation space,

Feng et al. [15] introduced the notion of rough soft sets.

Definition 3 [15] Let (U,R) be a Pawlak approximation space and S = (F,A)

be a soft set over U . The lower and upper rough approximations of S = (F,A)

with respect to (U,R) are denoted by Apr
R

(S) = (FR, A) and AprR(S) =

(FR, A), which are soft sets over U with the set-valued mappings given by

FR(e) = Apr
R

(F (e)),

FR(e) = AprR(F (e)),

where e ∈ A. The operators Apr
R

and AprR are called the lower and upper

rough approximation operators on soft sets. If Apr
R

(S) = AprR(S) the soft

set S is said to be definable; otherwise S is called a rough soft set.

3. Soft rough sets

In [15], Feng et al. initiated the notion of soft rough sets (F -soft rough sets).
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Definition 4 [15] Let S = (f,A) be a soft set over U . The pair P = (U, S)

is called a soft approximation space. Based on P , the following two operations

are defined:

apr
P

(X) = {u ∈ U ; ∃a ∈ A(u ∈ f(a) ⊆ X)} (2.1)

aprP (X) = {u ∈ U ;∃a ∈ A(u ∈ f(a), f(a) ∩X 6= ∅)} (2.2)

assigning to every subset X ⊆ U two sets apr
P

(X) and aprP (X) called the

F -lower and F -upper soft rough approximations of X in S, respectively. If

apr
P

(X) = aprP (X), X is said to be F -soft definable in P ; otherwise X is

called a F -soft rough set.

Compared to rough set theory, in a F -soft rough set, a soft set instead of an

equivalence relation is used to granulate the universe of discourse.

4. Modified soft rough sets

Shabir et al. [63] noted that if S = (f,A) is not a full soft set, then there

exists x ∈ U such that x ∈ NegP (X) = U − aprP (X) for all X ⊆ U . Thus

X ⊆ aprP (X) and some basic properties of rough sets do not hold in general.

Based on these observations, Shabir et al. [63] proposed the notion of modified

soft rough sets (MSR sets).

Definition 5 [63] Let (f,A) be a soft set over U and ϕ : U → P (A) be a

map defined as ϕ(x) = {a ∈ A;x ∈ f(a)}. The pair (U,ϕ) is then called

MSR-approximation space and for any X ⊆ U , the lower MSR approximation

and upper MSR approximation of X are denoted by Xϕ and Xϕ respectively,

which are defined as

Xϕ = {x ∈ U ; ∀y ∈ Xc(ϕ(x) 6= ϕ(y))} (2.3)

Xϕ = {x ∈ U ;∃y ∈ X(ϕ(x) = ϕ(y)) (2.4)

If Xϕ = Xϕ, then X is said to be MSR definable, otherwise X is said to be a

MSR set.

5. Soft rough fuzzy sets

Based on the combination of rough, fuzzy and soft sets, Feng et al.[15], Meng

et al. [49] and Zhan et al. [83] proposed different notions of soft rough approx-

imation operators on fuzzy sets and presented three different soft rough fuzzy

set models. To facilitate the discussion, we denote them as F -soft rough fuzzy
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set, M -soft rough fuzzy set and Z-soft rough fuzzy set respectively. These

models are briefly reviewed as below.

Let S = (f,A) be a full soft set over U and P = (U, S) be a soft approximation

space. For a fuzzy set µ ∈ F (U):

Definition 6 [49] The lower F -soft rough approximation sap
P

(µ) and upper

F -soft rough approximation sapP (µ) of µ are fuzzy sets in U given by:

sap
P

(µ)(x) = ∧{µ(y);∃a ∈ A({x, y} ⊆ f(a))} (2.5)

sapP (µ)(x) = ∨{µ(y);∃a ∈ A({x, y} ⊆ f(a))} (2.6)

for all x ∈ U . If sap
P

(µ) = sapP (µ), µ is said to be F -soft definable; otherwise

µ is called a F -soft rough fuzzy set.

Definition 7 [15] The lower M -soft rough approximation sap
′

P
(µ) and upper

M -soft rough approximation sap
′
P (µ) of µ are fuzzy sets in U given by:

sap
′

P
(µ)(x) = ∨x∈f(a) ∧y∈f(a) µ(y) (2.7)

sap
′
P (µ)(x) = ∧x∈f(a) ∨y∈f(a) µ(y) (2.8)

for all x ∈ U . If sap
′

P
(µ) = sap

′
P (µ), µ is said to be M-soft definable; otherwise

µ is called a M -soft rough fuzzy set.

Definition 8 [83] The Z-lower soft rough approximation µ
ϕ

and Z-upper soft

rough approximation µϕ of µ are fuzzy sets in U given by:

µ
ϕ
(x) = ∧{µ(y); y ∈ U ∧ ϕ(x) = ϕ(y)} (2.9)

µϕ(x) = ∨{µ(y); y ∈ U ∧ ϕ(x) = ϕ(y)} (2.10)

for all x ∈ U . If µ
ϕ

= µϕ, µ is said to be Z-soft definable; otherwise µ is

called a Z-soft rough fuzzy set.

2.1.3 Uncertain decision making based on hybrid soft sets

We only provide a brief review on DM based on fuzzy soft sets and rough soft sets,

since these two models are simple and very popular and our research presented in

Section 4.1 is closely related to them. The application of these two models have

potential to be extended to more complex models and situations.

Up to present, there still exist arguments and limitations for the existing algo-

rithms based on fuzzy soft sets and rough soft sets, and the application methodolo-

gies are far away to meet different demands of applications:



14
2.2. Linguistic preference modeling for decision making under

uncertainty

1. In terms of fuzzy soft sets based DM methods, there exist two popular ap-

proaches: (i) the score based approach [61], and (ii) the fuzzy choice value

based approach [30].

• In the score based approach, a comparison matrix is constructed and

through computing the row sum and column sum of the comparison ma-

trix the scores could be obtained. The final decision is to choose the

alternative with maximum score.

• In the fuzzy choice value based approach, the sum of all the membership

values of alternatives with respect to all parameters are computed as the

fuzzy choice value, and the decision is made by selecting the alternative

with maximum fuzzy choice value.

There has been a fierce argue on which of these two approaches is more rea-

sonable. In [14], it is proposed an adjustable approach by using level soft sets.

Since choice values of alternatives in the soft sets are applied to make the

decision, their adjustable approach could be viewed as the improvement of the

fuzzy choice values based approach.

2. In terms of rough soft sets based DM approaches, we have only noticed two

algorithms provided by Ma et al. [35]. However, such algorithms can only

solve specific DM problems and could only be viewed as the initial attempt

for application.

2.2 Linguistic preference modeling for decision mak-

ing under uncertainty

In this section, we make a brief review about fuzzy linguistic approach, comput-

ing with words (CW), elicitation of comparative linguistic expressions (CLEs) based

on hesitant fuzzy linguistic term sets (HFLTSs), and several representation models

for HFLTSs.

2.2.1 Fuzzy linguistic approach

Fuzzy linguistic approach has been widely applied to model linguistic preferences

in DM. In fuzzy linguistic approach [78], linguistic information is represented by

linguistic variables. A linguistic variable is described as “a variable whose values

are not numbers but words or sentences in a natural or artificial language” [78], and

it could be formally defined as follows:
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Definition 9 [79] A linguistic variable is characterized by a quintuple (H,T (H),

U,G,M) in which H is the name of the variable; T (H) is the term set of H, i.e.,

the set of names of linguistic values of H, with each value being a fuzzy variable that

is denoted by X and ranging across a universe of discourse U , which is associated

with the base variable u, G is a syntactic rule (which usually takes the form of a

grammar) for the generation of the names of values of H; and M is the semantic

rule for associating its meaning with each H, M(X), which is a fuzzy subset of U .

To deal with linguistic variables, it is necessary to select suitable descriptors for

linguistic terms, and define the appropriate semantics (see Fig. 2.1). The linguis-

tic descriptors of terms could be obtained by using an ordered structure approach

[23, 75], they can also be obtained by using a context-free grammar, in which the lin-

guistic descriptors are sentences generated by a context-free grammar G [5, 6, 79].

Accordingly, the semantics of terms could be accomplished based on an ordered

structure of the linguistic term set, or by using membership functions of primary

linguistic terms and a semantic rule to provide membership functions of non-primary

linguistic terms [58].

nothing very bad mediumbad good very good perfect

0 0.17 0.33 0.5 0.67 0.83 1

descriptors

semantics

Figure 2.1: Descriptors and semantics of a linguistic term set

The use of linguistic information implies the necessity of operating with linguistic

variables. CW is defined as a methodology for reasoning, computing and decision

making using natural language information [48]. The general scheme for CW is

shown by Fig. 2.2.

Figure 2.2: Computing with words scheme [12, 21]

The application of linguistic information in recommender systems [3, 43, 57],

social choice [18], data mining [26], and many other practical fields would not be

possible without carrying out CW processes. Tools such as probability [31, 32],
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uncertainty

Fuzzy Logic [80], and Fuzzy Linguistic Approach [78] grounds the basis for different

computational models for CW.

2.2.2 Elicitation of comparative linguistic expressions based on HFLTSs

In real world linguistic DM problems, sometimes it is difficult for decision makers

to use single linguistic terms to elicit their assessments on alternatives, since they

may hesitate among several linguistic terms at the same time when they are under

time pressure, lack of confidence or consider other uncertain issues.

In order to model this hesitant situations, Rodŕıguez et al. introduced the con-

cept of HFLTS [58].

Definition 10 [58] Let S = {s0, . . . , sg} be a linguistic term set, and a HFLTS

HS, is defined as an ordered finite subset of consecutive linguistic terms of S,

HS = {si, si+1, . . . , sj} such that sk ∈ S, k ∈ {i, . . . , j}.

Although HFLTSs could be used to deal with linguistic preferences in hesitant

situations, they are not similar to the way of thinking and reasoning in real world

problems. Therefore, in [59] it was proposed the use of a context-free grammar to

generate comparative linguistic expressions (CLEs) close to the natural language

used by human beings in real world.

Definition 11 [59] Let GH be a context-free grammar and S = {s0, . . . , sg} be a

linguistic term set. The elements of GH = (VN , VT , I, P ) are defined as follows:

VN = {〈primary term〉, 〈composite term〉, 〈unary relation〉, 〈binary relation〉, 〈conjunction〉}.
VT = {at most, at least, between, and, s0, . . . , sg}.
I ∈ VN .

P = {I ::= 〈primary term〉|〈composite term〉
〈composite term〉 ::= 〈unary relation〉〈primary term〉|〈binary relation〉〈primary

term〉〈conjunction〉〈primary term〉
〈primary term〉 ::= s0|s1| . . . |sg
〈unary relation〉 ::= at most|at least

〈binary relation〉 ::= between

〈conjunction〉 ::= and}.

Different CLEs generated by the context-free grammar GH can be transformed

into HFLTSs by a transformation function. In this way, CLEs could be semantically

represented by HFLTSs, and operations on CLEs could be realized through carrying

out operations on HFLTSs.
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Definition 12 [58] A transformation function EGH
, which is able to transform a

CLE, ll into a HFLTS, HS, where S is the linguistic term set used by EGH
, is

defined as:

EGH
: ll→ HS (2.11)

Based on EGH
, CLEs generated by GH can be transformed into HFLTSs in

different ways according to their meaning:

EGH
(si) = {si|si ∈ S},

EGH
(at most si) = {sj |sj ≤ si and sj ∈ S},

EGH
(at least si) = {sj |sj > si and sj ∈ S},

EGH
(between si and sj) = {sk|si ≤ sk ≤ sj and sk ∈ S}.

2.2.3 Representation of comparative linguistic expressions

To facilitate the computations with CLEs based on HFLTSs, a representation model

for HFLTSs in form of linguistic interval was proposed.

Definition 13 [58] The envelope of an HFLTS HS, denoted by env(HS), is a lin-

guistic interval whose limits are obtained by:

env(HS) = [HS− , HS+ ], HS− ≤ HS+

where HS− = min{si} and HS+ = max{si} for si ∈ HS, ∀i.

The envelope in form of linguistic intervals loses the fuzzy representation of

linguistic information, therefore Liu et al. [33] proposed another kind of envelope in

form of trapezoidal fuzzy numbers (TFNs), called type-1 fuzzy envelope. A scheme

to obtain fuzzy envelopes of HFLTSs has been provided in [33] by using OWA

operators [16] and the semantics of linguistic terms in a linguistic term set. The

scheme is briefly summarized as follows:

• Obtain elements to aggregate.

Each linguistic term of the HFLTS sk is presented as Ak = T (akL, a
k
M , a

k
R),

and it is logical to use the set of all points of all membership functions of

linguistic terms as the elements to aggregate, for computing the fuzzy envelope

of HS = {si, si+1, . . . , sj}.

T = {aiL, aiM , aiR, ai+1
M , ai+2

L , ai+1
R , . . . , ajL, a

j−1
R , ajM , a

j
R}.

Since ak−1R = akM = ak+1
L , k = 1, 2, . . . , g − 1, the elements to aggregate could

be deduced to

T = {aiL, aiM , ai+1
M , . . . , ajM , a

j
R}.
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• Compute the parameters of fuzzy envelopes in form of TFNs.

For any HFLTS, HS , the fuzzy envelopes for HS is a TFN, FHS
= T (a, b, c, d),

where the parameters a, b, c, d are obtained from aggregation of elements in

T = {aiL, aiM , ai+1
M , . . . , ajM , a

j
R}. The aggregation operators are OWA opera-

tors reviewed in the next step.

• Compute the OWA operators.

The approach in [16] is adopted to compute the OWA operators, i.e., W 1

and W 2 are chosen as the associated weights to aggregate elements in T =

{aiL, aiM , ai+1
M , . . . , ajM , a

j
R} according to the CLE:

Definition 14 [16] Let α ∈ [0, 1],

the first type of OWA weights W 1 = (w1
1, w

1
2, . . . , w

1
n) is defined as

w1
1 = α, w1

2 = α(1 − α), w1
3 = α(1 − α)2, . . . , w1

n−1 = α(1 − α)n − 2,

w1
n = (1− α)n−1;

the second type of OWA weights W 2 = (w2
1, w

2
2, . . . , w

2
n) is defined as

w2
1 = αn−1, w2

2 = (1 − α)αn−2, w2
3 = (1 − α)αn−3, . . . , w2

n−1 = (1 − α)α,

w2
n = 1− α.

• Obtain the fuzzy envelope.

Fuzzy envelope FHS
for HS is obtained as a TFN T (a, b, c, d).

2.3 Group decision making and consensus reaching pro-

cess

In this section, we first review the concepts of group decision making and con-

sensus reaching process, then we discuss the limitations of group decision making

approaches based on hybrid soft set models.

2.3.1 Group decision making

When more than one decision maker takes part in and takes responsibility for the

decision result in a DM problem, it is called a group decision making (GDM) prob-

lem. More decision makers may make the decision result more reliable, at the same

time, it also may increase the difficulties to make the decision considering factors

such as the time consumption. A GDM problem is formally characterized by the

following elements [29]:

• A common problem to be solved.
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• A set of alternatives or a set of possible solutions denoted by X to the problem.

X = {x1, . . . , xn} (n > 2) (2.12)

• A set of decision makers, denoted by E, who express their preferences on

alternatives and try to obtain a common solution to the problem.

E = {e1, . . . , em} (m > 2) (2.13)

Each decision maker provides his/her opinion over alternatives by using a pref-

erence structure. Some popular structures in GDM problems under uncertainty

are: utility vectors [7], fuzzy preference relation [51, 54, 68], and preference ordering

[67]. Different information domains to provide preferences are allowed in GDM prob-

lems. Some frequently utilized in GDM under uncertainty are: numerical domain

[7, 51, 84], interval-valued domain [17, 73], and linguistic domain [11, 22, 25, 38, 41].

There are two kinds of approaches for solving a GDM problem: a direct ap-

proach or an indirect approach [24]. In the direct approach, a solution could be

directly obtained from the individual preferences of decision makers, it is not nec-

essary to obtain a social opinion in front. In the indirect approach, a social opinion

or a collective preference need to be computed first, and afterwards the collective

preference is utilized to obtain the final solution.

The classical selection process to obtain the solution of a GDM problem consists

of two phases [60], as shown in Fig. 2.3.

• Aggregation phase: in this phase, the preferences provided by decision makers

are combined using aggregation operators to obtain a collective preference.

• Exploitation phase: in this phase, one or a subset of alternatives will be se-

lected by using a selection criterion as the solution for the problem.

Solution

alternative/s

Experts

Figure 2.3: Selection process for the solution of a GDM problem
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2.3.2 Consensus reaching process in group decision making

When the solution of a GDM problem is directed obtained by the selection process,

a desired agreement level among decision makers is difficult to be guaranteed, which

may lead to a solution that is not accepted by decision makers who feel that their

individual opinions have not been taken into consideration [8]. Since a high level of

acceptance of the whole group is critical in real-life GDM problems, it is necessary

to consider a phase called “consensus” for GDM problems. A consensus reaching

process (CRP) is a dynamic and iterative process consisting of several rounds of

discussion, in which decision makers modify their initial opinions to make themselves

closer to the majority of the group and to ensure a desired group agreement before

making the decision [8, 62].

CRP is usually coordinated by a moderator, who takes responsibility for super-

vising and guiding the discussion amongst decision makers [8, 62]. A general CRP

scheme (see Fig. 2.4) consists of four main phases:

Gather Preferences 

Consensus 

Measurement

Consensus Control

Consensus Progress
Selection process

Problem

Alternatives 

Preferences

Advice

Experts

  

Moderator

Consensus 

Achieved

Figure 2.4: A general CRP scheme

1. Gathering preferences

The preferences of decision makers are collected in this phase.

2. Consensus measurement

The moderator makes use of individual preferences of decision makers to es-

timate a group agreement level by consensus measures. Based on the type of

information fusion procedures, the existing consensus measures could be clas-

sified into two categories [52]: 1) consensus measures based on distances from

individual to collective preference; 2) consensus measures based on distances

between preferences of different pairs of experts.
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3. Consensus control

The consensus degree obtained previously is compared with a consensus thresh-

old µ ∈ [0, 1], which indicates the minimum value of acceptable agreement. If

the consensus degree exceeds the consensus threshold, µ, means that the de-

sired consensus has been achieved, and therefore, the group moves into the

selection process; otherwise, another discussion round should be carried out.

A value maxrounds ∈ N , which indicates the maximum number of allowed

rounds will be set a prior in order to prevent a never ending process.

4. Consensus progress

If the current consensus degree is not enough, a procedure should be adopted

to increase the level of agreement throughout the discussion rounds. The

procedure can also be classified into two categories [53]:

• Traditionally, such a procedure incorporates a feedback generation pro-

cess, in which the moderator identifies the farthest assessments from con-

sensus in the current round, and then some advise are generated to modify

decision maker’s assessments to get closer to the rest of the group and

increase the consensus degree [42, 62].

• Some other consensus models employ a procedure without a feedback

generation process, in which assessments of decision makers are updated

automatically to increase the consensus degree [4, 72, 84]. In this model,

decision makers only need to provide initial preference information, since

it is no necessary for them to be involved in the following rounds.

2.3.3 Hybrid soft sets based group decision making and their lim-

itations

Several GDM approaches by using hybrid soft sets have been proposed by re-

searchers. Based on the revisions of linguistic preference modeling, GDM, and CRP,

group decision making approaches based on hybrid soft set models present several

limitations that could be listed as follows:

1. A priori optimal group decisions.

Current GDM algorithms based on soft rough sets request that each decision

maker provides their optimal choices before making the group decision. That

is, each decision maker has to make his/her own decision before the GDM

process carries out. This request is very strict, usually can not be carried

out in real life decision making, thus the applications for the existing GDM

algorithms are limited.
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2. Lack of models and approaches to deal with linguistic information under the

framework of hybrid soft sets.

It has been mentioned before that the use of linguistic information is very

common in GDM problems. Although hybrid soft sets have been applied

in GDM, they can not be applied when decision makers provide linguistic

information. As far as we know, there is only one hybrid soft set model called

linguistic value soft sets [65] that is able to deal with linguistic preferences.

3. No consensus reaching process have been considered.

As it was mentioned in the above section, a CRP is very important for ensuring

a decision accepted by the whole group. However, no consensus models have

been defined either applied to GDM problems by using hybrid soft set models.



Chapter 3

Research Results

This chapter presents a summary of the main proposals considered in this research

memory. Research findings and research results will be briefly discussed for each

proposal. It is structured in four proposals which are related with the objectives

described in the introduction chapter:

1. Improving DM approaches based on fuzzy soft sets and rough soft sets.

2. A comparative study of some soft rough sets.

3. Hesitant linguistic expression soft sets: Application to group decision making.

4. Type-2 fuzzy envelope for HFLTSs and its application to multi-criteria decision

making.

3.1 Improving decision making approaches based on fuzzy

soft sets and rough soft sets

In order to achieve the first objective mentioned in Section 1.2, in this proposal, we

analyze the limitations of existing approaches based on fuzzy soft sets and rough

soft sets. Afterwards, we provide some methods to improve them, and we propose

some new algorithms to enrich the methodologies.

3.1.1 Improving decision making approaches based on fuzzy soft

sets

There has been an argument on DM approaches based on fuzzy soft sets about

which one “the score based method” or “the fuzzy choice value based method” is

more reasonable. In this proposal, we point out that it is hard to determine which

one is more reasonable without setting a certain circumstance, since their decision

23
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rough soft sets

criteria are different. We state that “the score based method” is used to select

the objects that cooperate with more attributes in quantity, whereas “the fuzzy

choice value based method” is used to select the objects that cooperate with more

attributes in quality. Both approaches have some limitations, and there should be

proposed new methods to overcome such limitations.

The main limitation for fuzzy choice value based method is that the direct addi-

tion of all membership degrees with respect to attributes is not always reasonable.

We summarize the methodologies overcoming this limitation to avoid the unreason-

able direct addition of membership values:

(i) We can weight the parameters according to advices provided by relevant ex-

perts, and the fuzzy choice value could be submitted by using the aggregated

result obtained by OWA operators [74]. The approaches for synthesizing or

redefining fuzzy choice value is not unique, the use of OWA operators is only

an illustration.

(ii) We can use the adjustable approach proposed in [14] to avoid direct addition.

In their approach, through using a threshold value, fuzzy soft sets will be trans-

formed into soft sets, then DM problems based on fuzzy soft sets will become

a problem based on soft sets. Therefore, choice value instead of fuzzy choice

value will be adopted to evaluate alternatives. If this approach is applied,

we state that the most important task is to select a suitable threshold value

according to practical circumstances.

The score based method has two main limitations: (i) when parameters need to

be updated during the DM process, each entry in the comparison matrix have to be

recomputed, which result in a large amount of computation. (ii) there exists DM

problems which can not be successfully dealt with by using the score based method

[14]. Thus, we provide some new methods which could be used to overcome these

limitations:

1. To improve the score based method, we introduce a new concept so-called D-

Score and a mathematic tool D-score table. It is proved that the results of a

DM problem are the same by using the score based method and the proposed

approach with D-Score table. However, the amount of computations obviously

decreases when the parameters are added/deleted in the DM problem. There-

fore, the proposed approach is able to overcome the limitation (i) of the score

based method because it does not repeat computation when the information

is updated. Consequently, the new approach based on the D-score table could

be considered as an improvement.
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2. A novel adjustable DM approach based on fuzzy soft set is introduced by

using thresholds when comparing two membership degrees to obtain different

kinds of scores for alternatives. Benefitting from Feng’s idea of introducing

thresholds [14], a comparison threshold will be taken into consideration when

comparing the membership degrees of two objects with respect to a common

parameter. In this way, if the exceed degree of one membership degree over

another is not less than the comparison threshold, we say that the object

relatively possesses that parameter. With the introduction of threshold values,

the scores of alternatives will be different from the scores by using the score

based approach, and different optimal decision will be obtained by setting

different comparison thresholds, which makes this approach adjustable. This

new adjustable approach could be used to solve problems which cannot be

solved by using the score based approach.

3.1.2 Improving decision making approaches based on rough soft

sets

After studying the existing DM approaches based on rough soft sets, we have found

two main limitations that should be overcome:

(i) The application scopes of existing DM approaches based on rough soft sets are

very limited, difficult to meet various demands of DM.

(ii) So far, there is not any application of rough soft set in GDM.

Taking into account these two limitations, we introduce new approaches:

1. Two new DM approaches based on rough soft set are introduced. One selects

the optimal choice whose upper approximations cover all alternatives while

the lower approximations cover a specific number of alternatives. Another

approach determines the best choice by selecting attributes whose upper ap-

proximations cover the most number of alternatives. Several examples are

provided to illustrate the feasibility of both approaches. Different selection

mechanisms are proposed to enrich the methodologies for applying rough soft

sets in DM.

2. A GDM approach based on rough soft set which successfully solve problems

when the initial evaluation information provided by experts are their assess-

ments on alternatives from different parameters aspects. It has been analyzed

that most of existing GDM approaches based on soft rough sets have a strong

requirement, because each decision maker has to make optimal choices before
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a GDM process. Our proposed GDM approach based on rough soft set suc-

cessfully gets rid of this strong requirement, since the group decision results

could be obtained based on the assessments provided by decision makers over

alternatives. It is noticed that our approach is the first attempt in applying

rough soft set in GDM.

The article associated to this proposal is the following one:

Y Liu, K Qin, L Mart́ınez. Improving decision making approaches based on

fuzzy soft sets and rough soft sets. Applied Soft Computing, 2018, 65: 320-332.

3.2 A comparative study of some soft rough sets

In this section, hybrid soft sets models constructed by combining soft sets and rough

sets, as well as fuzzy extension models of rough sets, are collectively refer to as soft

rough sets. To achieve the second objective of this research, this section is devoted

to two main directions:

1) The discussion on relationships among various existing soft rough sets;

2) The introduction of a novel soft rough set model and a decision making approach

based on such a model.

3.2.1 The relationships among various soft rough sets

The combination of soft set, fuzzy set and rough set is one of the most important

issues in the development of soft set theory, since it can enhance the ability of soft

sets dealing with multiple types of uncertainty. We notice that the relationships

among different soft rough sets have not been systematically studied. In this pro-

posal, we study the relationships among various soft rough sets, and our research

result could be briefly summarized as follows:

1. The relationship between F -soft rough approximations (see page 12, Def. 4)

and MSR approximations (see page 13, Def. 5):

Xϕ ⊆ aprP (X), aprP (X) ⊆ Xϕ, Xϕ ⊆ apr
P

(X), if some specific conditions

hold, respectively.

2. The relationship between F -soft rough sets (see page 12, Def. 4) and Pawlak’s

rough sets [55]:

F -soft rough sets in (U, S) could be identified with Pawlak’s rough sets in

(U,RS), when the underlying soft set is a partition soft set.
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3. The relationship between MSR approximations (see page 13, Def. 5) and

Pawlak’s rough approximations [55]:

MSR approximation operator is a kind of Pawlak rough approximation oper-

ator.

4. The relationship between Z-lower, Z-upper soft rough approximation opera-

tors (see page 14, Def. 8) and Dubois and Prade’s lower and upper rough

fuzzy approximation operators [13]:

Z-lower and Z-upper soft rough approximation operators are equivalent to

Dubois and Prade’s lower and upper rough fuzzy approximation operators.

5. The relationship between the (classical) rough fuzzy sets [13] and M -soft rough

fuzzy sets (see page 14, Def. 7):

The (classical) rough fuzzy sets in Pawlak approximation space (U,R) and M -

soft rough fuzzy sets in soft approximation space (U, S) are equivalent when

the underlying soft set S is a partition soft set.

6. The relationship among Z-soft rough approximation operators (see page 14,

Def. 8) and M -soft rough approximation operators (see page 14, Def. 7) and

F -soft rough approximation operators (see page 13, Def. 6) on fuzzy set µ:

sap
P

(µ) ⊆ sap′
P

(µ) ⊆ µ
ϕ
⊆ µ ⊆ µϕ ⊆ sap

′
P (µ)⊆ sapP (µ).

7. The relationship between soft fuzzy rough approximation [49] and Dubois and

Prade’s fuzzy rough approximation [13]:

The soft fuzzy rough approximation is a kind of Dubois and Prade’s fuzzy

rough approximation [13].

8. The relationship between F-soft rough set (see page 12, Def. 4) and soft rough

soft set (proposed by us):

Soft rough soft set is an extension of F-soft rough set.

3.2.2 A novel soft rough set and decision making

By extending the notion of F -soft rough set [15], we define a new soft rough set

model, called soft rough soft set, and then study its application in decision making.

1. By using a soft set as the elementary knowledge to compute the approximations

of another soft set, we originally define a new hybrid soft set model called soft

rough soft set. Compared to F-soft rough sets, soft rough soft sets introduce

parameter tools to the universe description and a soft set (instead of a subset

of the universe) is approximated. Compared to rough soft set [15], a soft set

instead of an equivalence relation has been adopted in soft rough soft sets to
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decision making.

compute the approximations of soft set. The parameter tool is necessary not

only for the knowledge representation, but also for the universe description.

In soft rough soft sets, parameterized tools have been used in both aspects.

2. A multi-group decision making approach based on soft rough soft sets has been

provided to illustrate the application of the proposed model. This approach

is designed to deal with problems in which two groups of experts take part in

the decision. The decision principle could be briefly described as follows:

Assessments of each expert in group A are performed as a soft set, the group

assessments of A is a soft set obtained by using the intersection operation of

soft sets. The best alternatives selected by another specialists of the group

B also form a soft set. B is supposed to be more reliable than A. Through

computing the lower and upper soft rough approximations of the soft set re-

lated to B in the soft approximation space, consisted of the soft set related to

A, and the alternative which occupies most number of benefit properties and

may be important for both groups, will be chosen. The proposed approach

takes full advantage of information provided by two independent groups.

The article associated to the second objective of this research is the following one:

Y Liu, L Mart́ınez, K Qin. A Comparative Study of Some Soft Rough Sets.

Symmetry, 2017, 9(11): 252.

3.3 Hesitant linguistic expression soft sets: Application

to group decision making.

Although several hybrid soft set models have been constructed by combing soft

sets with other mathematic models for dealing with uncertainty, as far as we know,

there is only one model called linguistic value soft set that combines soft set the-

ory with linguistic information which allows decision makers to provide assessments

with single linguistic terms. However, linguistic terms may be too strict in hesitant

situations and decision makers might hesitate among several terms. In such situ-

ations, they may prefer to use linguistic expressions rather than linguistic terms.

The use of CLEs based on HFLTSs could be suitable to describe hesitant linguistic

information. Nevertheless, linguistic value soft sets fail to deal with CLEs or any

other complex linguistic expression, therefore, more flexible and practical models

need to be constructed in order to deal with CLEs under the framework of soft sets.

In this proposal, first a novel hybrid soft set model called hesitant linguistic

expression soft set (HLE soft set) is defined, which is able to deal with CLEs.

Second, a decision making approach based on HLE soft set is introduced and an



3. Research Results 29

illustrative example is shown. Third, a novel GDM model to reach consensus is

proposed. The performance of the new GDM approach is examined by comparing

it with an existing GDM approach [65], through handling a GDM problem by using

these two approaches, respectively. In this way, we achieve the third objective

mentioned in Section 1.2.

3.3.1 Hesitant linguistic expression soft set

Soft set theory provides a framework for considering assessments from different pa-

rameters aspects. In this proposal, to improve the ability and flexibility of linguistic

value soft set ecilitating linguistic expressions more complex than single linguistic

terms, we do further research on the combination of soft set theory and HFLTSs to

introduce the notion of hesitant linguistic expression soft set (HLE soft set), which

makes possible to evaluate alternatives from different parameters aspects by using

CLEs.

Let U be the universe set and E be related parameters. Let S = {s0, s1, . . . , sg}
be a linguistic term set and P(U) be the power set of all CLEs built from S for

the universe U . A pair (F cle, E) is called a HLE soft set over U , where F cle is a

mapping from a parameter set E to the power set of all CLEs built from S for U ,

i.e., F cle : E → P(U).

According to the context-free grammar, CLEs contains linguistic terms, which

means that a HLE soft set will degenerate to a linguistic value soft set when all CLEs

degenerate to single linguistic terms. However, it improves the linguistic value soft

set by allowing assessments on alternatives with respect to parameters presented in

form of both linguistic terms and CLEs.

In order to carry out computations on HLE soft sets and solve DM problems

dealing with HLE soft sets, it is necessary to define suitable syntax and semantics

for the linguistic terms in the linguistic term set S. In this proposal:

1. The semantic of linguistic terms in S is defined by means of triangular mem-

bership functions. CLEs in HLE soft sets are semantically represented by the

fuzzy envelope of HFLTSs.

2. The syntax of linguistic terms in S describes the satisfactory degree of al-

ternatives with respect to parameters. To consider extreme situations when

alternatives absolutely satisfy parameters or not satisfy parameters at all, we

adopt two single terms, “none” and “absolute” with semantics T (0, 0, 0, 0) and

T (1, 1, 1, 1), as the smallest and the largest linguistic terms in S.

3. To carry out the CW process with CLEs in HLE soft sets, fuzzy envelopes for

HFLTSs in form of trapezoidal fuzzy numbers (TFNs) will be used. However,
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the methodology for computing type-1 fuzzy envelopes [33] is adjusted when

the linguistic terms “none” and “absolute” are considered.

As it is mentioned above, CLEs could be transformed into HFLTSs by using

a transformation function (see Def. 11), the fuzzy envelope for the HFLTSs (in

form of TFNs) could be computed by means of the adjustment of the approach in

[33]. On the basis of a principle that “the larger the fuzzy envelope of a HFLTS is,

the larger the corresponds CLE should be”, we use a ranking approach for CLEs

based on a ranking approach for TFNs [1]. Based on this ranking approach for

CLEs, operations on HLE soft sets are studied, including the complement, relative

complement, extended intersection, restricted intersection, restricted union, and

extended intersection of HLE soft sets.

3.3.2 Decision making based on HLE soft sets

A DM approach based on HLE soft set is proposed to deal with multi-criteria DM

problems. To solve a DM problem by using the proposed method/approach, first

of all, the assessments on all alternatives provided by decision makers should be

CLEs, and all assessments form a HLE soft set. To carry out the computation on a

HLE soft set, all CLEs in the HLE soft sets need to be transformed into HFLTSs.

Afterwards, the type-1 fuzzy envelopes of all HFLTSs are computed. The following

step is to compute the magnitudes of all fuzzy envelopes. Finally, the scores of

alternatives are computed based on the magnitudes values, and the alternative with

the maximum score is selected.

This approach extends the DM approach based on fuzzy soft set proposed in [2].

The novelty of our approach is that we use the magnitude [1] of type-1 fuzzy envelope

of the HFLTSs transformed from CLEs to compute the score of each alternative.

The advantage of this approach is the use of all linguistic information provided by

decision makers from different parameters aspects to make the final decision.

An example is provided to illustrate the feasibility of the proposed DM algorithm.

As far as we know, there are few algorithms that could be used to solve linguistic

DM problems under the background of soft sets, the proposed approach promote

the application of soft set theory with linguistic information.

3.3.3 Group decision making based on HLE soft sets

A GDM approach based on HLE soft set is proposed to deal with multi-criteria

GDM problems. To facilitate the computation during the GDM process, a new

operator called CLE-OWA operator is defined to aggregate CLEs. A CLE-OWA

operator could be viewed as a special ordinary OWA operator [28] in which the
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weights are linguistic terms while the aggregation objects are CLEs. By using CLE-

OWA operator, we obtain a collective HLE soft set which reflects the opinion of the

group.

The parameterization tool of soft set theory makes HLE soft sets more compre-

hensive by using linguistic information with regards to different parameters, it is

more difficult to deal with the CRP because there will be a larger amount of data.

To deal with this issue, a consensus model (see Fig. 3.1) based on HLE soft set is

proposed.

Obtain CLE soft sets 

Compute consensus 

degree

Compute fuzzy 

envelopes of CLEs 

Consensus Control

Advice generation Selection process

Problem

Alternatives 

Parameters

CLEs

Advice

Experts

  

Moderator

Figure 3.1: A consensus model based on HLE soft set

This new GDM approach based on HLE soft sets can be briefly introduced as

follows:

1. Collect all assessments upon alternatives with respect to parameters, and the

assessments provided by each decision maker form a HLE soft set. In this way,

several HLE soft sets can be obtained.

2. A CRP is carried out to ensure that the decision result is accepted by the

majority of decision makers.

3. A collected HLE soft set (group opinion) is computed by using the CLE-OWA

operator to aggregate CLEs.

4. Based on the collected HLE soft set, the GDM problem becomes a DM prob-

lem. The DM approach mentioned in Section 3.4.2 is applied, and the alter-

native(s) with maximum score is selected.

Considering that there is only one GDM method proposed by Sun et al. [65]

which deals with linguistic assessments of decision makers under the framework of
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soft set theory based on linguistic value soft set, we provide a simple GDM problem

to make a comparison between the two approaches and show some advantages of

our proposal. After carrying out different experiments with these two approaches,

we can point out the following advantages:

1. When parameters considered by all decision makers are the same, the decision

can not be made by using Sun et al.’s approach. However, the same problem

can be solved by using our GDM approach.

2. Compared with Sun et al.’s approach, a CRP has been considered in our GDM

approach, which makes the final decision closer to the opinion of the majority,

and ensures a more reasonable decision result.

3. Sun et al.’s approach is constructed based on linguistic value soft sets, whereas

our GDM approach is constructed based on HLE soft sets. It depends on

different hybrid soft set models they adopt, Sun et al.’s approach can only

deal with decision makers’ assessments in form of linguistic terms, whereas

our GDM approach can deal with not only linguistic terms but also with

CLEs.

Based on the above analysis, we conclude that our GDM proposal goes beyond

Sun et al.’s, since the former can be used to solve GDM problems that can not be

handled by the latter.

The article related to this approach is:

Y Liu, R M. Rodŕıguez, J C R. Alcantud, K Qin and L Mart́ınez. Hesitant

based HLE soft sets: Application to group decision making, Computers & Industrial

Engineering, submitted.

3.4 Type-2 fuzzy envelope for HFLTSs and its applica-

tion to multi-criteria decision making

Decision makers may prefer to provide assessments on alternatives by using linguis-

tic terms rather than crisp values. A lot of factors, such as lack of confidence, time

pressure, may cause decision makers hesitate among several linguistic terms at the

same time when they are requested to give their evaluations. To deal with hesitant

situations, different elaborated models [34, 66, 69] have been proposed to provide

more flexible and richer expressions than single linguistic terms. However, none of

these models are close to the way of thinking and reasoning of human being or they

do not formalize the generation of such linguistic expressions. As is mentioned in
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Section 3.3, the concept of CLEs based on HFLTSs could be a suitable choice to fa-

cilitate the elicitation of linguistic information and model hesitant situations. CLEs

are generated formally by using a context-free grammar, and are easily transformed

and semantically represented by means of HFLTSs, which allows experts to elicit

several linguistic values for a linguistic variable. Therefore, CLEs are convenient

because they are similar to the expressions used by decision makers in the daily life.

The use of linguistic information implies CW processes [40, 44, 76]. Existing

representations for HFLTSs, called envelopes, are proposed in form of linguistic

intervals or type-1 fuzzy sets. However, it should be noticed that CLEs mean differ-

ent things to different people because there exists uncertainties contained in CLEs.

None of the two kinds of envelopes for HFLTSs [33, 58] can reflect or describe the

uncertainty contained in CLEs, which motivates us to make further research on the

construction of a new fuzzy envelope for HFLTSs based on type-2 fuzzy sets. It will

be tested in comparison with other previous representations.

3.4.1 An approach to construct a type-2 fuzzy envelope for HFLTS

With this proposal, we achieve the fourth objective mentioned in Section 1.2 which

consists of defining a new fuzzy representation model for CLEs that can reflect the

linguistic uncertainty contained in CLEs. This approach is divided into three-steps

(see Fig. 3.2).

General process to obtain the type-2 fuzzy envelope

HFLTS Type-1 fuzzy 

envelope

Estimate the 

uncertainty
Type-2 fuzzy 

envelope

Figure 3.2: A three-steps process to construct the type-2 fuzzy envelope for HFLTS

1. Compute type-1 fuzzy envelope.

In the first step, the type-1 fuzzy envelope is obtained by using the method

proposed in [33].

2. Compute the uncertainty contained in HFLTSs.

Recently, a measure called comprehensive entropy for HFLTSs has been in-

troduced [70] to evaluate both fuzzy uncertainty and hesitancy of HFLTSs.

Compared to other measures to evaluate uncertainties of HFLTSs, the com-

prehensive entropy takes full use of uncertain information and therefore it is

good enough to capture the uncertainties contained in CLEs. In this proposal,
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comprehensive entropy will be used in the second step of the general process

of type-2 fuzzy envelope.

The fuzzy uncertainty of linguistic terms have been studied by using fuzzy

entropy measure in [70]. The larger fuzzy entropy of a linguistic term is, the

more fuzzy the linguistic term is. In this research, we introduce an example

to show that the hesitancy among linguistic terms more fuzzy will lead to

more uncertainty compared with hesitancy among linguistic terms less fuzzy.

To perform different treatments for hesitations contained in different HFLTSs

by determining the importance degrees of hesitancy according to the specific

characteristics of HFLTSs, we use a function β(HS) to control the importance

of hesitancy, and compute the comprehensive entropy Ec(HS) for HFLTSs by

using the following equation:

Ec(HS) =
Ef (HS) + β(HS)Eh(HS)

1 + β(HS)Eh(HS)
(3.1)

where Ef (HS) and Eh(HS) are the fuzzy and hesitant entropy of HS , respec-

tively. The function β(HS) represents the importance degree of the hesitancy

when evaluating the overall uncertainty contained in HS . The larger β(HS),

the greater the value of overall uncertainty Ec(HS), because more hesitancy

will be taken into account when the overall uncertainty contained in HS is

computed.

Several principles to determine β(HS) have been provided considering two

main factors: the number of linguistic terms and the positions of linguistic

terms contained in the HFLTS, HS . These principles ensures that:

(i) when all linguistic terms are contained in HS , the importance level of

hesitancy reaches the highest;

(ii) when only one single term is contained in HS , the importance level of

hesitancy reaches the lowest;

(iii) the importance of hesitancy increases when the level of hesitancy con-

tained in HS increases;

(iv) the changing quantity of importance of hesitancy is positively corre-

lated to the fuzzy degree of the linguistic term added/deleted of a given

HFLTSs;

(v) when both the fuzzy uncertainty and the hesitancy are equal for two

different HFLTSs, the importance of hesitancy should be the same.

According to the context-free grammar revised in Def. 9, there are three kinds

of CLEs: “at least si”, “at most si” and “between si and sj”, where si and
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sj are linguistic terms in the linguistic term set S. For these three different

cases, we provide different equations to compute β(HS), the equations are

listed below:

β(EGH
(at least si)) =

1

2
cos

π

g
i+

1

2
, i ∈ [0, g]. (3.2)

β(EGH
(at most si)) =

1

2
sin(

π

g
i− π

2
) +

1

2
, i ∈ [0, g]. (3.3)

β(EGH
(between si and sj))=

1

2
cos

π

g
i+

1

2
sin(

π

g
j − π

2
), i, j ∈ [0, g]. (3.4)

These three equations are proved to satisfy the principles set a prior. How-

ever, it should be noticed that the way for computing β(HS) is not unique,

the equations proposed are a possible choice, but any others that satisfy the

principles could be used.

3. Construct a type-2 fuzzy envelope for HFLTSs.

A new representation model for HFLTSs, called type-2 fuzzy envelope will be

constructed by using type-2 fuzzy sets [46, 47]. To simplify the computation in

the initial exploration of type-2 fuzzy envelope, interval type-2 fuzzy sets (IT2

FSs) [45] are applied in our proposal, which means that a secondary grade of

1 will be put at all points of FOU(Ã). An IT2 FS can be uniquely determined

by its FOU , if the LMF and UMF are determined, the FOU could be uniquely

determined, as well as the IT2 FS.

Therefore, we construct the type-2 fuzzy envelope F̃HS
of HS . To do so, we

use a type-1 fuzzy envelope FHS
as the upper membership function, and the

lower membership function of F̃HS
is presented as

µ
F̃HS

(x) = max{0, FHS
(x)− Ec(HS)}, ∀x ∈ X

The uncertainty contained in HS can be approximately reflected by the width

of FOU , and the type-2 fuzzy envelope can be presented as an IT2 FS F̃HS
=

1/FOU(F̃HS
) with

FOU(F̃HS
) = {(x, u) : x ∈ X,u ∈ [max{0, FHS

(x)− Ec(HS)}, FHS
(x)]}.

(3.5)

Footprints of type-2 fuzzy envelope for three types of CLEs are shown by Fig.

3.3.
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Figure 3.3: Footprints of type-2 fuzzy envelopes for CLEs

In summary, in order to construct suitable representation models for CLEs based

on HFLTSs: first, we compute the comprehensive entropy for HFLTSs. The com-

prehensive entropy synthesizes the fuzzy uncertainty and hesitancy for HFLTSs.

Afterwards, the comprehensive entropy for HFLTSs is used to measure the uncer-

tainties contained in CLEs when we construct the type-2 fuzzy envelopes for HFLTSs

(that are obtained from CLEs). The approach to construct type-2 fuzzy envelope

for HFLTSs in form of IT2 FSs uses the type-1 fuzzy envelope as the lower ap-

proximation membership function of the footprint and the comprehensive entropy

as the width of the footprint. Finally, the type-2 fuzzy envelopes for HFLTSs are

obtained as the type-2 fuzzy representations for CLEs, which successfully reflects

the uncertainties contained in CLEs.

3.4.2 Comparisons between type-1 and type-2 fuzzy envelopes in

decision making.

The second part of the fourth objective mentioned in Section 1.2 was to examine

the performance of the new representation model with existing ones. To do so, a

comparison on the application of type-1 and type-2 fuzzy envelope of HFLTSs has

been carried out by considering a multi-criteria DM problem. The problem has been

handled by using type-1 fuzzy TOPSIS [9] and type-2 fuzzy TOPSIS [10] methods

with type-1 and type-2 fuzzy envelopes, respectively. It is shown by experiments

that the decision result by using type-2 fuzzy envelope is consistent with the decision

result by using type-1 fuzzy envelope. However, in situations in which two alterna-

tives cannot be distinguished by using type-1 fuzzy envelope, the use of type-2 fuzzy

envelope provides a more precise result.

The reason why the use of type-2 fuzzy envelope provides more precise decision

result has been analyzed: compared with type-1 fuzzy envelope, the construction of

type-2 fuzzy envelope takes into account both the fuzzy uncertainty and hesitancy

contained in the linguistic expressions. The comparison between the use of type-1

TOPSIS method with type-1 fuzzy envelopes for HFLTSs, and the use of type-2 fuzzy



3. Research Results 37

TOPSIS with type-2 fuzzy envelopes successfully reduces the loss of information

caused by computations on CLEs during the DM process, therefore it achieves more

accurate decision result.

The article related to this proposal is the following one:

Y Liu, R M. Rodŕıguez, H Hagras, H Liu, K Qin, and L Mart́ınez. Type-2

fuzzy envelope of hesitant fuzzy linguistic term set: a new representation model of

comparative linguistic expressions, IEEE Transactions on Fuzzy Systems, submitted.
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Hybrid  soft  sets,  such  as fuzzy  soft  sets and rough  soft  sets,  have  been  extensively  applied  to decision
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1. Introduction

Classical mathematical tools, which require all notions to be
exact, usually fail to handle the uncertainty, imprecision and vague-
ness in a wide variety of practical fields. Although theories such as
fuzzy set theory [1], rough set theory [2], intuitionistic fuzzy set
theory [3] and vague set theory [4] have been proved useful math-
ematical approaches in modeling these uncertainties, all of them
have a common limitation—the inadequacy of the parameteriza-
tion tool. In 1999, soft set theory was put forward by Molodstsov
[5] as a new mathematic tool for dealing with uncertainty, which is
free from the above mentioned limitation. Afterwards, the gener-
alized models of soft sets (hybrid soft sets) come forth rapidly and
there has been an increasing interest in the practical applications of
hybrid soft set theories, especially with regard to their applications
in decision making [6–17].

The popular hybrid soft set models contain two  main categories:
(1) The combination of soft set theory with fuzzy set theory and the
generalized models of fuzzy set theory [18–24]; (2) The combina-
tion of soft set theory with rough set theory and the generalized
models of rough set theory [25–28]. As two representative hybrid
soft set models in these two different categories, fuzzy soft sets [18]

∗ Corresponding author.
E-mail addresses: yayaliu@my.swjtu.edu.cn (Y. Liu),

qinkeyun@home.swjtu.edu.cn (K. Qin), martin@ujaen.es (L. Martínez).

and rough soft sets [26] are interconnected [29]. All decision mak-
ing methods based on fuzzy soft sets or rough soft sets have the
potential to be extended to deal with more complex hybrid soft set
models situations. For instance, Jiang et al. [30] and Zhang et al. [31]
extended Feng et al.’s decision making approach based on fuzzy
soft sets in [32] to come up with an intuitionistic fuzzy soft sets
based decision making approach and an interval-valued intuition-
istic fuzzy soft set based decision making approach, respectively.

In terms of fuzzy soft set based decision making methods, Roy
and Maji [33] provided a novel method (the score based method)
for decision making based on fuzzy soft sets, which builds upon
concepts such as the comparison table and the scores of objects.
However, no researchers have paid attention to the improvement
of the score based method in order to overcome its own  limitations
and make it fit for more practical situations until now, although
its reasonability has already been verified [32]. With the develop-
ment of information technology in modern society, the practical
information updates rapidly as time goes by, adding new data and
removing old data. In this paper, we will improve the score based
method by introducing a new mathematic tool called D-Score table
and then successfully make it more convenient to obtain the deci-
sion result when parameters should be added/deleted in decision
making problems, this improvement will be useful for practical
problems solving which contains updating information. Further-
more, we  propose a new approach to fuzzy soft set based decision
making by introducing comparison thresholds when comparing
two membership values to obtain different kinds of scores for

https://doi.org/10.1016/j.asoc.2018.01.012
1568-4946/© 2018 Elsevier B.V. All rights reserved.
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objects. After choosing different comparison thresholds, we  will
construct different level D-Score tables and then obtain different
optimal decision sets, which makes the new approach adjustable.
In this way, the new approach can be successfully used to deal with
some problems which cannot be solved by the initial score based
method.

In terms of rough soft sets based decision making approaches,
the researches are so far few. Recently, Ma  et al. [34] introduced
some initial algorithms for decision making based on rough soft
sets and an algorithm for group decision making based on MSR-
set [35]. However, the algorithms proposed by Ma  et al. [34] are
far from enough to meet various practical demands. Furthermore,
the group decision making method based on rough soft sets has
not been studied yet. In the present work, with the construction of
rough soft sets and a fuzzy soft set, we determine the weights of
experts by using the similarity measure of soft sets and then provide
a new approach based on rough soft sets to solve the group decision
making problem. As an important hybrid soft set model generated
with rough set theory, rough soft sets has huge potential to be used
in dealing with practical problems that contain uncertainty, and it
is a promising topic to find out more decision making approaches
based on rough soft sets to meet the different demand of decision.

Although some researchers have systematically discussed the
decision making approaches based on fuzzy soft sets and rough
soft sets recently [34,36], they concentrated on proposals review
or revision, rather than improving existing approaches or provid-
ing new approaches to meet various application demands. There
still exist arguments on the fuzzy soft sets based decision making
approaches [32,37], and it can be said that the research of rough
soft sets based decision making approaches is still in an initial
stage, that is the reason why it necessary to carry out a research
focuses on the improvement of decision making approaches based
on fuzzy soft sets and rough soft sets. In the current work, the limi-
tations of some popular existing proposals will be systematically
discussed and afterwards several solutions will be provided. All
the improved proposals or new approaches provided in the cur-
rent research have the potential to be extended to more complex
hybrid models situations.

The present paper is organized as follows: Some basic notions
on soft sets, fuzzy soft sets and rough soft sets are reviewed in
Section 2. In Section 3, we recall an existing argument of fuzzy
soft sets based decision making approaches, provide our opinion
on this argument, afterwards present an improvement of the score
based method. On the basis of this improved score based method,
a new adjustable decision making approach based on fuzzy soft
sets is proposed. In Section 4, we discuss the limitation of existing
rough soft set based decision making methods and the necessary to
enrich the approaches, afterwards two algorithms are provided to
conquer these limitations and to meet various practical demands.
It is worth noticing that we originally apply rough soft set as a tool
to deal with group decision making problems, which successfully
solve the problems according to assessments on alternatives pro-
vided by decision makers, rather than according to specific decision
results made by separate decision makers which have been adopted
in some other existing approaches. Finally, conclusions are given in
Section 5.

2. Preliminaries

In this section we briefly recall some concepts that will be useful
in subsequent discussions.

Let U be the initial universe of objects and E be the set of
attributes related to objects in U. Both U and E are assumed to be
nonempty finite sets. Let P(U) be the power set of U and A ⊆ E.

Definition 1. [5]: A pair (F, A) is called a soft set over U, where F
is a mapping given by F : A −→ P(U).

For any attribute e ∈ A, F(e) ⊆ U may  be considered as the set of
e-approximate elements of the soft set (F, A). In other words, the
soft set is not a kind of set in the ordinary sense, but a attributeized
family of subsets of U. We denote by (U, E) the set of all soft sets
over U.

For two  soft sets (F, A) and (G, B) over a common universe U, we
say that (F, A) is a soft subset of (G, B) if

(1) A ⊆ B;
(2) ∀e ∈ A, F(e) ⊆ G(e).

This relationship is denoted by (F, A) ⊆ (G, B). (G, B) is said to be
a soft super set of (F, A), if (F, A) is a soft subset of (G, B).

Definition 2. [38]: A mapping S : (U, E) × (U, E) → [0, 1] is said to
be a similarity measure if the following axioms hold for arbitrary
(F, A), (G, B) ∈ (U, E):

(1) 0 ≤ S((F, A), (G, B)) ≤ 1;
(2) S((F, A), (F, A)) = 1;
(3) S((F, A), (G, B)) = S((G, B), (F, A));
(4) If (F, A) ⊆ (G, B) ⊆ (H, C), then S((F, A), (H,  C)) ≤ S((F, A), (G, B)),

S((F, A), (H, C)) ≤ S((G, B), (H, C)).

The theory of fuzzy sets, first introduced by Zadeh [1] in 1965,
provides an appropriate framework for representing and process-
ing vague concepts by allowing partial memberships. A fuzzy set F
in the universe U is defined as F = {(x, �F(x))/x ∈ U, �F(x) ∈ [0, 1]}.
�F is called the membership function of F and �F(x) indicates the
membership degree of x to F. The family of all fuzzy sets on U is
denoted by F(U).

In 2001, Maji et al. [18] initiated the study on hybrid structures
involving both fuzzy sets and soft sets. They introduced the notion
of fuzzy soft sets, which can be seen as a fuzzy generalization of
crisp soft sets.

Definition 3. [18]: A pair (F, A) is called a fuzzy soft set over U,
where A ⊆ E and F is a mapping given by F : A −→ F(U).

For any attribute e ∈ A, F(e) is a fuzzy subset of U and it is called
fuzzy value set of attribute e. If for any attribute e ∈ A, F(e) is a crisp
subset of U, then the fuzzy soft set (F, A) degenerated to the standard
soft set. Let us denote �F(e)(x) the membership degree that object
x holds attribute e where x ∈ U and e ∈ A. Then F(e) can be written
as F(e) = { < x, �F(e)(x) > |x ∈ U}.

For two fuzzy soft sets (F, A) and (G, B) over a common universe
U, we say that (F, A) is a fuzzy soft subset of (G, B) if

(1) A ⊆ B;
(2) ∀e ∈ A, F(e) is a fuzzy subset of G(e), that is �F(e)(x) ≤ �G(e)(x) for

all x ∈ U.

This relationship is denoted by (F, A) ⊆ (G, B). (F, A) and (G, B) are
said to be fuzzy soft equal if and only if (F, A) ⊆ (G, B) and (F, A) ⊇ (G,
B), We  write (F, A) = (G, B).

A fuzzy soft set (F, A) over U is said to be null fuzzy soft set, if for
∀e ∈ A, we  have F(e) =∅; A fuzzy soft set (F, A) over U is said to be
absolute fuzzy soft set, if for ∀e ∈ A, we have F(e) = U.

The rough set theory proposed by Pawlak [2] provides a sys-
tematic approach for dealing with vague concepts caused by
indiscernibility in situation with insufficient and incomplete infor-
mation.

Definition 4. [2]: Let R be an equivalence relation on the universe
U. (U, R) is called a Pawlak approximation space. For any X ⊆ U,
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the lower approximation Apr
R
(X) and the upper ¯AprR(X) of X are

defined as:

Apr
R
(X) = {x ∈ U : [x]R ⊆ X},

¯AprR(X) = {x ∈ U : [x]R ∩ X /= ∅}.
A  subset X ⊆ U is called definable if Apr

R
(X) = ¯AprR(X); other-

wise, X is said to be a rough set.
Considering the lower and upper approximations of a soft set

in a Pawlak approximation space, Feng et al. [26] introduced the
concept of rough soft sets.

Definition 5. [26]: Let (U, R) be a Pawlak approximation space
and S = (F, A) be a soft set over U. The lower and upper rough
approximations of S = (F, A) with respect to (U, R) are denoted by
Apr

R
(S) = (FR, A) and ¯AprR(S) = (F̄R, A), which are soft sets over U

with the set-valued mappings given by

FR(e) = Apr
R
(F(e)),

F̄R(e) = ¯AprR(F(e)), where e ∈ A. The operators Apr
R

and ¯AprR are
called the lower and upper rough approximation operators on soft
sets. If Apr

R
(S) = ¯AprR(S) the soft set S is said to be definable;

otherwise S is called a rough soft set.

3. Improving decision making approaches based on fuzzy
soft sets

In this section, first we will state our opinion on an existing argu-
ment upon two popular decision making approaches based on fuzzy
soft sets. Afterwards, we summarize the limitations of these two
approaches and furthermore provide solutions. Especially, some
improvement approaches are proposed to overcome the limitations
of “the score based method” (Roy-Maji method) [33].

3.1. An argument on fuzzy soft sets based decision making

Which fuzzy soft sets based decision making method is more
reasonable: “the score based method” or “the fuzzy choice value
based method”? There has been a strong argument on this ques-
tion. As follows we will present our opinion based on a brief list
of these arguments and summarize the main limitations of both
approaches.

By introducing the concept of comparison table and a measure
called the score of object, Roy and Maji [33] introduced an original
decision making method as below (see Algorithm 1).

Algorithm 1.

[Step 1.] Input the fuzzy soft sets (F, A), (G, B) and (H, C).
[Step 2.] Input the attribute set P as observed by the observer.
[Step 3.] Compute the corresponding resultant fuzzy soft set (S, P) from the

fuzzy soft sets (F, A), (G, B), (H, C) and place it in tabular form.
[Step 4.] Construct the comparison table of the fuzzy soft set (S, P) and

compute ri and ti for oi , ∀i.
[Step 5.] Compute the score si = ri − ti of oi , ∀i.
[Step 6.] The decision is ok if sk = maxisi .
[Step 7.] If k has more than one value then any one of ok may  be chosen.

The comparison table is a square table in which both rows and
columns are labelled by the objects o1, o2, . . .,  on, and the entry
cij indicates the number of attributes for which the membership
value of oi exceeds or equals to the membership value of oj. Clearly,
0 ≤ cij ≤ m and cii = m(∀i, j), where m is the number of attributes.

The row-sum ri of object oi is computed by

ri =
n∑

j=1

cij (1)

Table 1
Tabular representation of fuzzy soft set (S, P).

e1 e2 e3 e4 e5 e6 e7 Choice value(ci)

o1 0.3 0.1 0.4 0.4 0.1 0.1 0.5 c1 = 1.9
o2 0.3 0.3 0.5 0.1 0.3 0.1 0.5 c2 = 2.1
o3 0.4 0.3 0.5 0.1 0.3 0.1 0.6 c3 = 2.3
o4 0.7 0.4 0.2 0.1 0.2 0.1 0.3 c4 = 2.0
o5 0.2 0.5 0.2 0.3 0.5 0.5 0.4 c5 = 2.6
o6 0.3 0.5 0.2 0.2 0.4 0.3 0.3 c6 = 2.2

Table 2
Comparison table of the fuzzy soft set (S, P).

o1 o2 o3 o4 o5 o6

o1 7 4 2 4 4 4
o2 6 7 5 5 3 3
o3 6 7 7 5 3 3
o4 4 4 4 7 2 3
o5 3 4 4 6 7 6
o6 4 5 4 6 3 7

Table 3
Score table of the fuzzy soft set (S, P).

Row-sum(ri) Column-sum(ti) Score(si)

o1 25 30 −5
o2 29 31 −2
o3 31 26 5
o4 24 33 −9
o5 30 22 8
o6 29 26 3

The column-sum tj of object oj is computed by

tj =
n∑

i=1

cij (2)

Finally, the score si of object oi is defined as

si = ri − ti (3)

When dealing with decision making problems by Algorithm 1,
the objects with the maximum score computed from the compari-
son table will be regarded as the optimal decision, so this method
is called “the score based method” in this paper. Here is an example
to illustrate it:

Example 1. [33]: Let U = {o1, o2, . . ., o6} be the universe of objects.
The tabular representation of the fuzzy soft set (S, P) (with choice
values) is given by Table 1. The comparison table of (S, P) is shown
by Table 2. Then we obtain Table 3, namely the score table of (S, P),
by computing the row-sum ri, column-sum ti and the score si for
each object oi. From Table 3, it is clear that the optimal decision is
o5 since it has the maximum score s5 = 8.

In [37], Kong et al. argued that “the score based method” was
incorrect since the decision result obtained by using “the score
based method” is not always the object with the maximum choice
value. Besides, they revised Algorithm 1 from Step 4 by redesigning
cij and ri as follows.

cij =
m∑

k=1

(fik − fjk) (4)

ri =
m∑

j=1

cij (5)

where fik is the membership value of object oi for the kth attribute,
m is the number of attributes. The decision set obtained by Kong
et al.’s revised algorithm is ok if rk = maxiri.
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In [32], Feng et al. deduced Kong’s cij as follows

cij =
m∑

k=1

fik −
m∑

k=1

fjk = ci − cj (6)

where ci is the sum total of all membership values of object oi with
respect to different attributes, which is called the fuzzy choice value
of object oi.

The object with the maximum fuzzy choice value, instead of the
object with the maximum score, will be selected as the optimal
decision by Kong’s redesigned algorithm [32]. Hence, Kong et al.’s
algorithm [37] can be called “the fuzzy choice value based method”.
However, Feng et al. [32] argued that the direct addition of all the
membership values with respect to different attributes in a fuzzy
soft set is not always reasonable, it no longer represents the num-
ber of (good) attributes possessed by an object in decision making.
Furthermore, they provided an example without setting a real-life
circumstance to argue that the score based method is more suitable
than the fuzzy choice value based method.

Actually, it is hard to determine whether “the score based
method” or “the fuzzy choice value based method” is more rea-
sonable without setting a certain circumstance, since their decision
criteria are different. “the score based method” is to used to select
the objects which cooperate with more attributes in quantity,
whereas “the fuzzy choice value based method” is used to select
the objects which cooperate with more attributes in quality. Both
approaches have some limitations, and there should be proposed
new methods to overcome these limitations.

1. For fuzzy choice value based method, the main limitation is that
the direct addition of all membership values with respect to
attributes is not always reasonable. To overcome this limitation:
• Method 1: Firstly, if the direct addition of all membership val-

ues is not reasonable in some cases, we can consider other
synthesized measures to construct the fuzzy choice value
by the membership values with respect to every attribute.
For instance, weight the attributes with the help of relevant
experts and then use the OWA  operator to compute the fuzzy
choice value of each object.

• Method 2: When it is hard to determine the weights for dif-
ferent attributes in some specific cases, Feng et al.’s adjustable
approach in [32], i.e. translating a fuzzy soft set into a soft set
by using threshold values is another choice to make the deci-
sion result more reasonable. By selecting certain thresholds
and using corresponding decision rules, a fuzzy soft set will be
translated into a crisp soft set, then choice value of objects in
a soft set, instead of fuzzy choice value of objects in a fuzzy
soft set, will be used to measure objects. If this approach is
taken, selecting the most suitable threshold values according
to practical circumstances becomes the most important task.

2. For the score based method, two main limitations of Algorithm
1 can be listed as below. To overcome these limitations, we will
provide an improved algorithm and some new algorithms in
Sections 3.2 and 3.3, respectively.
• Limitation 1: During the process of decision making, some-

times new attributes need be added if the existing attributes
are not enough to embody the character of objects. On the con-
trary, some attribute need to be deleted if these attributes are
proven to be ineffective to the decision result. According to
the calculation mechanism for scores of objects in Algorithm
1, a new comparison table has to be conducted when a set of
attributes need to be added/deleted, which indicates a large
amount of recalculations should be involved in order to obtain
a new solution set.

Table 4
Tabular representation of the fuzzy soft set (F1, E1) with choice values and scores.

e1 e2 e3 e4 Choice value(ci) Score(si)

o1 0.92 0.88 0.08 0.12 c1 = 2.0 s1 = 0
o2 0.82 0.60 0.18 0.40 c2 = 2.0 s2 = 0
o3 0.24 0.46 0.83 0.47 c3 = 2.0 s3 = 0
o4 0.12 0.40 0.96 0.52 c4 = 2.0 s4 = 0

• Limitation 2 [32]: There exist some fuzzy soft set based deci-
sion problems in which Algorithm 1 cannot be successfully
used to reach an optimal decision.

Example 2. [32]: Let (F1, E1) be a fuzzy soft set and Table 4 be
its tabular representation. From Table 4, it is clear that all these
objects have the same score (i.e., s1 = s2 = s3 = s4 = 0) and the same
fuzzy choice value (i.e., c1 = c2 = c3 = c4 = 2.0). By using both the score
based method and the fuzzy choice value based method we  could
hardly arrive at the final optimal decision, since any one of them
could be selected as the optimal candidate.

3.2. An improved method of “the score based method”

Based on the limitations analysis of “the score based method”
in Section 3.1, in this subsection, by introducing a tool called D-
Score table, we will provide an equivalence approach of Algorithm
1 which successfully overcomes Limitation 1 of “the score based
method”.

Definition 6. Let U = {o1, o2, . . .,  on} be the universe and A = {e1, e2,
. . .,  em} be the attribute set. The D-Score of object oi on el is denoted
by S(oi)(el) and defined by

S(oi)(el) = R(oi)(el) − T(oi)(el) (7)

where R(oi)(el) = |{oj ∈ U|�F(el)(oi) ≥ �F(el)(oj)}|, T(oi)(el) = |{oj ∈
U|�F(el)(oj) ≥ �F(el)(oi)}|.

The D-Score of object oi is denoted by Si and defined as

Si =
m∑

l=1

S(oi)(el). (8)

The D-Score table is a table in which rows are labelled by the
attributes e1, e2, . . .,  em and columns are labelled by the objects o1,
o2, . . .,  on. The entry corresponding to attribute el and object oi is
denoted by S(oi)(el).

An algorithm based on the D-Score table of a fuzzy soft set is
given (see Algorithm 2).

Algorithm 2.

[Step 1.] Input a fuzzy soft set (F, A).
[Step 2.] Present the D-Score table for (F, A) and compute the D-Score Si of oi , ∀i.
[Step 3.] The optimal decision is to select oj if Sj = maxiSi .
[Step 4.] If j has more than one value, then any oj can be chosen as the decision result.

Theorem 1. Let (F, A) be a fuzzy soft set on U. For any oi ∈ U, calculate
its score si by Algorithm 1 and its D-Score Si by Algorithm 2, then we
have si = Si.

Proof. Since
∑n

j=1cij = ∑m
l=1R(oi)(el) and

∑n
j=1cji =∑m

l=1T(oi)(el), we  obtain si = ri − ti =
∑n

j=1cij −
∑n

j=1cji =∑m
l=1R(oi)(el) −∑m

l=1T(oi)(el) = ∑m
l=1(R(oi)(el) − T(oi)(el)) =∑m

l=1S(oi)(el) = Si.

Example 3. Consider the fuzzy soft set (S, P) in Example 1, the
D-Score table of (S, P) is presented as Table 5. For any oi ∈ {o1, o2,
. . .,  o6}, its score si in Table 3 is equal to its D-Score Si in Table 5.

By Theorem 1, we know that for any object oi ∈ U, its D-Score Si
obtained by Algorithm 2 is always the same as its score si obtained
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Table  5
The D-Score table of (S, P) with D-Scores.

e1 e2 e3 e4 e5 e6 e7 D-Score (Si)

o1 −1 −5 1 5 −5 −2 2 S1 =−5
o2 −1 −2 4 −3 0 −2 2 S2 =−2
o3 3 −2 4 −3 0 −2 5 S3 = 5
o4 5 1 −3 −3 −3 −2 −4 S4 =−9
o5 −5 4 −3 3 5 5 −1 S5 = 8
o6 −1 4 −3 1 3 3 −4 S6 = 3

Table 6
The tabular representation of (G, P′).

e′
1 e′

2 e′
3

o1 0.3 0.3 0.4
o2 0.4 0.7 0.5
o3 0.4 0.3 0.6
o4 0.5 0.2 0.7
o5 0.6 0.1 0.8
o6 0.3 0.5 0.2

Table 7
D-Score table of (H, P ∪ P′).

Si e′
1 e′

2 e′
3 S′

i
Si + S′

i

o1 −5 −4 0 −3 −7 −12
o2 −2 0 5 −1 4 2
o3 5 0 0 1 1 6
o4 −9 3 −3 3 3 −6
o5 8 5 −5 5 5 13
o6 3 −4 3 −5 −6 −3

by Algorithm 1, which indicates that the optimal decision sets
obtained by Algorithms 1 and 2 are always the same, and thus Algo-
rithms 1 and 2 are equivalent. The “score” and “D-Score” of an object
will not be distinguished in the following discussion since they are
always equal.

Suppose that (F, E1) is an original fuzzy soft set and a new
attribute set E2 = {e′

1, e′
2, . . .,  e′

r} should be added to E1. If we  use
Algorithm 1, to obtain the scores of objects, we have to compute
the new comparison table for the new fuzzy soft set (H, E1 ∪ E2).
If we use Algorithm 2, after adding attributes, we  only need to
calculate the D-Score table of (G, E2) to obtain the D-Score table
for (H, E1 ∪ E2). In this way, we say although Algorithms 1 and
2 are equivalent, Algorithm 2 has the advantage that reduce the
time consumption by avoid redundant computations of Algorithm
1 when attributes are added/deleted in a decision making problem.
Adding attributes and deleting attributes are similar cases, so we
only discuss the cases when attributes should be added.

Here is an example to illustrate the convenience of Algorithm 2
in avoiding redundant computations:

Example 4. Let (S, P) be the fuzzy soft set on U given by Table 1
in Example 1. Suppose that some new attributes P ′ = {e′

1, e′
2, e′

3}
should be added to P, let (G, P′) be the corresponding fuzzy soft set
which is shown by Table 6. If we use Algorithm 2, then we only need
calculate the D-Score table for (G, P′). For an object oi, its D-Score
in (H, P ∪ P′) is the sum of its D-Score in (S, P) and its D-Score in (G,
P′), i.e., Si + S′

i
. The D-Score table of (H, P ∪ P′) is shown by Table 7.

In contrast, if we use Algorithm 1, we need recalculate all issues in
the new comparison table of (H, P ∪ P′), which is shown by Table 8.

Here is an example carried on data of moderate size to illustrate
the advantage of Algorithm 2 in reducing time consumption:

Example 5. Suppose that there are n objects that are related with
m attributes in the fuzzy soft set which we will apply to make the
decision. By writing codes in C++, an experiment is performed on a
PC Intel Core i-5 with 4 GB RAM and Windows 7 as operating sys-

Table 8
Comparison table of the fuzzy soft set (H, P ∪ P′).

o1 o2 o3 o4 o5 o6

o1 10 4 3 5 5 6
o2 9 10 7 6 4 6
o3 9 9 10 6 4 5
o4 6 6 6 10 3 5
o5 5 6 6 8 10 8
o6 6 5 5 7 4 10

Table 9
Time consumption in the first stage.

m 50 100 150 200 250 300 350 400 450

A11(s) 0.020 0.040 0.060 0.081 0.100 0.120 0.140 0.160 0.180
A2  (s) 0.020 0.040 0.060 0.081 0.101 0.121 0.143 0.164 0.184

1 In Tables 9 and 10, Algorithms 1 and 2 are denoted by A1 and A2, respectively.
The time consumption is measured in seconds.

Table 10
Time consumption in the second stage.

m 60 110 160 210 260 310 360 410 460

A1 (s) 0.024 0.044 0.064 0.084 0.104 0.124 0.145 0.164 0.184
A2  (s) 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

tem. This experiment is divide into two stages. In the first stage, the
time consumption will be tested when the number of objects (n)
keeps constant as 200 while the number of parameters “m” changes
among 50, 100, 150, 200, 250, 300, 350, 400, 450, as is shown in
Table 9. In the second stage, 10 new parameters and corresponds
new data will be added to the initial data set, and the time consump-
tion are shown in Table 10 for obtaining the final decision results on
the basis of the median decision results obtained in stage 1. From
Table 9 we  can easily observe that based on the same scale of initial
fuzzy soft sets, the time consumption for achieving decision results
by using Algorithms 1 and 2 are very similar. However, Table 10
show that in the second stage when 10 new parameters needed to
be considered, the second-stage time consumption increases with
the number of the whole parameter sets increases if Algorithm 1
is applied, whereas the time consumption stay unchanged if Algo-
rithm 2 is adopted. This example serves as a strong evidence for
that algorithm 2 effectively decreases the time consumption when
parameters are requested to be added to a decision making problem
during the decision process.

Lemma  1. Let x1, x2, x3, . . .,  xn and y1, y2, . . .,  yn be two num-
ber sequences, if xi ≤ xj ⇔ yi ≤ yj (for ∀i, j ∈ {1, 2, 3, . . .,  n}), the two
sequences are called the same ordered and this relationship is denoted
by q(x1, x2, x3, . . .,  xn) = q(y1, y2, . . .,  yn).

Theorem 2. Let (F, A) and (F′, A) be two fuzzy soft sets on the
universe U. Suppose that oi is an object in the universe U. In the
fuzzy soft set (F, A), denote the D-Score of oi on el by S(oi)(el) and
calculate the D-Score of oi by Si = ∑m

l=1S(oi)(el). In the fuzzy soft
set (F′, A), denote the D-Score of oi on el by S′(oi)(el) and calculate
the D-Score of oi by S′

i
= ∑m

l=1S′(oi)(el). If q(S(o1)(el), S(o2)(el), . . .,
S(on)(el)) = q(S′(o1)(el), S′(o2)(el), . . .,  S′(on)(el)) for all el ∈ A, then we
have Si = S′

i
.

When dealing with a decision making problem by Algorithms 1
or 2, if the membership value of one object is larger than another
object with respect to one attribute, then it is supposed that the
former object relatively possesses that attribute. Under this sup-
position, how much the membership value of one object is larger
than another has not been taken into consideration. That is, no mat-
ter the membership value of one object is larger than another by a
little or by a lot, we  all conclude the same when we  computing D-
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Table  11
Tabular representation of a fuzzy soft set (F, A) with D-Scores.

e1 e2 e3 e4 D-Score(Si)

o1 0.8 h12 0.1 0.1 S1 =−6
o2 0.5 0.7 0.5 0.3 S2 = 0
o3 0.3 0.6 0.8 0.9 S3 = 2
o4 0.2 0.9 h43 0.8 S4 = 4

Scores of objects. With respect to an attribute, as long as the order
of the membership values of objects stay unchanged, the D-Scores
of objects with respect to this attribute are determined. Hence, as
long as the order of the membership values of objects with respect
to every attribute stay unchanged, then the D-Scores of objects are
determined, and thus the optimal decision set will stay unchanged.

Example 6. Let (F, A) be a fuzzy soft set and Table 11 be the tabular
representation of it. When the value of h12 varies between [0, 0.6),
the value of h43 varies between (0.8, 1], the order of membership
values of objects with respect to every attribute stay unchanged,
hence the D-Scores of objects are determined, i.e., S1 =−6, S2 = 0,
S3 = 2, S4 = 4. By Algorithm 2, we obtain that the optimal candidate
is o4.

3.3. An adjustable decision making approach based on fuzzy soft
sets

Benefitting from Feng’s idea of introducing thresholds in [32], a
comparison threshold will be taken into consideration when com-
paring the membership values of two objects with respect to a
common attribute. In this way, a new approach will be provided
on this basis of algorithm 2 (see Section 3.2). Only if the exceed
degree of one membership value over another is not less than the
comparison threshold, we say that the object relatively possesses
that attribute. People can obtain different optimal decision set by
setting different comparison threshold, which make this approach
adjustable. This new adjustable approach can also be regarded as
an improvement of the score based method in [33] since it follows
the initial idea of “scores” of objects and successfully overcomes
Limitation 2 of Algorithm 1.

3.3.1. t-Level D-Score table of fuzzy soft sets.
By introducing a measure called “t-level D-Score” of object and

the new tool called t-level D-Score table, we present an adjustable
approach to solve fuzzy soft set based decision making problems
(see Algorithm 3).

Definition 7. Let U = {o1, o2, . . .,  on} be the universe, E be the
attribute set, A ⊆ E and A = {e1, e2, . . .,  em}. Suppose that (F, A) is
a fuzzy soft set over U. For t ∈ [0, 1], the t-level D-Score of object oi
on el is denoted by S(oi)(el)t and defined by

S(oi)(el)t = R(oi)(el)t − T(oi)(el)t , (9)

where R(oi)(el)t = |oj ∈ U\{oi} : �F(el)(oi) − �F(el)(oj) ≥ t| and
T(oi)(el)t = |oj ∈ U\{oi} : �F(el)(oj) − �F(el)(oi) ≥ t|.

The t-level D-Score of object oi is denoted by St
i

and defined by

St
i =

m∑

l=1

S(oi)(el)t . (10)

The t-level D-Score table is a square table in which rows are
labelled by the attribute names e1, e2, . . .,  em, columns are labelled
by the object names o1, o2, . . .,  on, and the entry corresponding to
attribute el and object oi is S(oi)(el)t . The t-level D-Score table can
be regarded as an extension of the D-Score table for a fuzzy soft set,
and t ∈ [0, 1] can be viewed as a comparison threshold between
membership values of two objects with regard to each attribute.

For real-life application of fuzzy soft set based decision making, the
threshold t can be chosen by decision makers according to their
requirement.

3.3.2. Level D-Score table with respect to a comparison threshold
fuzzy set

In the definition of t-level D-Score table, the level comparison
threshold assigned to each attribute is always a constant value t ∈
[0, 1]. However, it may happen that the decision makers would like
to impose different comparison thresholds on different attributes
in some special decision making problems. To deal with such situ-
ations, we can use a function instead of a constant number as the
comparison threshold.

Now we introduce a measure called the level D-Score with
respect to �, and the new tool called the level D-Score table with
respect to a fuzzy set �.

Definition 8. Let U = {o1, o2, . . .,  on} be the universe, E be the
attribute set, A ⊆ E and A = {e1, e2, . . .,  em}. Let � : A −→ [0, 1] be a
fuzzy set on A which is called a comparison threshold fuzzy set.
The level D-Score of object oi on el with respect to � is denoted by
S(oi)(el)� and defined by

S(oi)(el)� = R(oi)(el)� − T(oi)(el)� (11)

where R(oi)(el)� = |oj ∈ U\{oi} : �F(el)(oi) − �F(el)(oj) ≥ �(el)| and
T(oi)(el)� = |oj ∈ U\{oi} : �F(el)(oj) − �F(el)(oi) ≥ �(el)|. The level D-
Score of object oi with respect to � is denoted by S�

i
and defined

by

S�
i =

m∑

l=1

S(oi)(el)�. (12)

The level D-Score table with respect to the fuzzy set � is a square
table in which rows are labelled by the attributes e1, e2, . . .,  em,
columns are labelled by the objects o1, o2, . . .,  on, and the entry
corresponding to attribute el and object oi is S(oi)(el)�.

The D-Score table with respect to a comparison threshold fuzzy
set generalize the t-level D-Score table by substituting a fuzzy set
� : A −→ [0, 1] for a constant t ∈ [0, 1]. Let t̂ denote the constant
fuzzy set on A given by t̂(e) = t for e ∈ A, then we immediately have
S(oi)(el)t̂ = S(oi)(el)t , that is, the level D-Score table with respect to
the constant fuzzy set t̂ coincides with the t-level D-Score table.

Example 7 (The mid-level-comparison threshold of a fuzzy soft set).
Let the universe U = {o1, o2, . . .,  on}, E be the attribute set, A ⊆ E and
A = {e1, e2, . . .,  em}. Based on the fuzzy soft set (F, A), we can define
a fuzzy set �mid

F : A −→ [0,  1] by

�mid
F (el) = 1

|U| (∨oi ∈ U�F(el)(oi) − ∧oi ∈ U�F(el)(oi)),

for all el ∈ A. The fuzzy set �mid
F is called the mid-level-

comparison threshold of fuzzy soft set (F, A). In addition, the level
D-Score table with respect to the mid-level-comparison thresh-
old fuzzy set �mid

F is called the mid-level D-Score table of fuzzy
soft set (F, A). In what follows the mid-level-comparison rule will
mean using the mid-level-comparison threshold and considering
the mid-level D-Score table of a fuzzy soft set in decision making
process.

For a concrete example of mid-level-comparison threshold
fuzzy set and mid-level D-Score table, let us reconsider the fuzzy
soft set (F1, E1) with its tabular representation given by Table 4. It is
clear that the mid-level-comparison threshold of (F1, E1) is a fuzzy
set

�mid
F1

= {(e1, 0.20), (e2, 0.12), (e3, 0.22), (e4, 0.10)}.

Example 8 (The min-level-comparison threshold of a fuzzy soft set).
Let the universe U = {o1, o2, . . .,  on}, E be the attribute set, A ⊆ E and
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Table  12
The 0.15-level D-Score table of (F1, E1) with 0.15-level D-Scores.

e1 e2 e3 e4 S0.15
i

o1 2 3 −2 −3 S0.15
1 = 0

o2 2 0 −2 1 S0.15
2 = 1

o3 −2 −1 2 1 S0.15
3 = 0

o4 −2 −2 2 1 S0.15
4 = −1

A = {e1, e2, . . .,  em}. Based on the fuzzy soft set (F, A), we can define
a fuzzy set �min

F : A −→ [0,  1] by

�min
F (el) = ∧{oi,oj ∈ U}|�F(el)(oi) − �F(el)(oj)|,

for all el ∈ A. The fuzzy set �min
F is called the min-level-

comparison threshold of the fuzzy soft set. In addition, the level
D-Score table with respect to the min-level-comparison thresh-
old fuzzy set �min

F is called the min-level D-Score table of fuzzy
soft set (F, A). In what follows the min-level-comparison rule will
mean using the min-level-comparison threshold and considering
the min-level D-Score table of a fuzzy soft set in decision making
process.

For a concrete example of min-level-comparison threshold
fuzzy set and min-level D-Score table, let us reconsider the fuzzy
soft set (F1, E1) with its tabular representation given by Table 4. It is
clear that the min-level-comparison threshold of (F1, E1) is a fuzzy
set

�min
F1

(e1) = |�F1(e1)(o1) − �F1(e1)(o2)| = 0.10,

�min
F1

(e2) = |�F1(e2)(o3) − �F1(e2)(o4)| = 0.06,

�min
F1

(e3) = |�F1(e3)(o1) − �F1(e3)(o2)| = 0.10,

�min
F1

(e4) = |�F1(e4)(o3) − �F1(e4)(o4)| = 0.05,

�min
F1

= {(e1, 0.10), (e2, 0.06), (e3, 0.10), (e4, 0.05)}.

Example 9 (The max-level-comparison threshold of a fuzzy soft set).
Let the universe U = {o1, o2, . . .,  on}, E be the attribute set, A ⊆ E and
A = {e1, e2, . . .,  em}. Based on the fuzzy soft set (F, A), we can define
a fuzzy set �max

F : A −→ [0,  1] by

�max
F (el) = ∨{oi,oj ∈ U}(�F(el)(oi) − �F(el)(oj)),

for all el ∈ A. The fuzzy set �max
F is called the max-level-

comparison threshold of the fuzzy soft set. In addition, the level
D-Score table with respect to the max-level-comparison thresh-
old fuzzy set �max

F is called the max-level D-Score table of fuzzy
soft set (F, A). In what follows the max-level-comparison rule will
mean using the max-level-comparison threshold and considering
the max-level D-Score table of a fuzzy soft set in fuzzy soft set based
decision making.

For a concrete example of max-level-comparison threshold
fuzzy set and max-level D-Score table, let us reconsider the fuzzy
soft set (F1, E1) with its tabular representation given by Table 4. It is
clear that the max-level-comparison threshold of (F1, E1) is a fuzzy
set

�max
F1

(e1) = �F1(e1)(o1) − �F1(e1)(o4) = 0.80,

�max
F1

(e2) = �F1(e2)(o1) − �F1(e2)(o4) = 0.48,

�max
F1

(e3) = �F1(e3)(o4) − �F1(e3)(o1) = 0.88,

�max
F1

(e4) = �F1(e4)(o4) − �F1(e4)(o1) = 0.40,

�max
F1

= {(e1, 0.80), (e2, 0.48), (e3, 0.88), (e4, 0.40)}.
In the fuzzy soft set (F, A), the level D-Score of object oi with

respect to �mid
F , �min

F and �max
F are denoted by Smid

i
, Smin

i
and Smax

i
,

respectively. Now we present the level D-Scores based decision
making approach as below (see Algorithm 3).

Table 13
The mid-level D-Score table of (F1, E1) with mid-level D-Scores.

e1 e2 e3 e4 Smid
i

o1 2 3 −2 −3 Smid
1 = 0

o2 2 1 −2 0 Smid
2 = 1

o3 −2 −2 2 1 Smid
3 = −1

o4 −2 −2 2 2 Smid
4 = 0

Algorithm 3.

[Step 1.] Input a fuzzy soft set (F, A).
[Step 2.] Input a comparison threshold fuzzy set � : A −→ [0, 1] (or give a

comparison threshold value t ∈ [0, 1]; or choose the mid-level-comparison
decision rule; or choose the min-level-comparison decision rule; or choose
the max-level-comparison decision rule) for decision making.

[Step 3.] Present the level D-Score table with respect to fuzzy set � of (F, A) and
compute the level D-Score of oi with respect to �, i.e. S�

i
, ∀i (or present the

t-level D-Score table of (F, A) and compute the t-level D-Score St
i

of oi , ∀i; or
present the mid-level D-Score table of (F, A) and compute the mid-level
D-Score Smid

i
of oi , ∀i; or present the min-level D-Score table of (F, A) and

compute the min-level D-Score Smin
i

of oi , ∀i; or present the max-level
D-Score table of (F, A) and compute the max-level D-Score Smax

i
of oi , ∀i).

[Step 4.] The optimal decision, which is denoted by D((F, A), �), is to select oj if
S�

j
= maxiS�

i
(or denoted by D((F, A), t) and select oj if St

j
= maxiS

t
i
; or

denoted by D((F, A), �mid
F

) and select oj if Smid
j

= maxiS
mid
i

; or denoted by

D((F, A), �min
F

) and select oj if Smin
j

= maxiSmin
i

; or denoted by D((F, A), �max
F

)
and select oj if Smax

j
= maxiS

max
i

).
[Step 5.] If j has more than one value then any one of oj may  be chosen.

In the last step of Algorithm 3, one may  go back to the second
step and change the comparison threshold that he/she once used
so as to adjust the final optimal decision, especially when there are
too many “optimal choices” to be chosen.

When comparing membership values of objects with respect
to different attributes to evaluate the level D-Scores of objects,
by introducing the comparison thresholds, Algorithm 3 takes into
account both the quality and the quantity of attributes each object
occupies. In this way, some decision making problems which can-
not be dealt with by using Algorithm 1 can be solved by using
Algorithm 3. In other words, Algorithm 3 overcomes Limitation 2
of Algorithm 1. Here is an example to illustrate.

Example 10. It is clear the 0.15-level D-Score table of (F1, E1) in
Example 2 is given by Table 12. From Table 12, the 0.15-level D-
Scores of objects are: S0.15

1 = 0, S0.15
2 = 1, S0.15

3 = 0, S0.15
4 = −1. It

indicates that when using a comparison threshold value t = 0.15,
we can obtain that o2 is the optimal candidate by Algorithm 3.

The mid-level D-Score table of (F1, E1) is given by Table 13. From
Table 13, we obtain Smid

1 = 0, Smid
2 = 1, Smid

3 = −1, Smid
4 = 0. It follows

that if the mid-level-comparison decision rule is chosen, we also
obtain o2 as the optimal candidate by Algorithm 3.

Theorem 3. Assuming that an actual decision making context is
reduced to a fuzzy soft set (F, A) on the universe U. Let D((F, A), �)
be the optimal decision set got by Algorithm 3, where � is a compar-
ison threshold fuzzy set of (F, A). If �(el) > �max

F (el) for ∀el ∈ A, then
we have D((F, A), �) = U.

3.3.3. Weighted D-Score based decision making
Now we  introduce the concepts of weighted D-Scores, weighted

t-level D-Scores and weighted level D-Scores with respect to a fuzzy
set, and pay attention to their applications in decision making prob-
lems based on weighted fuzzy soft set.

Definition 9. [32] Let E be a set of attributes and A ⊆ E. A weighted
fuzzy soft set is a triple T = {F, A, w}  where (F, A) is a fuzzy soft
set over U, and w : A −→ [0,  1] is a weight function specifying the
weight wl = w(el) for each attribute el ∈ A.

Definition 10. Let U = {o1, o2, . . .,  on} be the universe, E be the
attribute set, A ⊆ E and A = {e1, e2, . . .,  em}. Let T = {F, A, w}  be a
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weighted fuzzy soft set where (F, A) is a fuzzy soft set over U and w :
A −→ [0,  1] is a weight function specifying the weight wl = w(el) for
each attribute el ∈ A. The weighted D-Score of oi ∈ U is defined by

S̃i =
m∑

l=1

wl × S(oi)(el), (13)

where S(oi)(el) is the D-Score of object oi on el calculated by Eq. (7).

Definition 11. Let U = {o1, o2, . . .,  on} be the universe, E be the
attribute set, A ⊆ E and A = {e1, e2, . . .,  em}. Let T = {F, A, w}  be a
weighted fuzzy soft set where (F, A) is a fuzzy soft set over U and w :
A −→ [0,  1] is a weight function specifying the weight wl = w(el) for
each attribute el ∈ A. For t ∈ [0, 1], the weighted t-level D-Score of
oi ∈ U is defined by

S̃t
i =

m∑

l=1

S̃(oi)(el)t (14)

where S̃(oi)(el)t = wl × S(oi)(el)t and S(oi)(el)t is the t-level D-Score
of object oi on el calculated by Eq. (9).

Definition 12. Let U = {o1, o2, . . .,  on} be the universe, E be the
attribute set, A ⊆ E and A = {e1, e2, . . .,  em}. Let T = {F, A, w} be a
weighted fuzzy soft set where (F, A) is a fuzzy soft set over U and w :
A −→ [0,  1] is a weight function specifying the weight wl = w(el) for
each attribute el ∈ A. Let � : A −→ [0, 1] be a fuzzy set on A which is
called a comparison threshold fuzzy set. The weighted level D-Score
of oi ∈ U with respect to � is defined by

S̃�
i =

m∑

l=1

S̃(oi)(el)� (15)

where S̃(oi)(el)� = wl × S(oi)(el)� and S(oi)(el)� is the level D-Score
of object oi on el with respect to fuzzy set � calculated by Eq. (11).

For every oi ∈ U, its level D-Score with respect to � which is
calculated by Eq. (12) (t-level D-Score calculated by Eq.(10)) can be
regarded as its weighted level D-Score with respect to � (weighted
t-level D-Score) in which every attribute be of equal importance.

The weighted level D-Score table with respect to the fuzzy set
� (weighted t-level D-Score table) is a square table in which rows
are labelled by the attributes e1, e2, . . .,  em, columns are labelled
by the objects o1, o2, . . .,  on of the universe, and the entry cor-
responding to attribute el and object oi is S̃(oi)(el)� (S̃(oi)(el)t).
The weighted level D-Score table with respect to the mid-level-
comparison threshold fuzzy set �mid

F , the min-level-comparison
threshold fuzzy set �min

F and the max-level-comparison threshold
fuzzy set �max

F are called the weighted-mid-level, weighted-min-
level and weighted-max-level D-Score table of the weighted fuzzy
soft set (F, A, w), respectively. In addition, the weighted level D-
Score of object oi ∈ U with respect to �mid

F , �min
F and �max

F in the
weighted fuzzy soft set (F, A, w) are denoted by weighted-mid-level
D-Score (S̃mid

i
), weighted-min-level D-Score (S̃min

i
) and weighted-

max-level D-Score (S̃max
i

), respectively.

Let 0̂ denote the constant fuzzy set on A given by 0̂(el) =
0 for ∀el ∈ A. Then we immediately have S̃0̂

i
= ∑m

l=1S̃(oi)(el)0̂ =∑m
l=1wl × S(oi)(el)0̂ = ∑m

l=1wl × S(oi)(el), which is the weighted D-
Score of object oi ∈ U.

Algorithm 4 improves Algorithm 3 to deal with the decision
making problems in which weights of attributes are different based
on weighted fuzzy soft set and the corresponding weighted level
D-Scores of objects with respect to a fuzzy set � (weighted t-level
D-Scores). In Algorithm 4, we take the weights of attributes into
consideration and compute the weighted level D-Scores instead of
level D-Scores. Since �mid

F , �min
F and �max

F are actually special com-

Table 14
Tabular representation of weighted fuzzy soft set (F1, E1, w).

e1,w1 = 0.8 e2,w2 = 0.4 e3,w3 = 0.5 e4,w4 = 0.3

o1 0.92 0.88 0.08 0.12
o2 0.82 0.60 0.18 0.40
o3 0.24 0.46 0.83 0.47
o4 0.12 0.40 0.96 0.52

Table 15
The weighted-mid-level D-Score table of (F1, E1, w) with weighted-mid-level D-
Scores.

e1, w1 = 0.8 e2, w2 = 0.4 e3, w3 = 0.5 e4, w4 = 0.3 S̃mid
i

o1 1.6 1.2 −1 −0.9 S̃mid
1 = 0.9

o2 1.6 0.4 −1 0 S̃mid
2 = 1.0

o3 −1.6 −0.8 1 0.3 S̃mid
3 = −1.1

o4 −1.6 −0.8 1 0.6 S̃mid
4 = −0.8

parison threshold fuzzy sets for (F, A), we will not sketch them out
and highlight them in Algorithm 4.

Algorithm 4.

[Step 1.] Input a weighted fuzzy soft set (F, A, w).
[Step 2.] Input a comparison threshold fuzzy set � : A −→ [0, 1] (or give a

comparison threshold value t ∈ [0, 1]) for the weighted fuzzy soft set
(F,  A, w).

[Step 3.] Present the weighted D-Score table with respect to fuzzy set � for the
weighted fuzzy soft set (F, A, w)  and compute S̃�

i
(S̃t

i
), which is the weighted

level D-Score with respect to � (weighted t-level D-Score) of oi , ∀i.
[Step 4.] The optimal decision is to select oj if S̃�

j
= maxi S̃�

i
(or S̃t

j
= maxi S̃

t
i
).

[Step 5.] If j has more than one value then any one of oj may  be chosen.
Similarly to Algorithm 3, if too many “optimal choices” are

obtained by Algorithm 4, one can also go back to the second step and
change the comparison threshold previously used so as to adjust the
final optimal decision. The notion of weighted level D-Score provide
a framework for solving decision making problems by score based
method in which all the attributes may  not be of equal importance.

Example 11. Suppose that there are four candidates who  apply
for a position in a work place, the set of candidates U = {o1, o2,
o3, o4} is characterized by a attribute set E1 = {e1, e2, e3, e4} which
is ‘e1 = technical information’ (w1 = 0.8), ‘e2 = experience’ (w2 = 0.4),
‘e3 = training’ (w3 = 0.5), ‘e4 = appearance’ (w4 = 0.3), respectively.
Thus the decision maker has a weight function w : E1 −→ [0,  1] and
the fuzzy soft set (F1, E1) in Example 2 is changed into a weighted
fuzzy soft set (F1, E1, w) with its tabular representation as shown
in Table 14.

As an adjustable approach, the decision maker can select differ-
ent comparison thresholds when dealing with the problem. If we
use the mid-level threshold in this case, we obtain the weighted-
mid-level D-Score table of (F1, E1, w)  as Table 15, then the optimal
decision is o2 by Algorithm 4.

4. Improving decision making approaches based on rough
soft sets

This section first discusses the limitations of existing decision
making approaches based on rough soft sets, some new approaches
will be then provided to overcome such limitations.

4.1. Limitations of decision making methods based on rough soft
sets

There are two  main limitations of the rough soft sets based deci-
sion making approaches:

• Limitation 1: The existing few decision making algorithms are far
from enough to meet the various demands of applications.
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Table  16
The tabular representation of Apr

R
(S).

o1 o2 o3 o4 o5 o6 o7 o8

e1 0 0 0 0 0 0 0 0
e2 1 1 0 0 0 0 0 0
e3 0 0 1 1 0 0 0 0
e4 0 0 1 1 1 1 0 0
e5 0 0 0 0 0 0 0 0

Decision making approaches based on rough soft sets has not
obtained enough attention by the researchers so far. Let us recon-
sider the two material selection algorithms based on rough soft
sets proposed by Ma  et al. in [34], one of the algorithms is used to
catch the closest one in all of the materials, the other one is used
to reach the most representative materials. The scope of appli-
cation of these algorithms is limited. The research on rough soft
sets in decision making calls for improvement by proposing more
approaches to meet various practical demands.

• Limitation 2: The research on application of rough soft set in
group decision making has not appeared yet.

The combination of rough set theory and soft set theory shows
great potential in solving group decision making problems. How-
ever, when a group decision making problem is solved by using
[26] and MSR-sets [35], every expert have to present his/her
best choice alternatives. In other words, every expert has already
made their own decision before carrying out the group decision
making process. This strict requirement is hardly fulfilled in some
real-life situations since expert may  prefer provide only their
assessment of alternatives/candidates in different aspects when
they are short of knowledge, time or just lack of confidence. All of
the researchers only concentrate on the application of soft rough
set in group decision making so far, no attempt has been done
in solving such problems by using rough soft set. So the problem
arises that how can we make full use of the information in form
of assessments on candidates with respect to different aspects
provided by the decision makers during the decision process and
deal with the group decision making problem by using rough soft
set?

In the following parts, we will come up with two  new deci-
sion making algorithms based on rough soft set which enriches
the scopes of applications and conquers Limitation 1 to a cer-
tain extend. Afterwards, a group decision making algorithm based
on rough soft set which successfully solve group decision mak-
ing problems when the initial evaluation information provided
by experts are their assessments on alternatives from different
aspects, which overcomes Limitation 2 and fills the blank that this
respect field is studied.

4.2. Decision making methods based on rough soft sets

In this part, some new methods will be provided by deciding a
most perspective attribute or a target attribute set using the rough
approximation operators on a given soft set S = (F, A).

Let U = {o1, o2, . . .,  on} be the universe of objects and E be a set of
related attributes. Let S = (F, A) be a soft set over U and A = {e1, e2,
. . .,  em} ⊆ E. Let (U, R) be a Pawlak approximation space where R be
an equivalence relation on U. For X ⊆ U, let |X| denote the number of
objects in X, let |X|R denote the number of classes in U contained in
X, where the classification is determined by an equivalent relation
R. Then a decision making algorithm based on rough soft sets can
be presented as Algorithm 5.

Table 17
The tabular representation of ¯AprR(S).

o1 o2 o3 o4 o5 o6 o7 o8

e1 1 1 1 1 0 0 0 0
e2 1 1 0 0 1 1 0 0
e3 0 0 1 1 1 1 0 0
e4 0 0 1 1 1 1 0 0
e5 0 0 1 1 1 1 1 1

Algorithm 5.

[Step 1.] Input Pawlak approximation space (U, R) and a soft set S = (F, A) on U.
[Step 2.] Compute the lower and upper rough soft approximation operators

Apr
R
(S) and ¯AprR(S) on S, respectively.

[Step 3.] Select a threshold �, which satisfies the condition

� ∈ [0,
|FR (e1)∪FR (e2)...FR (em)|R

|U|R ].
[Step 4.] For each attribute ei ∈ A, calculate F̄R(ei). If there is an attribute ei ∈ A,

s.t. F̄R(ei) = U, turn to Step 5; if else, turn to Step 6.
[Step 5.] Calculate

|FR (ek )|R
|U|R = max{ei :F̄R (ei )=U}

|FR (ei )|R
|U|R .

If
|FR (ek )|R

|U|R ≥ �, then {ek} is the expected decision set; if else, turn to Step 6.
[Step 6.] For all two  attributes ei , ej ∈ A, calculate F̄R(ei) ∪ F̄R(ej). If there are

attributes ei , ej ∈ A, s.t. F̄R(ei) ∪ F̄R(ej) = U, turn to Step 7; If else, turn to Step
8.

[Step 7.] Calculate

|FR (ek )∪FR (el )|R
|U|R = max{ei ,ej ∈ A:F̄R (ei )∪F̄R (ej )=U}

|FR (ei )∪FR (ej )|R
|U|R .

If
|FR (ek )∪FR (el )|R

|U|R ≥ �, then {ek , el} is the expected decision set; if else, turn to
Step 8.

[Step 8.] If there are q (q < m)  attributes e′
i1

, e′
i2

, . . .,  e′
iq

∈ A can be found

satisfying F̄R(e′
i1

) ∪ F̄R(e′
i2

) ∪ . . .F̄R(e′
iq

) = U, then calculate
|FR(ei1

) ∪ FR(ei2
) ∪ . . .FR(eiq )|R

|U|R

= max{e′
i1

,e′
i2

,...,e′
iq

∈ A:F̄R (e′
i1

)∪F̄R (e′
i2

)∪,...,F̄R (e′
iq

)=U}
|FR (e′

i1
)∪FR (e′

i2
)∪...FR (e′

iq
)|R

|U|R ,

where ei1
, ei2

, . . ., eiq ∈ A, if
|FR (ei1

)∪FR (ei2
)∪...FR (eiq

)|R
|U|R ≥ �, then {ei1

, ei2
, . . .,  eiq } is

an  expected decision set (it is worth noticing that the expected decision set
may  be not unique);

if else, we  will check q + 1 attributes, q + 2 attributes, . . .,  q + (m − q) attributes,
until we find the expected decision set.

The primary motivation for designing Algorithm 5 is to select
the parameters whose upper approximation cover all the objects
when their lower approximation cover a specified number of object
classes in U. This selection mechanism can be used in many practical
situations. Here is an example to illustrate:

Example 12. Suppose that a company decides to set up a working
group for the expansion of business. To choose suitable members
for the working group, they make a survey of the candidates on
some professional skills (referred to as o1, o2, o3, o4, o5, o6, o7 and
o8). Suppose that there are five candidates A = {e1, e2, e3, e4, e5} and
each candidate have one or more skills: F(e1) = {o1, o4}, F(e2) = {o1,
o2, o6}, F(e3) = {o3, o4, o5}, F(e4) = {o3, o4, o5, o6} and F(e5) = {o3, o5,
o8}. In this case, (o1, o2) ∈ R, (o3, o4) ∈ R, (o5, o6) ∈ R, (o7, o8) ∈ R
(R represents the equivalent relationship amongst skills). Now the
skills are divide into four classes/types in U.

• If a candidate is good at one skill, he/she can be expected to handle
its equivalent skills quicker (in a relative short time).

• If a candidate already handles all the skills in one class before the
selection, he/she can be regarded as an expert in this type of skill.

The tabular representations of soft sets Apr
R
(S) and ¯AprR(S) are

obtained as Tables 16 and 17, respectively.
Since |FR(e1)∪FR(e2)...FR(e5)|R

|U|R = 3
4 , in this case we can set � = 1

2 ∈
[0, 3

4 ].
The calculation process is given as below:
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1. For any attribute ei ∈ A, it is obvious that F̄(ei) /= U. Then we  skip
to two attributes situation;

2. For two attributes: F̄R(e1) ∪ F̄R(e5) = U, F̄R(e2) ∪ F̄R(e5) = U, it
is easy to obtain |FR(e1)∪FR(e5)|R

|U|R = 0, |FR(e2)∪FR(e5)|R
|U|R = 1

4 . Since

max{0, 1
4 } < 1

2 , we skip to three attributes situation;
3. For three attributes:

F̄R(e1) ∪ F̄R(e5) ∪ F̄R(e2) = U, |FR(e1)∪FR(e5)∪FR(e2)|R
|U|R = |{o1,o2}|R

|U|R =
1
4 .

F̄R(e1) ∪ F̄R(e5) ∪ F̄R(e3) = U, |FR(e1)∪FR(e5)∪FR(e3)|R
|U|R = |{o3,o4}|R

|U|R =
1
4 .

F̄R(e1) ∪ F̄R(e5) ∪ F̄R(e4) = U, |FR(e1)∪FR(e5)∪FR(e4)|R
|U|R =

|{o3,o4,o5,o6}|R
|U|R = 1

2 .

F̄R(e2) ∪ F̄R(e5) ∪ F̄R(e3) = U, |FR(e2)∪FR(e5)∪FR(e3)|R
|U|R =

|{o1,o2,o3,o4}|R
|U|R = 1

2 .

F̄R(e2) ∪ F̄R(e5) ∪ F̄R(e4) = U, |FR(e2)∪FR(e5)∪FR(e4)|R
|U|R =

|{o1,o2,o3,o4,o5,o6}|R
|U|R = 3

4 .

Here, |FR(e2)∪FR(e5)∪FR(e4)|R
|U|R = max{ 1

4 , 1
4 , 1

2 , 1
2 , 3

4 } = 3
4 > 1

2 = �,
so we obtain that {e2, e4, e5} is the decision set.

1. If there is a skill which is not handled by anyone in the deci-
sion set, several of its equivalent skills must be handled by some
memberships in the decision set. Thus, members in the decision
set can be expected to handle all of the professional skills quicker
(in a relative short time).

2. For at least two classes of skills, there are experts in the decision
set. More classes of experts make the whole work more efficient.

3. Along with ensuring conditions 1–2, the members in the decision
set will be the least, which contributes to save labor cost.

4. Along with ensuring conditions 1–3, with the same numbers of
members, the number of skill classes with experts will be the
most in the decision result set. Different types of experts make
different types of work more efficient.

As following, another rough soft set based algorithm is proposed
by selecting only one attribute whose upper approximation cover
the most objects in the universe set.

Algorithm 6.

[Step 1.] Input Pawlak approximation space (U, R) and a soft set S = (F, A) on U.
[Step 2.] Compute the upper rough soft approximation operator on S, i.e. ¯AprR(S).
[Step 3.] The optimal decision result is to select ej if |F̄R(ej)| = ∨i ∈ {1,2,...,m}|F̄R(ei)|.
[Step 4.] If j has more than one value then any one of ej may  be chosen.

Example 13. Let us reconsider the decision making problem in
Example 12. From Table 16, we can easily obtain that |F̄R(e4)| =
∨i ∈ {1,2,...,5}|F̄R(ei)|, so e4 is the optimal decision by Algorithm 6. It is
worth noticing that, by Algorithm 6, the optimal decision result is
the candidate who has potential to handle most professional skills
quicker (in a relative short time).

Remark 1. By Algorithms 5 and 6, we provide two different
attempts of using rough soft sets to solve decision making prob-
lems. Different selection mechanisms make the methods have
different scopes of application.

4.3. A group decision making method based on rough soft sets

Feng [39] and Zhan et al. [40] put forth approaches for group
decision making problems based on soft rough sets [26] and MSR-
sets [35], respectively. Benefitting from their ideas, now we  will
introduce an group decision making approach based on rough soft
sets.

Assume that we have an expert group G = {T1, T2, . . .,  Tp} consist-
ing of p specialists to evaluate all the candidates A = {e1, e2, . . .,  em}.
For each candidate, every specialist will be asked to provide an eval-
uation on him/her as aspect to all skills in U = {o1, o2, . . .,  on} and will
be requested to give judgement if a candidate is good at these skill
or not. In this way, the judgements on all candidates with respect to
all skills provided by every expert form a soft set. It is assumed that
there exist some equivalent relationships between different skills.
With these equivalent relationships, we can compute the rough
approximations of the soft sets, the upper rough approximation of
the soft set represents the low-confidence assessments provided by
this expert while the lower approximation of the soft set represents
the high-confidence assessments. The main character of our group
decision making is that decision makers only need to provide their
initial assessments of candidates (attributes) with respect to dif-
ferent aspects (objects), according to their knowledge/cognition of
the problem, it is not necessary to provide their optimal alternatives
before the group decision making process.

The evaluation result of each expert Tq (q ∈ {1, 2, . . .,  p}) can
be described as an evaluation soft set Tq = (FTq , A) over U, where
FTq : A → P(U). Using rough approximations on soft set Tq, we
can obtain two  corresponding soft sets ¯AprR(Tq) = ( ¯FTq R

, A) and
Apr

R
(Tq) = (FTq R

, A) over U, where ¯FTq R
: A → P(U) and FTq R

: A →
P(U).

We give a weighting vector W′ = (�1, �2, . . .,  �p) such that
�1 + �2 + . . . + �p = 1, where �q (q = 1, 2, . . .,  p) represents the weight
of expert Tq (q = 1, 2, . . ., p) and can be calculated by:

�q =
S( ¯AprR(Tq), Apr

R
(Tq))

∑p
t=1S( ¯AprR(Tt), Apr

R
(Tt))

(16)

where S( ¯AprR(Tq), Apr
R
(Tq)) is the similarity between soft sets

¯AprR(Tq) = ( ¯FTq R
, A) and Apr

R
(Tq) = (FTq R

, A). (There are a lot of for-

mulas can be used to calculate the similarity between two softs
sets.)

The weight vector W′ = (�1, �2, . . .,  �p) indicates different impor-
tance degree of different experts. It is noticed that people can use a
lot of ways to determine the weights of experts. If there are enough
additional information in evaluating the experts, the weights of
experts can even been directly specified. Here we originally apply
the similarity measures between soft sets to determine the weights
of experts in a group decision making problem when the weights
are not specified in advance. As is shown above, the opinion of
each expert is represented by a soft set. We  believe that the more
similar the upper approximation and the lower approximation of
one’s opinion (the soft set) are, the more stable and reliable his/her
opinion is, and thus the larger his/her weight should be.

Then the evaluation result of the whole expert group G could be
formulated in terms of fuzzy sets:

�T′ : A → [0,  1],  ei �→ �T′ (ei) = (
1
n

)
∑

q ∈ {1,2,...,p}
�q × |FTq (ei)|

where i = 1, 2, . . .,  n. Similarly, we  can obtain two other fuzzy
sets �T′ and �

T̄
′ in U, which are respectively given by

�T′ : A → [0,  1], ei �→ �T′ (ei) = ( 1
n )
∑

q ∈ {1,2,...,p}�q × |FTq R
(ei)|

�
T̄

′ : A → [0,  1], ei �→ �
T̄

′ (ei) = ( 1
n )
∑

q ∈ {1,2,...,p}�q × | ¯FTq R
(ei)|

where i = 1, 2, . . .,  n.
Then, we  can construct a fuzzy soft sets to gather together the

above fuzzy evaluation results. Let C = {L, M, H} be a set of attributes,
where L, M and H represent three kinds of confidence, respec-
tively. Then we can define a fuzzy soft set F  = (G, C) over U, where
G : C → F(U) is given by G(L) = �

T̄
′ , G(M) = �T′ and G(H) = �T′ .
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Now we give a weighting vector W = (wL, wM, wH) such that
wL + wM + wH = 1, we define

v(ek) = (wL) × G(L)(ek) + (wM) × G(M)(ek) + (wH) × G(H)(ek) (17)

which is called the weighted evaluation value of the candidate ek ∈
A. Finally we can select the attribute ej such that v(ej) = max(v(ek))
(k = 1, 2, . . .,  m .) as the most preferred candidate. Now we present
the decision making method based on rough soft sets by Algorithm
7.

Algorithm 7.

[Step 1.] Input Pawlak approximation space (U, R) and soft sets T1 = (FT1 , A),
T2 = (FT2 , A), . . .,  Tp = (FTp , A) on U.

[Step 2.] For ∀q ∈ {1, 2, . . .,  p}, compute the lower and upper rough
approximations on soft set Tq , i.e., ¯AprR(Tq) = ( ¯FTq R

, A) and
Apr

R
(Tq) = (FTq

R
, A), respectively.

[Step 3.] Compute the weighting vector W′ = (�1, �2, . . .,  �p) by Eq.(16).
[Step 4.] Compute the corresponding fuzzy sets �

T̄
′ , �T′ and �T′ .

[Step 5.] Construct a fuzzy soft set F  = (G, C) using �
T̄

′ , �T′ and �T′ .
[Step 6.] The optimal decision is to select ej if v(ej) = ∨k ∈ {1,2,...,m}v(ek).

Example 14. Suppose that we have an expert group G = {T1, T2, T3,
T4} consisting of 4 specialists and our goal is to choose an optimal
candidate from a candidates set A = {e1, e2, . . .,  e5}. For each can-
didate, every specialist will be asked to provide an evaluation as
respect to all the professional skills in U = {o1, o2, . . .,  on} and will
be requested to give judgement if the candidate is good at these
skill or not. In this case, the professional skills in U are divided into
three classes/types: (o1, o2) ∈ R, (o3, o4) ∈ R and (o5, o6, o7) ∈ R
(R represent the type of some skills are equivalent). The evalua-
tion result of all the candidates provided by expert Tq (q = 1, 2, . . .,
4) can be described as a soft set Tq = (FTq , A) over U. Using rough
approximations on soft sets, the tabular representations of soft sets

¯AprR(Tq) = ( ¯FTq R
, A)(q = 1, 2, . . .,  4) and Apr

R
(Tq) = (FTq R

, A) (q = 1, 2,

. . .,  4) over U are obtained as (Table 18).

Finally, we can calculate the fuzzy soft set F  = (G, C). Assume
that the weighting vector for confidence W = (0.25, 0.5, 0.25) and to
calculate the similarity between two soft sets (F, A) and (G, B) we

use S((F, A), (G, B)) = |A∩B|
|A∪B| ·

∑
e  ∈ A∩B

|F(e)∩G(e)|∑
e  ∈ A∩B

|F(e)∪G(e)| [41]. It is easy to obtain

that
S( ¯AprR(T1), Apr

R
(T1)) = 0.5625, S( ¯AprR(T2), Apr

R
(T2)) = 0.625,

S( ¯AprR(T3), Apr
R
(T3)) = 0.32, S( ¯AprR(T4), Apr

R
(T4)) = 0.375.

Then, we can obtain W′ = (0.299, 0.332, 0.170, 0.199) by Eq. (16),
the weighted evaluation value can be calculated by Eq. (17). Tab-
ular representation of the fuzzy soft set F  = (G, C) with evaluation
values is given by Table 19. Hence e2 should be the most preferred
candidate.

5. Conclusions

Fuzzy set theory, rough set theory and soft set theory are three
relatively independent and closely related mathematical tools for
dealing with uncertainty [42]. Based on the combination of these
theories, various hybrid models, including fuzzy soft set theory and
rough soft set theory, have been obtained to handle the vagueness
in practical problems. In this paper, we focus on the application of
fuzzy soft set theory and rough soft set theory in decision making.
A classical fuzzy soft based decision making approach is improved
to deal with decision making problems that contain updating infor-
mation so that attributes need to be added/deleted in the fuzzy soft
sets. We  also present a new adjustable fuzzy soft sets based decision
making approach by introducing comparison thresholds and corre-
sponding level D-Score tables of fuzzy soft sets. This new approach
has the potential to be extended to the intuitionistic fuzzy soft
sets, interval-valued fuzzy soft sets situations, etc. Based on rough

Table 18
The tabular representations for soft sets in Example 14.

o1 o2 o3 o4 o5 o6 o7

Table for soft set ¯AprR(T1)
e1 0 0 1 1 0 0 0
e2 1 1 0 0 1 1 1
e3 0 0 1 1 1 1 1
e4 0 0 1 1 0 0 0
e5 0 0 1 1 0 0 0
Table for soft set T1

e1 0 0 0 1 0 0 0
e2 1 1 0 0 1 1 1
e3 0 0 1 0 1 1 0
e4 0 0 1 1 0 0 0
e5 0 0 1 1 0 0 0
Table for soft set Apr

R
(T1)

e1 0 0 0 0 0 0 0
e2 1 1 0 0 1 1 1
e3 0 0 0 0 0 0 0
e4 0 0 1 1 0 0 0
e5 0 0 1 1 0 0 0
Table for soft set ¯AprR(T2)
e1 1 1 1 1 0 0 0
e2 1 1 0 0 1 1 1
e3 0 0 1 1 1 1 1
e4 0 0 1 1 1 1 1
e5 0 0 1 1 1 1 1
Table for soft set T2

e1 1 1 1 1 0 0 0
e2 1 1 0 0 1 1 0
e3 0 0 1 1 1 1 0
e4 0 0 1 1 1 1 0
e5 0 0 1 1 1 1 1
Table for soft set Apr

R
(T2)

e1 1 1 1 1 0 0 0
e2 1 1 0 0 0 0 0
e3 0 0 1 1 0 0 0
e4 0 0 1 1 0 0 0
e5 0 0 1 1 1 1 1
Table for soft set ¯AprR(T3)
e1 1 1 1 1 0 0 0
e2 1 1 0 0 1 1 1
e3 1 1 1 1 0 0 0
e4 1 1 1 1 1 1 1
e5 0 0 1 1 1 1 1
Table for soft set T3

e1 1 1 1 1 0 0 0
e2 0 1 0 0 1 1 0
e3 1 0 1 1 0 0 0
e4 1 0 1 0 1 1 0
e5 0 0 1 1 0 0 1
Table for soft set Apr

R
(T3)

e1 1 1 1 1 0 0 0
e2 0 0 0 0 0 0 0
e3 0 0 1 1 0 0 0
e4 0 0 0 0 0 0 0
e5 0 0 1 1 0 0 0
Table for soft set ¯AprR(T4)
e1 1 1 1 1 0 0 0
e2 1 1 0 0 1 1 1
e3 0 0 1 1 1 1 1
e4 0 0 0 0 1 1 1
e5 1 1 1 1 1 1 1
Table for soft set T4

e1 1 0 1 1 0 0 0
e2 1 0 0 0 1 1 1
e3 0 0 1 1 1 0 0
e4 0 0 0 0 1 1 0
e5 0 1 1 1 1 0 1
Table for soft set Apr

R
(T4)

e1 0 0 1 1 0 0 0
e2 0 0 0 0 1 1 1
e3 0 0 1 1 0 0 0
e4 0 0 0 0 0 0 0
e5 0 0 1 1 0 0 0
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Table  19
The tabular representation of F  = (G, C).

e1 e2 e3 e4 e5

L 0.486 0.714 0.690 0.578 0.643
M  0.415 0.590 0.476 0.429 0.538
H  0.344 0.394 0.200 0.180 0.428
v(ei) 0.415 0.572 0.461 0.404 0.537

soft sets, some new algorithms are also provided to solve decision
making and group decision making problems, different algorithms
have different scopes of application. These original rough soft sets
based approaches have the potential to be extended to the gen-
eration models of rough soft sets situations. In further research,
the generation models of rough soft set theory and their corre-
sponding application in decision making is an interesting issue to
be addressed. The time complexity analysis of all the algorithms in
the current work can be found in Appendix A.
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Appendix A. Complexity analysis of Algorithms 1–7

The complexity analysis of the algorithms in the current work
are listed as follows:

• Algorithm 1: For calculating each entry of the comparison table
from the fuzzy soft set, the complexity of running |A| comparisons
is O(|A|), there are |U|2 entries in the comparison table, hence the
complexity of computing the comparison table is O(|A||U|2). The
complexity of computing each score of each object by using the
comparison score is O(2|U|) = O(|U|), afterwards the complexity
of selecting the max  value is also O(|U|). Thus, the complexity of
Algorithm 1 is O(|A||U|2) + O(|U|) + O(|U|) = O(|A||U|2).

• Algorithm 2: For calculating each entry of the D-Score table from
the initial fuzzy soft set, the complexity of running |A| compar-
isons is O(|U|), there are |U||A| entries in the comparison table,
hence the complexity of computing the D-Score table is O(|A||U|2).
The complexity of computing each D-Score of each object by using
the D-Score table is O(|A|), afterwards the complexity of selecting
the max  value is also O(|U|). Thus, the complexity of Algorithm 2
is O(|A||U|2) + O(|A|) + O(|U|) = O(|A||U|2).

• Algorithm 3: Compared to Algorithm 2, in Algorithm 3 we only
introduce a threshold value when doing the comparisons to
obtain the corresponding D-score Table, so the time complexity
of Algorithm 3 is the same as Algorithm 2, that is, O(|A||U|2).

• Algorithm 4: The time complexity of Algorithm 4 is the same as
Algorithm 3, that is, O(|A||U|2).

• Algorithm 5: For all ej ∈ A, the time complexity of computing
F̄R(ej) and FR(ej) from F(ej) is O(|U|). There are |A| parameters,
therefore the complexity of computing the rough soft set from
a given soft set S = (F, A) is O(|U||A|). The second step is to
select a threshold � manually, in which to compute the upper
bound the time complexity is O(|U|). The time complexity of the
worst case to find the decision result is O(c1

|A| + c2
|A| + . . . + c|A|

|A|) =
O(2|A|). It is easy to obtain the time complexity of Algorithm 5 is
O(|U||A| + 2|A|).

It is determined by the time complexity of Algorithm 5 that this
algorithm is only suitable for decision making problems in which
the number of attributes is relative small, which is a limitation of
both Algorithm 5 in the current work and the Algorithm 9 in [34].

In the future it is worth paying attention to the further improve-
ment of these algorithms to make them more feasible for large
scale of data sets.

• Algorithm 6: For all ej ∈ A, the time complexity of computing
F̄R(ej) from F(ej) is O(|U|). There are |A| parameters, therefore the
complexity of computing the upper approximation of a given soft
set S = (F, A) is O(|U||A|). The complexity of selecting the max
value of F̄R(ej), ej ∈ A is O(|A|). It is easy to obtain the complexity
of Algorithm 6 is O(|U||A| + |A|) = O(|U||A|).

• Algorithm 7: For all ej ∈ A, the time complexity of computing
FTq R

(ej) and ¯FTq R
(ej) from FTq (ej) is O(|U|). There are |A| param-

eters, therefore the complexity of computing a rough soft set
from a given soft set Tq = (FTq , A) is O(|U||A|). The complexity
of obtaining all rough soft sets from all soft sets provided by
experts G = {T1, T2, . . .,  Tp} is O(|U||A||G|). And the time complex-
ity of computing each row of the fuzzy soft set from all rough
soft sets is O(|U||G||A|), three rows is O(3|U||A||G|) = O(|U||A||G|),
afterwards for computing v(ej), ej ∈ A from the fuzzy soft set is
O(3|A|) = O(|A|). The complexity of the last step to catch the largest
value is obvious O(|A|). The complexity of Step 3 has been ignored
since it depends on the way  for computing the similarity mea-
sures of soft sets. When the weights of experts are predefined,
Step 3 should be skipped. Thus, the time complexity of Algorithm
7 is O(|U||A||G|) + O(|U||A||G|) + O(|A|) + O(|A|) = O(|U||A||G|).
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Abstract: Through the combination of different types of sets such as fuzzy sets, soft sets and rough
sets, abundant hybrid models have been presented in order to take advantage of each other and
handle uncertainties. A comparative study of relationships and interconnections of some existing
hybrid models has been carried out. Some foundational properties of modified soft rough sets
(MSR sets) are analyzed. It is pointed out that MSR approximation operators are some kinds of
Pawlak approximation operators, whereas approximation operators of Z-soft rough fuzzy sets are
equivalent to approximation operators of rough fuzzy sets. The relationships among F-soft rough
fuzzy sets, M-soft rough fuzzy sets and Z-soft rough fuzzy sets are surveyed. A new model called
soft rough soft sets has been provided as the generalization of F-soft rough sets, and its application in
group decision-making has been studied. Various soft rough sets models show great potential as a
tool to solve decision-making problems, and a depth study of the connections among these models
contributes to the flexible application of soft rough sets based decision-making approaches.

Keywords: rough set; soft set; soft rough set; soft rough fuzzy set

1. Introduction

Various types of uncertainties exist in real life situations, which calls for useful mathematic
tools to meet various information process demands. Usually complicated problems take place
with uncertainties, and most of these complex situations can not be handled by adopting classical
mathematic methods, considering the fact that with classical mathematic tools all notions are
requested to be strict. Up to now, abundant mathematic tools such as fuzzy set theory [1] and
rough set theory [2,3] have already been developed and proved to be useful in handling several
kinds of the problems that contain uncertainties, and all of these theories share a common inherent
difficulty, which is mainly the inadequacy of the parametrization tool [4,5]. However, it is noticed that,
without proper parametrization tools, sometimes a practical problem can not be described in a way as
much as information collected from different aspects could be taken into account. To handle this issue
and to enrich mathematical methodologies for coping with uncertainties, soft set theory was initially
proposed by Molodtsov [4] in 1999, which considers every specific object from different attributes’
aspects, in this way, this new model goes beyond all other existing mathematical tools to avoid the
above-mentioned difficulties. After soft set theory comes out, in the past few years, there appears a
continuous growth of interest in studying theoretical aspects of soft set theory, as well as the practical
applications of soft sets.

Abundant mathematical models have already been designed in order to model and process vague
concepts, among which it is noteworthy that fuzzy set theory and rough set theory have already drawn
worldwide attention from researchers. The development of these two theories makes contributions
to handle lots of complicated problems in engineering, economics, social science, et al. The main
character of fuzzy set theory is that it describes a vague concept by using a membership function,
and the allowance of partial memberships contributes to providing an appropriate framework to
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represent and process vague concepts. The character of rough set theory relies on handling vagueness
and granularity in information systems by indirectly describing a vague concept through two exact
concepts called its lower and upper approximations. In Pawlak’s rough set model, the equivalence
relation is a vital concept, by replacing the equivalence relation with a fuzzy similarity relation,
fuzzy rough sets and rough fuzzy sets have been proposed [6].

The combinations of soft sets, rough sets and fuzzy sets have been extensively studied to
benefit each other and to take the best advantage of them. Research on generalization models of
soft sets is promising since usually the generalized models are not short of parameter tools, that is,
all of the generalized soft set models usually keep the most important feature of soft set theory in
considering issues from various aspects. The history of research on extending soft sets applying
fuzzy set theory goes beyond fifteen years already since Maji et al. introduced fuzzy soft sets in [7].
Therefore far, the soft sets have been extended to intuitionistic fuzzy soft sets [8], interval-valued
intuitionistic fuzzy soft sets [5,9], vague soft sets [10], soft interval sets [11] and many other hybrid
soft sets models. The history of research on the generalization of soft sets by using rough set theory
is relatively short. To introduce parametrization tools to rough set theory, Feng et al. [12,13] initially
put forward the concept of soft rough sets and soft rough fuzzy sets, in which a soft set looks for the
lower and upper approximations of a subset of the universe. Afterwards, Meng et al. [14] proposed
soft fuzzy rough set, in which model the fuzzy soft set has been adopted into granulate the universe.
Benefitting from similarity measures induced by soft sets and soft fuzzy sets, Qin et al. [15] provided
several soft fuzzy rough set models through introducing confidence threshold values. Recently,
Shabir et al. [16] noticed that Feng et al.’s soft rough sets [12] suffer from some unexpected properties
such as the upper approximation of a non-empty set might be empty and a subset set X might not be
contained in its upper approximation. To resolve this problem, Shabir et al. [16] modified their soft
rough sets and introduced the modified soft rough set (MSR set), which has already been extended to
fuzzy soft sets [17], and Z-soft rough fuzzy sets was proposed, and its application in decision-making
problems was analyzed.

The exploitation of soft sets and hybrid soft sets models in decision-making shows a great
development in the recent years [18–22]. The utilization of soft rough sets models in decision-making
shows a promising prospect. Different decision-making approaches have been put forth based on MSR
set [20], Z-soft rough fuzzy sets [17], Z-soft fuzzy rough set [21], and other soft rough sets models [23,24].
If the researchers could have a thorough knowledge of the connections among various soft rough sets,
we believe that decision-making approaches under framework of soft rough sets could be applied in
a more flexible and reliable way. However, the relationships among these hybrid sets have not been
systematically studied so far. Furthermore, we notice that a soft set S can be looked upon an information
system IS. Based on this information system, we can establish Pawlak rough approximations and
rough fuzzy approximations. What is the relationship between soft rough approximations (soft rough
fuzzy approximations) in S and Pawlak rough approximations (rough fuzzy approximations) in IS?
Additionally, soft set and formal context are mathematically equivalent. The relationships among soft
rough approximation operators and derivation operators used in formal concept analysis (FCA) are
also interesting issues to be addressed. In this paper, we will concentrate on the discussion of these
problems. The paper is structured as follows: Section 2 revises several basic concepts of soft sets, fuzzy
sets and rough set. Section 3 studies relationships among several soft rough sets. The properties of
MSR approximation operators and different connections between MSR approximation operators and
F-soft rough approximation operators are analyzed. It is shown that MSR approximation operators
and a kind of Pawlak approximation operators are equivalent, while Z-soft rough fuzzy approximation
operators and a kind of rough fuzzy approximation operators are equivalent. The relationships
among F-soft rough fuzzy sets, M-soft rough fuzzy sets and Z-soft rough fuzzy sets have also been
investigated. Section 4 discusses the relationship between F-soft rough sets and modal-style operators
in formal concept analysis. Section 5 proposes a new generalization of F-soft rough set, which is called
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a soft rough soft set, and a simple application of soft rough soft sets in group decision-making has been
studied. Eventually, Section 6 concludes the paper by presenting some remarks and future works.

2. Preliminaries

Here, several concepts of fuzzy sets, soft sets and rough sets are briefly reviewed. Please refer
to [1,2,4,7] for details.

An advantageous framework has been offered by fuzzy set theory [1] to handle vague concepts
through the allowance for partial memberships. Let U be the universe set. Define a fuzzy set µ on U
by its membership function µ : U → [0, 1]. µ(x) indicates the degree to which x belongs to the fuzzy
set µ for all x ∈ U. In what follows, we denote the family of all subsets of U by P(U) and the family of
all fuzzy sets on U by F(U). The operations of fuzzy sets can be found in [1].

Molodtsov [4] introduced the concept of soft set. Let U be the universe set and E the set consisted
of all parameters that is related to U. Hence, a soft set is defined as below:

Definition 1. A pair (F, A) is called a soft set over U, where A ⊆ E and F is a mapping given by F : A →
P(U) [4].

The soft set is characterized by a parameter set and a function defined on the parameter set.
For every parameter e ∈ A, F(e) is said to be the e-approximate elements and, correspondingly, the
soft set can be viewed as a parameterized family of subsets of U.

A soft set (F, A) is called a full soft set if ∪e∈AF(e) = U [12]; Ñ(U,A) = (N, A) is called a relative
null soft set (with respect to the parameter set A), if N(e) = ∅ for all e ∈ A; W̃(U,B) = (W, B) is called
a relative whole soft set (with respect to the parameter set B) if W(e) = U for all e ∈ B [25]. Maji et al.
in [7] introduced the concept of fuzzy soft set.

Definition 2. Let (U, E) be a soft space. A pair (F, A) is called a fuzzy soft set over U, where A ⊆ E and F is
a mapping defined as F : A→ F(U) [7].

The fuzzy soft set is also characterized by a parameter set and a function on the parameter set,
whereas a fuzzy set on U takes place of a crisp subset of U corresponds to each parameter. It follows
that, to a certain degree, a soft set can also be viewed as a special kind of fuzzy soft set.

Pawlak introduced rough set theory in [2], the application of which is based on a structure called
information system.

Definition 3. An information system is a pair I = (U, A) of non-empty finite sets U and A, where U is a set
of objects and A is a set of attributes; each attribute a ∈ A is a function a : U → Va , where Va is the set of all
values (called domain) of attribute a [3].

Soft sets and information systems are closely related [13,26,27]. S = (F, A) is assumed to be a soft
set over U and IS = (U, A) an information system induced by S. For any attribute a ∈ A, a function
a : U → Va = {0, 1} is defined by a(x) = 1 if x ∈ F(a); or else a(x) = 0. In this way, every soft
set could be viewed as an information system. In what follows, IS is called the information system
induced by soft set S.

By contrast, suppose the information system, I = (U, A). It uses a parameter set as

B = {(a, va); a ∈ A ∧ va ∈ Va},

and it follows that through setting F(a, va) = {x ∈ U; a(x) = va} for each a ∈ A and va ∈ Va, a soft set
(F, B) can be defined, which is the soft set induced by I.
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Let U be the universe of discourse and R be an equivalence relation on U. (U, R) is called Pawlak
approximation space. For each X ⊆ U, the upper approximation R(X) and lower approximation R(X)

of X with respect to (U, R) are defined as [2]:

R(X) = {x ∈ U; [x]R ∩ X 6= ∅}, (1)

R(X) = {x ∈ U; [x]R ⊆ X}. (2)

X is so-called definable in (U, R) if R(X) = R(X), or else X is a rough set. Thus, in rough set
theory, a rough concept is characterized by a couple of exact concepts, namely, its lower approximation
and upper approximation. PosR(X) = R(X) and NegR(X) = U − R(X) are the R-positive region
and R-negative region of X, respectively. Furthermore, BndR(X) = R(X) − R(X) is called the
R-boundary region.

Up to now, various types of extension models of the Pawlak rough set have been proposed to
enrich the theory and to meet different application demands [28,29]. In [12], by the combination of soft
set, rough set and fuzzy set theory, soft rough sets and soft rough fuzzy sets were introduced. To make
them easy to be distinguished from other models mentioned in the current work and also to facilitate
the discussion, these two notions are called F-soft rough sets and F-soft rough fuzzy sets.

Definition 4. Let S = ( f , A) be a soft set over U. P = (U, S) is called a soft approximation space.
Two operations can be defined based on P as follows [12]:

apr
P
(X) = {u ∈ U; ∃a ∈ A(u ∈ f (a) ⊆ X)}, (3)

aprP(X) = {u ∈ U; ∃a ∈ A(u ∈ f (a), f (a) ∩ X 6= ∅)}. (4)

For all X ⊆ U, apr
P
(X) and aprP(X) are respectively called the F-lower and F-upper soft rough approximations

of X in S. X is F-soft definable in P if apr
P
(X) = aprP(X), or else X is a F-soft rough set.

It is noted that we can present apr
P
(X) and aprP(X) in a more concise manner [13]:

apr
P
(X) = ∪{ f (a); a ∈ A ∧ f (a) ⊆ X}, (5)

aprP(X) = ∪{ f (a); a ∈ A ∧ f (a) ∩ X 6= ∅}. (6)

In this definition, the soft set S is regarded as the elementary knowledge on the universe. F-lower
and F-upper soft rough approximation operators are not dual to each other, that is, apr

P
(Xc) =

(aprP(X))c usually does not hold, where the complement of set X is computed by Xc = U − X. If the
condition ∪a∈A f (a) = U holds in a soft set S = ( f , A) over U, this soft set is a full soft set [12]. In this
case, { f (a); a ∈ A} comes into being a cover of the universe U. It is pointed out that apr

P
, aprP and

covering rough approximations [30] are closely related but fundamentally different [13]. Additionally,
if { f (a); a ∈ A} forms a partition of U, we will call S = ( f , A) a partition soft set [13,31].

It is pointed out by Shabir et al. [16] that ∃ x ∈ U s.t. x ∈ NegP(X) = U − aprP(X) for all X ⊆ U,
if S = ( f , A) is not a full soft set. In other words, x /∈ aprP(X) for all X ⊆ U. Thus, X ⊆ aprP(X) and
some basic properties of rough set do not hold in general. Based on these observations, modified soft
rough sets (MSR sets) was defined as follows.

Definition 5. Let ( f , A) be a soft set over U and ϕ : U → P(A) be a map defined as
ϕ(x) = {a ∈ A; x ∈ f (a)}. Then, (U, ϕ) is called MSR-approximation space and for any X ⊆ U, its lower
MSR approximation Xϕ and upper MSR approximation Xϕ are defined as [16]:

Xϕ = {x ∈ U; ∀y ∈ Xc(ϕ(x) 6= ϕ(y))}, (7)
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Xϕ = {x ∈ U; ∃y ∈ X(ϕ(x) = ϕ(y)). (8)

X is MSR definable if the condition Xϕ = Xϕ holds, or else X is a MSR set.

Mathematically speaking, (U, ϕ) can be looked upon a soft set over A. In [32], (U, ϕ) was
considered as a pseudo soft set that is induced by ( f , A), afterwards a decision-making method related
to pseudo soft set was provided.

3. Relationships among Several Soft Rough Sets

3.1. Relationships between F-Soft Rough Approximations and MSR Approximations

The notion of MSR set is the modification of a F-soft rough set, and some inherent connections
between these two models should exist, which have not drawn enough attention from scholars
yet. In this subsection, a theoretical analysis of F-soft rough sets and MSR sets will be provided,
and some connections between F-soft rough approximations and MSR approximations will be
pointed out.

It is noted that Ref. [16] apr
P
(X) ⊆ Xϕ for any X ⊆ U and the containment may be proper.

Furthermore, in general, Xϕ ⊆ aprP(X) or aprP(X) ⊆ Xϕ does not hold. Now, we provide an example:

Example 1. Let A = {a, b, c, d} be a parameter set and U = {x1, x2, x3, x4, x5, x6} the universe. Suppose that
S = ( f , A) is a soft set over U, in which F(a) = {x1, x6}, F(b) = {x3}, F(c) = ∅, F(d) = {x1, x2, x5}.

(1) By the definition, aprP(U) = ∪a∈A f (a) = {x1, x2, x3, x5, x6}. It follows that x4 /∈ aprP(U) and
hence x4 /∈ aprP(X) for any X ⊆ U.

(2) Let X = {x3, x4, x5}. By direct computation, we know that aprP(X) = {x1, x2, x3, x5},
Xϕ = {x2, x3, x4, x5}. Thus, aprP(X) ⊆ Xϕ, or Xϕ ⊆ aprP(X) does not hold.

However, only a shallow impression can be obtained noticing the above-mentioned conclusions
in [16], and no details have been provided discussing the properties of and connections among
aprP(X), Xϕ, apr

P
(X) and Xϕ. The questions still remain: is there any possibility Xϕ ⊆ aprP(X) or

aprP(X) ⊆ Xϕ that holds? Which features will be requested if these conditions need to be established?
Now, we will pay attention to these questions and provide answers.

A general assumption for Theorems 1–3 and Corollaries 1 and 2 is presented as below:
Let S = ( f , A) be a soft set over U and P = (U, S) a soft approximation space.

Theorem 1. S is a full soft set iff Xϕ ⊆ aprP(X) for any X ⊆ U.

Proof. (⇒). It is assumed that S is a full soft set and X ⊆ U. For all x ∈ Xϕ, ∃ y ∈ X s.t. ϕ(x) = ϕ(y).
By y ∈ U = ∪a∈A f (a), ∃ a ∈ A s.t. y ∈ f (a). Then, y ∈ X ∩ f (a) and X ∩ f (a) 6= ∅. By y ∈ f (a) we
obtain a ∈ ϕ(y) = ϕ(x) and hence x ∈ f (a). Consequently, x ∈ aprP(X). Thus, Xϕ ⊆ aprP(X).

(⇐). Suppose that, for all X ⊆ U, the condition Xϕ ⊆ aprP(X) holds. It can be observed that
x ∈ {x}ϕ ⊆ aprP({x}) = ∪{ f (a); f (a) ∩ {x} 6= ∅} = ∪{ f (a); x ∈ f (a)}, for any x in U.

Thus, ∃ a ∈ A s.t. x ∈ f (a). S is a full soft set by the arbitrary of x.

Theorem 2. aprP(X) ⊆ Xϕ for any X ⊆ U iff for any a, b ∈ A, f (a) ∩ f (b) = ∅ whenever f (a) 6= f (b).

Proof. (⇐). Assume that for any a, b ∈ A, f (a) ∩ f (b) = ∅ whenever f (a) 6= f (b). Let X ⊆ U.
For any x ∈ aprP(X), attribute a ∈ A exists s.t. x ∈ f (a) and f (a) ∩ X 6= ∅. Thus, we know that there
exists y ∈ U s.t. y ∈ f (a) ∩ X. For any b ∈ A, if f (a) 6= f (b), then f (a) ∩ f (b) = ∅ and hence x /∈ f (b)
by x ∈ f (a). Thus, ϕ(x) = {b ∈ A; f (b) = f (a)}. Similarly, we have ϕ(y) = {b ∈ A; f (b) = f (a)} and
hence ϕ(x) = ϕ(y). By y ∈ X, we know that x ∈ Xϕ and consequently aprP(X) ⊆ Xϕ.
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(⇒). Assume that aprP(X) ⊆ Xϕ for any X ⊆ U. For any a, b ∈ A, if f (a) ∩ f (b) 6= ∅, ∃ x ∈ U
s.t. x ∈ f (a) ∩ f (b). By x ∈ f (a), we conclude that

f (a) ⊆ ∪{ f (c); x ∈ f (c)} = ∪{ f (c); {x} ∩ f (c) 6= ∅} = aprP({x})
⊆ {x}ϕ = {y ∈ U; ϕ(y) = ϕ(x)}.

Meanwhile, if ϕ(y) = ϕ(x), then a ∈ ϕ(x) = ϕ(y) and hence y ∈ f (a). Therefore,
f (a) = {y ∈ U; ϕ(y) = ϕ(x)}. Similarly, by x ∈ f (b), we have f (b) = {y ∈ U; ϕ(y) = ϕ(x)} and
hence f (a) = f (b).

Theorems 1 and 2 shows that ∃ containment relationships between Xϕ and aprP(X) if some
specific conditions hold. Based on these two theorems, we can have a clear idea about under which
conditions the containment relationships can be held. Furthermore, by Theorems 1 and 2, we obtain

Corollary 1. Let f (e) 6= ∅ for each e ∈ A. S is a partition soft set iff aprP(X) = Xϕ for any X ⊆ U.

Corollary 2. S is a full soft set iff X ⊆ aprP(X) for any X ⊆ U.

Proof. It is assumed that S is a full soft set. For all X ⊆ U, it is obvious that X ⊆ Xϕ ⊆ aprP(X)

by Theorem 1. On the contrary, assume that X ⊆ aprP(X) for any X ⊆ U. For each x ∈ U,

x ∈ {x} ⊆ aprP({x}) = ∪{ f (a); f (a) ∩ {x} 6= ∅} = ∪{ f (a); x ∈ f (a)}.

Thus, ∃ a ∈ A s.t. x ∈ f (a). Consequently, S is a full soft set as required.

Theorem 3. Xϕ ⊆ apr
P
(X) for any X ⊆ U iff for any x ∈ U, ∃ a ∈ A s.t. f (a) = {y ∈ U; ϕ(y) = ϕ(x)}.

Proof. (⇒). Suppose that Xϕ ⊆ apr
P
(X) for all X ⊆ U. For any x ∈ U, let X = {y ∈ U; ϕ(y) = ϕ(x)}.

It follows that

Xϕ = {u ∈ U; ∃y ∈ X(ϕ(u) = ϕ(y))} = {u ∈ U; ϕ(u) = ϕ(x)} = X.

By x ∈ X and Xϕ ⊆ apr
P
(X), then x ∈ apr

P
(X) and hence ∃ a ∈ A s.t. x ∈ f (a) and f (a) ⊆ X.

On the other hand, for any y ∈ X, we have ϕ(y) = ϕ(x), therefore a ∈ ϕ(x) = ϕ(y). Then,
y ∈ f (a) and hence X ⊆ f (a). Thus, f (a) = X = {y ∈ U; ϕ(y) = ϕ(x)}.

(⇐). Assume that X ⊆ U and x ∈ Xϕ. For each y ∈ U, if ϕ(x) = ϕ(y), we have y ∈ X by x ∈ Xϕ.
It follows that {y ∈ U; ϕ(y) = ϕ(x)} ⊆ X and ∃ a ∈ A such that f (a) = {y ∈ U; ϕ(y) = ϕ(x)}.
Thus, x ∈ f (a) and f (a) ⊆ X. It follows that x ∈ apr

P
(X) and consequently Xϕ ⊆ apr

P
(X).

By Theorem 3, we obtain a clear mind about the necessary conditions for Xϕ ⊆ apr
P
(X)

to be held, which has not been discussed in other literature yet. The connections between
F-soft rough approximations and MSR approximations have been discussed in detail through the
theorems presented above.

Keeping in mind that all of the theoretical research should serve practical applications. It is
noted that F-soft rough sets and MSR sets group decision-making approaches have been put forward
in [20,31], respectively. Based on the analysis about the connections of F-soft rough approximations
and MSR approximations, the relationships between decision schemes by using these two different
hybrid models could be further discussed in the future, and the decision results obtained by the two
decision schemes may have some inherent relationship.
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3.2. The Relationships between MSR Approximations and Pawlak’s Rough Approximations

After the notion of MSR sets was put forward, it was applied to different circumstances to cope
with practical problems. However, since there is systematic research on its relationship with Pawlak’s
rough sets up to now, the rationality of MSR sets may be questioned by scholars from a theoretical
point of view.

Let S = ( f , A) be a soft set. S induces an information system IS = (U, A). According to
Pawlak [2], A determines an indiscernibility relation RS on U given by

RS = {(x, y) ∈ U ×U; ∀a ∈ A(a(x) = a(y))}. (9)

Clearly, (U, RS) is a Pawlak approximation space. The equivalence class determined by the equivalence
relation RS that contains x is denoted by [x]RS . What is the relationship between Pawlak’s rough
approximations in (U, RS) and F-soft rough approximations (MSR approximations) induced by soft
set S? This section offers the discussion of this problem.

Theorem 4. Let S = ( f , A) be a partition soft set over U and P = (U, S) a soft approximation space. Define an
equivalence relation R on U by

R = {(x, y) ∈ U ×U; ∃a ∈ A({x, y} ⊆ f (a)}. (10)

Then, for all X ⊆ U, apr
P
(X) = R(X) and aprP(X) = R(X) [13,31].

Theorem 5. Let S = ( f , A) be a partition soft set over U and IS = (U, A) the information system induced by
soft set S = ( f , A). Then, RS = R, where R is determined by Equation (10).

Proof. Let x, y ∈ U and (x, y) ∈ R. By the definition, ∃ a ∈ A s.t. {x, y} ⊆ f (a). It follows
that a(x) = 1 = a(y). For any b ∈ A − {a}, if f (b) = f (a), then {x, y} ⊆ f (a) = f (b) and
hence b(x) = 1 = b(y); if f (b) 6= f (a), then f (b) ∩ f (a) = ∅ and hence x /∈ f (b), y /∈ f (b).
Then, b(x) = 0 = b(y). Thus, c(x) = c(y) for each c ∈ A. Consequently, (x, y) ∈ RS.

Conversely, let x, y ∈ U and (x, y) ∈ RS. By x ∈ U = ∪a∈A f (a), ∃ a ∈ A s.t. x ∈ f (a). It follows
that a(y) = a(x) = 1 and hence y ∈ f (a). Consequently, {x, y} ⊆ f (a) and thus (x, y) ∈ R.

By Theorems 4 and 5, in cases when a partition soft set is used as the underlying soft set, F-soft
rough sets in (U, S) could be identified with Pawlak’s rough sets in (U, RS). For MSR sets, we have
the following results.

Theorem 6. Let S = (F, A) be a soft set over U and IS = (U, A) be the information system induced by soft
set S = (F, A).

(1) For any x ∈ U, [x]RS = {y ∈ U; ϕ(x) = ϕ(y)}.
(2) For any X ⊆ U, Xϕ = RS(X).
(3) For any X ⊆ U, Xϕ = RS(X).

Proof. (1) Let x, y ∈ U and y ∈ [x]RS . Then, a(x) = a(y) for each a ∈ A. For any b ∈ ϕ(x), we have
x ∈ f (b) and hence b(x) = 1. We can observe that b(y) = b(x) = 1 and y ∈ f (b). Thus, b ∈ ϕ(y) and
hence ϕ(x) ⊆ ϕ(y). Similarly, we have ϕ(y) ⊆ ϕ(x) and consequently ϕ(x) = ϕ(y).

On the contrary, suppose that ϕ(x) = ϕ(y). For any a ∈ A, if a(x) = 1, then x ∈ f (a) and hence
a ∈ ϕ(x) = ϕ(y). Thus, y ∈ f (a) and a(y) = 1; if a(x) = 0, then x /∈ f (a) and hence a /∈ ϕ(x) = ϕ(y).
Thus, y /∈ f (a) and a(y) = 0. Then, a(x) = a(y) for any a ∈ A and hence y ∈ [x]RS .

(2) Let X ⊆ U and x ∈ Xϕ. For any y ∈ [x]RS , we have ϕ(x) = ϕ(y) by (1). By x ∈ Xϕ, we have
ϕ(x) 6= ϕ(z) whenever z ∈ Xc. Thus, y ∈ X by ϕ(x) = ϕ(y). Then, [x]RS ⊆ X and hence x ∈ RS(X).
We conclude that Xϕ ⊆ RS(X).
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On the contrary, assume that x ∈ RS(X). It follows that [x]RS ⊆ X. For any y ∈ Xc, we have
y /∈ X and hence y /∈ [x]RS . Thus, ϕ(x) 6= ϕ(y) by (1). Consequently, x ∈ Xϕ and hence RS(X) ⊆ Xϕ.

(3) Let X ⊆ U and x ∈ Xϕ. It follows that ∃ y ∈ X s.t. ϕ(x) = ϕ(y). Thus, y ∈ [x]RS .
Consequently, [x]RS ∩ X 6= ∅ and hence x ∈ RS(X).

Conversely, suppose that x ∈ RS(X). Thus, [x]RS ∩ X 6= ∅. It follows that there exists y ∈ X s.t.
y ∈ [x]RS . Consequently, ϕ(x) = ϕ(y) and hence x ∈ Xϕ.

Theorem 6 shows that MSR approximation operator is a kind of Pawlak rough approximation
operator. The two mathematic models that correspond with these approximation operators have been
interconnected by this theorem, which could be regarded as a theoretical proof for the rationality of
MSR sets. Benefitting from the notion of MSR set, Zhan et al. provided the definition of Z-soft rough
fuzzy set in a recent work [17] .

Definition 6. Let ( f , A) be a soft set over U and (U, ϕ) the MSR approximation space. For any fuzzy set
µ ∈ F(U), the Z-lower and Z-upper soft rough approximations of µ are denoted by µ

ϕ
and µϕ, respectively,

which are fuzzy sets on U given by [17]:

µ
ϕ
(x) = ∧{µ(y); y ∈ U ∧ ϕ(x) = ϕ(y)}, (11)

µϕ(x) = ∨{µ(y); y ∈ U ∧ ϕ(x) = ϕ(y)}, (12)

for each x ∈ U, and the operators µ
ϕ

and µϕ are the Z-lower and Z-upper soft rough approximation operators
on a fuzzy set, respectively. Specifically, if µ

ϕ
= µϕ, µ is a Z-soft definable; or else µ is a Z-soft rough fuzzy set.

By Theorem 6 (1), the following corollary could easily be achieved:

Corollary 3. Let S = (F, A) be a soft set over U and IS = (U, A) the information system induced by soft set
S = (F, A). Then,

(1) µ
ϕ
(x) = ∧{µ(y); y ∈ [x]RS}, and

(2) µϕ(x) = ∨{µ(y); y ∈ [x]RS}

for any µ ∈ F(U), x ∈ U.

By Corollary 3, Z-lower and Z-upper soft rough approximation operators are equivalent to
Dubois and Prade’s lower and upper rough fuzzy approximation operators in [6]. Benefitting from
this corollary, the researchers may refer to both of the theories’ aspects and the applications of rough
fuzzy sets to better study the development of Z-soft rough sets. Furthermore, the utilization of
rough set theory in decision system has been extensively studied during the past few decades.
Through discussing the connections between F-soft rough set and and Pawlak rough set, as well
as the connections between MSR approximation operators and Pawlak rough approximation operators,
the exploitation of various soft rough sets models in decision-making may be studied in a more logic
and systematic way in the future.

3.3. The Relationships among Several Soft Rough Fuzzy Sets

A soft rough fuzzy set can be viewed as an extension model of a soft rough set, where the
approximations of a fuzzy set in a soft approximation space are characterized. There are several
distinct soft rough fuzzy set models in the literature. In the current part, the connections between soft
rough fuzzy set and rough fuzzy set will be discussed, as well as the relationships among several soft
rough fuzzy sets.

Soft rough approximation operators on fuzzy sets were initially proposed by Feng et al. in [12].
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Definition 7. Let S = ( f , A) be a full soft set over U and P = (U, S) a soft approximation space. The lower
and upper soft rough approximations of a fuzzy set, µ ∈ F(U), with respect to P are noted as sap

P
(µ) and

sapP(µ), respectively, which are defined by [12]:

sap
P
(µ)(x) = ∧{µ(y); ∃a ∈ A({x, y} ⊆ f (a))}, (13)

sapP(µ)(x) = ∨{µ(y); ∃a ∈ A({x, y} ⊆ f (a))}, (14)

for all x ∈ U. The operators sap
P

and sapP are the F-lower and F-upper soft rough approximation operators on
fuzzy sets. If sap

P
(µ) = sapP(µ), µ is said to be F-soft definable, or else µ is called a F-soft rough fuzzy set.

Note that sap
P

and sapP are dual to each other, i.e., sapP(µ
c) = (sap

P
(µ))c for every µ ∈ F(U).

It has already been figured out that rough fuzzy sets in Pawlak approximation space (U, R) can be
identified with F-soft rough fuzzy sets in soft approximation space (U, S) when the underlying soft set
S is a partition soft set [13].

Meng et al. [14] noted that sapP is a generalization of aprP, i.e., sapP(X) = aprP(X) if X ∈ P(U).
On the contrary, sap

P
is a not a generalization of apr

P
. Considering this issue, Meng et al. presented

another soft rough fuzzy set model in [14].

Definition 8. Let S = ( f , A) be a full soft set over U and P = (U, S) a soft approximation space. The lower
soft rough approximation sap

′
P
(µ) and upper soft rough approximation sap

′
P(µ) of the fuzzy set µ ∈ F(U) are

fuzzy sets in U defined as [14]:
sap

′
P
(µ)(x) = ∨x∈ f (a) ∧y∈ f (a) µ(y), (15)

sap
′
P(µ)(x) = ∧x∈ f (a) ∨y∈, f (a) µ(y) (16)

for all x ∈ U. µ is called soft definable if the condition sap
′
P
(µ) = sap

′
P(µ) holds; or else µ is a soft rough fuzzy

set. For avoiding confusion with other soft rough fuzzy set models, it will be called M-soft rough fuzzy set in the
following parts.

It is proved that [14] sap
′
P

and sap
′
P are dual to each other, and sap

′
P

is a generalization of apr
P

,

i.e., sap
′
P
(X) = apr

P
(X) for any X ⊆ U.

Theorem 7. Let S = ( f , A) be a partition soft set over U, P = (U, S) a soft approximation space, and (U, R)
a Pawlak approximation space, where R is given by Equation (10). For each µ ∈ F(U), sap

′
P
(µ) = R(µ) and

sap
′
P(µ) = R(µ).

Proof. Assume that µ ∈ F(U) and x ∈ U. For each y ∈ [x]R, ∃ a ∈ A s.t. {x, y} ⊆ f (a). Suppose that
b ∈ A and x ∈ f (b). We note that ( f , A) is a partition soft set. By x ∈ f (a) ∩ f (b), it follows that
f (a) ∩ f (b) 6= ∅ and hence f (a) = f (b). Hence,

sap
′
P
(µ)(x) = ∨x∈ f (a) ∧z∈ f (a) µ(z) = ∧z∈ f (a)µ(z) ≤ µ(y).

Consequently, sap
′
P
(µ)(x) ≤ ∧{µ(y); y ∈ [x]R} = R(µ)(x).

Conversely, suppose that x ∈ f (a). For each y ∈ f (a), since {x, y} ⊆ f (a), we get y ∈ [x]R.

µ(y) ≥ ∧{µ(z); z ∈ [x]R} = R(µ)(x),

hence ∧y∈ f (a)µ(y) ≥ R(µ)(x). Consequently,

sap
′
P
(µ)(x) = ∨x∈ f (a) ∧z∈ f (a) µ(z) ≥ R(µ)(x),
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and sap
′
P(µ) = R(µ) can be proved similarly.

By this theorem, the (classical) rough fuzzy sets in Pawlak approximation space (U, R) and M-soft
rough fuzzy sets in soft approximation space (U, S) are equivalent when the underlying soft set S
is a partition soft set. It is shown by Corollary 3 that Z-soft rough fuzzy sets could be regarded as a
kind of rough fuzzy set, which indicates that there also exist some fantastic relationships between
these two distinct models. The following theorem demonstrates the correlation between Z-soft rough
approximation operators and M-soft rough approximation operators.

Theorem 8. Let S = ( f , A) be a full soft set over U, P = (U, S) a soft approximation space and µ ∈ F(U):

(1) sap
′
P
(µ) ⊆ µ

ϕ
,

(2) µϕ ⊆ sap
′
P(µ).

Proof. (1) Let x ∈ U, a ∈ A, x ∈ f (a). For any y ∈ U, if y ∈ [x]R, then ϕ(x) = ϕ(y).
It follows that a ∈ ϕ(x) = ϕ(y) and hence y ∈ f (a). Then, [x]R ⊆ f (a) and hence
∧y∈ f (a)µ(y) ≤ ∧{µ(y); y ∈ [x]R} = µ

ϕ
(x). Consequently, we conclude that

sap
′
P
(µ)(x) = ∨x∈ f (a) ∧y∈ f (a) µ(y) ≤ µ

ϕ
(x)

and hence sap
′
P
(µ) ⊆ µ

ϕ
.

(2) Let x ∈ U, a ∈ A and x ∈ f (a). By (1), we have [x]R ⊆ f (a) and hence
µϕ(x) = ∨{µ(y); y ∈ [x]R} ≤ ∨y∈ f (a)µ(y). It follows that

µϕ(x) ≤ ∧x∈ f (a) ∨y∈ f (a) µ(y) = sap
′
P(µ)(x)

and hence µϕ ⊆ sap
′
P(µ).

It is noted that F-soft rough approximation operators apr
P
(µ), aprP(µ) can be expressed

equivalently as [15]:

sap
P
(µ)(x) = ∧{µ(y); ∃a ∈ A({x, y} ⊆ f (a))} = ∧x∈ f (a) ∧y∈ f (a) µ(y),

sapP(µ)(x) = ∨{µ(y); ∃a ∈ A({x, y} ⊆ f (a))} = ∨x∈ f (a) ∨y∈ f (a) µ(y).

Therefore, we have the following corollary:

Corollary 4. Let S = ( f , A) be a full soft set over U and P = (U, S) a soft approximation space. For any
µ ∈ F(U),

sap
P
(µ) ⊆ sap

′
P
(µ) ⊆ µ

ϕ
⊆ µ ⊆ µϕ ⊆ sap

′
P(µ) ⊆ sapP(µ).

Meng et al. [14] presented a kind of soft fuzzy approximation space, where a fuzzy soft set is
regarded as the elementary knowledge on the universe and used to granulate the universe.

Definition 9. Let F = ( f , A) be a fuzzy soft set over U. The pair SF = (U,F ) is called a soft fuzzy
approximation space. For a fuzzy set µ ∈ F(U), the lower and upper soft fuzzy rough approximations of µ with
respect to SF are denoted by Apr

SF
(µ) and AprSF(µ), respectively, which are given by [14]:

Apr
SF
(µ)(x) = ∧a∈A((1− f (a)(x)) ∨ (∧y∈U((1− f (a)(y)) ∨ µ(y)))), (17)

AprSF(µ)(x) = ∨a∈A( f (a)(x) ∧ (∨y∈U( f (a)(y) ∧ µ(y)))), (18)
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for all x ∈ U. The operators Apr
SF

and AprSF are called the lower and upper soft fuzzy rough approximation
operators on fuzzy sets.

It is proved that [14] Apr
SF

and AprSF are extensions of sap
SF

and sapSF,

respectively, i.e., if F = ( f , A) is a soft set, then Apr
SF
(µ) = sap

SF
(µ) and AprSF(µ) = sapSF(µ) for

any µ ∈ F(U).

Theorem 9. Suppose that F = ( f , A) is a fuzzy soft set over U and SF = (U,F ). Let RF be the fuzzy
relation on U given by RF (x, y) = ∨a∈A( f (a)(x) ∧ f (a)(y)). For each µ ∈ F(U),

(1) Apr
SF
(µ) = RF (µ),

(2) AprSF(µ) = RF (µ).

By this theorem, the soft fuzzy rough approximation presented in Definition 9 is a kind of Dubois
and Prade’s fuzzy rough approximation in [6]. We note that RF (x, y) describes a kind of similarity
between x and y, and RF is symmetric but RF (x, x) 6= 1 in general.

The utilization of Z-soft rough fuzzy set in decision-making has already been studied in [17].
Through discussing the connections among different soft rough fuzzy set models, we can further
explore the applications of the other two kinds of soft rough fuzzy sets models in decision-making,
enrich the decision mechanisms and pay attention to the selection of the most suitable mechanism
according to environments. The soft fuzzy rough approximation operators on fuzzy sets proposed by
Meng et al. [14] have the potential to be utilized to handle decision-making problems, discussion on the
connections between which and fuzzy rough approximation operators confirm the rationality of this
model from the theoretical perspective and lays the foundation for subsequent practical applications.

4. F-Soft Rough Sets and Modal-Style Operators in FCA

FCA [22,33,34] provides a methodology for knowledge description and summarization. In this
section, several absorbing connections between F-soft rough sets and modal-style operators in FCA
will be discussed. Formal concept analysis is carried out based on a formal context specifying which
objects posses what properties or attributes. A formal concept is formulated as a pair of two sets, one is
consists of objects and another consists of properties or attributes, and these two sets are connected
by two set-theoretic operators. A complete lattice called concept lattice is constituted by the set of all
formal concepts, which reflects the correlation of generalization and specialization for formal concepts.

Definition 10. A formal context (G, M, I) consists of two sets G and M and a relation I between G and M.
The elements of G are called the objects and the elements of M are called the attributes of the context. (g, m) ∈ I
indicate that the object g has the attribute m, or the attribute m is possessed by the object g [33].

Let (G, M, I) be a formal context. For A ⊆ G, B ⊆ M, Duntsch and Gediga [6] defined a pair of
modal-style operators4,5 as follows:

A4 = {m ∈ M; ∃g ∈ A((g, m) ∈ I)}, (19)

A5 = {m ∈ M; ∀g ∈ G((g, m) ∈ I → g ∈ A)}, (20)

B4 = {g ∈ G; ∃m ∈ B((g, m) ∈ I)}, (21)

B5 = {g ∈ G; ∀m ∈ M((g, m) ∈ I → m ∈ B)}. (22)

Recently, the granular computing based concept lattice theory has received much attention [35].
Rough set theory, soft set theory and concept lattices have similar basis data description.

Mathematically speaking, the notions of soft set and formal context are equivalent. Furthermore, both a
formal context and a soft set can be considered as a two-valued information system.
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Theorem 10. Let S = (F, A) be a soft set over U. A formal context CS = (U, A, IS) is induced by S, where IS
is provided as

IS = {(x, a) ∈ U × A; x ∈ F(a)}.

Conversely, let C = (U, A, I) be a formal context. A set-valued mapping FC : A→ P(U) is defined by

FC(a) = {x ∈ U; (x, a) ∈ I}

for all a ∈ A, and SC = (FC, A) is a soft set. Moreover, we have SCS = S and CSC = C.

Proof. Only the proof for SCS = S and CSC = C will be provided here. Suppose that S = (F, A) is a
soft set over U and a ∈ A. For any x ∈ U, from the definition, we obtain that

x ∈ FCS(a)⇔ (x, a) ∈ IS ⇔ x ∈ F(a).

That is, FCS(a) = F(a) for all a ∈ A. Thus, FCS = F, whence SCS = S.
Next, assume that C = (U, A, I) is a formal context, x ∈ U and a ∈ A. Then, by definition,

(x, a) ∈ ISC ⇔ x ∈ FC(a)⇔ (x, a) ∈ I.

Therefore, we conclude that CSC = C as required.

Theorem 11 shows the relationship among operators4,5 and soft rough approximation operators.

Theorem 11. Let S = (F, A) be a soft set over U. For any X ⊆ U, apr
P
(X) = X54, aprP(X) = X44.

Proof. (1) For any x ∈ apr
P
(X), ∃ a ∈ A s.t. x ∈ f (a) ⊆ X. Then, x ∈ a4 and a4 ⊆ X.

Therefore, a ∈ X5 and consequently x ∈ a4 ⊆ X54. We conclude that apr
P
(X) ⊆ X54.

Conversely, if x ∈ X54, then ∃ a ∈ X5 s.t. x ∈ a4. Then, x ∈ f (a) and f (a) ⊆ X.
Thus, x ∈ { f (c); f (c) ⊆ X} = apr

P
(X) and hence X54 ⊆ apr

P
(X).

(2) For any x ∈ aprP(X), ∃ a ∈ A satisfying x ∈ f (a) and f (a) ∩ X 6= ∅. It follows that x ∈ a4

and a4 ∩ X 6= ∅. Thus, a ∈ X4 and consequently x ∈ a4 ⊆ X44.
Conversely, ∃ a ∈ X4 s.t. x ∈ a4 if x ∈ X44. Then, x ∈ f (a) and f (a) ∩ X 6= ∅. Consequently,

x ∈ { f (c); f (c) ∩ X 6= ∅} = aprP(X).

FCA has become increasingly popular among various methods of conceptual data analysis,
knowledge representation and decision-making. Depth study on the connections of soft rough sets
theory and FCA contributes to the reference and fusion for decision-making approaches in these two
different fields.

5. A New Generalization of F-Soft Rough Set: Soft Rough Soft Sets

In this section, by extending the notion of F-soft rough set, a new generalization model called soft
rough soft set will be proposed. In this new model, we use a soft set is as the elementary knowledge
to compute the approximations of soft set. In this way, parameterized tools can be used to the
greatest extent. Some basic properties of the new proposed model are discussed. A multi-group
decision-making approach based on soft rough soft sets has been provided.

Definition 11. Let U be the universe set and A, A1 be parameter sets. Let S1 = ( f1, A1) be a full soft set
over U and (U,S1) be a soft approximation space. Let S = ( f , A) be a soft set over U. The lower and upper
soft rough approximations of S in (U,S1) are denoted by sapr

S1
(S) = ( fS1 , A) and saprS1

(S) = ( f S1 , A),
which are soft sets over U defined by:
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fS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ f (e)]},
f S1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′), f1(e′) ∩ f (e) 6= ∅]},

for all e ∈ A. sapr
S1

, saprS1
are the lower and the upper soft rough approximation operators on soft set S ,

respectively. If sapr
S1
(S) = saprS1

(S), the soft set S is soft definable, or else S is so-called a soft rough soft set.

Example 2. Suppose that the universe set U = {x1, x2, x3, x4, x5, x6} and the parameters set
E = {e1, e2, e3, e4, e5, e6, e7}. Let A = {e1, e2, e3, e4} ⊆ E and A1 = {e3, e4, e5, e6, e7} ⊆ E. Let S1 = ( f1, A1)

be a full soft set and S = ( f , A) be a soft set over U as shown by Tables 1 and 2, respectively. In the soft
approximation space (U,S1), by Definition 11, we get the lower soft rough approximation sapr

S1
(S) = ( fS1 , A)

and the upper soft rough approximation saprS1
(S) = ( f S1 , A) of soft set S = ( f , A), as shown by

Tables 3 and 4, respectively. In order to facilitate the readers to understand, Figure 1 is given to show the
process of computing fS1(e4) and f S1(e4) from f (e4).

Table 1. Soft set ( f1, A1).

A
U x1 x2 x3 x4 x5 x6

e3 1 0 0 0 0 1
e4 0 1 1 0 0 0
e5 0 0 0 0 0 0
e6 0 0 0 0 1 0
e7 0 0 0 1 1 1

Table 2. Soft set ( f , A).

A
U x1 x2 x3 x4 x5 x6

e1 1 1 0 1 0 1
e2 0 1 1 0 0 0
e3 0 0 0 1 1 1
e4 1 1 1 1 0 1

Table 3. Soft set ( fS1 , A).

A
U x1 x2 x3 x4 x5 x6

e1 1 0 0 0 0 1
e2 0 1 1 0 0 0
e3 0 0 0 1 1 1
e4 1 1 1 0 0 1

Table 4. Soft set ( f S1 , A).

A
U x1 x2 x3 x4 x5 x6

e1 1 1 1 1 1 1
e2 0 1 1 0 0 1
e3 1 0 0 1 1 1
e4 1 1 1 1 1 1
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=
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=

Figure 1. The process of computing fS1 (e4) and f S1 (e4) from f (e4) in Example 2.

Proposition 1. Let S1 = ( f1, A1) be a full soft set over U and (U,S1) be a soft approximation space.
Let S = ( f , A) be a soft set over U. The following properties hold:

(1) sapr
S1
(S) ⊆ S ⊆ saprS1

(S),
(2) sapr

S1
(Ñ(U,A)) = Ñ(U,A) = saprS1

(Ñ(U,A)),
(3) saprS1

(W̃(U,A)) = W̃(U,A) = sapr
S1
(W̃(U,A)).

Proof. The lower and upper soft rough approximations of Ñ(U,A) = (N, A) in (U,S1) are denoted
by sapr

S1
(Ñ(U,A)) = (NS1 , A) and saprS1

(Ñ(U,A)) = (NS1 , A); the lower and upper soft rough

approximations of W̃(U,A) = (W, A) in (U,S1) are denoted by sapr
S1
(W̃(U,A)) = (WS1 , A) and

saprS1
(W̃(U,A)) = (WS1 , A).

(1a) For all x ∈ U, e ∈ A, if x ∈ fS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ f (e)]}, then we obtain
x ∈ f (e), so fS1(e) ⊆ f (e);

(1b) For all e ∈ A, if x ∈ f (e), since ( f1, A1) is a full soft set, we obtain that ∃e′ ∈ A1, s.t. x ∈ f1(e′),
then x ∈ f1(e′) ∩ f (e) 6= ∅, then x ∈ {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′), f1(e′) ∩ f (e) 6= ∅]}, that is,
x ∈ f S1(e) and f (e) ⊆ f S1(e) for all e ∈ A.

Hence, we know that fS1(e) ⊆ f (e) ⊆ f S1(e) for all e ∈ A, that is, sapr
S1
(S) ⊆ S ⊆ saprS1

(S).
(2a) By the definition of relative null soft set, we know N(e) = ∅ for all e ∈ A. For all e ∈ A, we

have NS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ N(e)]} = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ ∅]} = ∅ =

N(e), that is, sapr
S1
(Ñ(U,A)) = Ñ(U,A);

(2b) By the definition of relative null soft set, we know N(e) = ∅ for all e ∈ A. For all e ∈
A, we have NS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′), f1(e′) ∩ N(e) 6= ∅]} = ∅ = N(e), that is,
saprS1

(Ñ(U,A)) = Ñ(U,A).
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(3a) By the definition of relative whole soft set, we know W(e) = U for all e ∈ A. For all
e ∈ A, we have WS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′), f1(e′) ∩W(e) 6= ∅]} = U = W(e), that is,
saprS1

(W̃(U,A)) = W̃(U,A).
(3b) By the definition of relative whole soft set, we know W(e) = U for all e ∈ A. Since ( f1, A1) is

a full soft set over U, for all e ∈ A, we have WS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ W(e)]} = {x ∈
U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ U]} = U = W(e), that is, sapr

S1
(W̃(U,A)) = W̃(U,A).

Proposition 2. Suppose that S1 = ( f1, A1) is a full soft set over U and (U,S1) is a soft approximation space.
Let S = ( f , A), T = (g, A) be two soft sets over U. The following properties hold:

(1) S ⊆ T ⇒ sapr
S1
(S) ⊆ sapr

S1
(T ),

(2) S ⊆ T ⇒ saprS1
(S) ⊆ saprS1

(T ),
(3) sapr

S1
(S ∩ T ) ⊆ sapr

S1
(S) ∩ sapr

S1
(T ),

(4) sapr
S1
(S ∪ T ) ⊇ sapr

S1
(S) ∪ sapr

S1
(T ),

(5) saprS1
(S ∪ T ) ⊇ saprS1

(S) ∪ saprS1
(T ),

(6) saprS1
(S ∩ T ) ⊆ saprS1

(S) ∩ saprS1
(T ).

Proof. The lower and upper soft rough approximations of S in (U,S1) are denoted by
sapr

S1
(S) = ( fS1 , A) and saprS1

(S) = ( f S1 , A); the lower and upper soft rough approximations of T
in (U,S1) are denoted by sapr

S1
(T ) = (gS1 , A) and saprS1

(T ) = (gS1 , A).

(1) If S ⊆ T , then for all e ∈ A, we have f (e) ⊆ g(e). Assume that x ∈ fS1(e) = {x ∈ U : ∃e′ ∈
A1[x ∈ f1(e′) ⊆ f (e)]}. From f (e) ⊆ g(e), we obtain x ∈ {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ g(e)]} =
gS1(e). Therefore, we get fS1(e) ⊆ gS1(e) for all e ∈ A, i.e., sapr

S1
(S) ⊆ sapr

S1
(T );

(2) If S ⊆ T , then for all e ∈ A, we have f (e) ⊆ g(e). Assume that x ∈ f S1(e) =

{x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′), f1(e′) ∩ f (e) 6= ∅]}, from f (e) ⊆ g(e), we obtain ∃e′ ∈ A1, s.t.
x ∈ f1(e′), f1(e′) ∩ g(e) 6= ∅, so x ∈ gS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′), f1(e′) ∩ g(e) 6= ∅]},
it follows that f S1(e) ⊆ gS1(e) for all e ∈ A, i.e., saprS1

(S) ⊆ saprS1
(T );

(3) It is obvious that S ∩ T ⊆ S and S ∩ T ⊆ T . From property (1), we obtain sapr
S1
(S ∩ T ) ⊆

sapr
S1
(S) and sapr

S1
(S ∩ T ) ⊆ sapr

S1
(T ). Thus, sapr

S1
(S ∩ T ) ⊆ sapr

S1
(S) ∩ sapr

S1
(T ).

(4) It is obvious that S ∪ T ⊇ S and S ∪ T ⊇ T . From property (1), we obtain sapr
S1
(S ∪ T ) ⊇

sapr
S1
(S) and sapr

S1
(S ∪ T ) ⊇ sapr

S1
(T ). Thus, sapr

S1
(S ∪ T ) ⊇ sapr

S1
(S) ∪ sapr

S1
(T ).

(5) It is obvious that S ∪ T ⊇ S and S ∪ T ⊇ T . From property (2), we obtain saprS1
(S ∪ T ) ⊇

saprS1
(S) and saprS1

(S ∪ T ) ⊇ saprS1
(T ). Thus, saprS1

(S ∪ T ) ⊇ saprS1
(S) ∪ saprS1

(T ).
(6) It is obvious that S ∩ T ⊆ S and S ∩ T ⊆ T . From property (2), we obtain saprS1

(S ∩ T ) ⊆
saprS1

(S) and saprS1
(S ∩ T ) ⊆ saprS1

(T ). Thus, saprS1
(S ∩ T ) ⊆ saprS1

(S) ∩ saprS1
(T ).

Proposition 3. Let S1 = ( f1, A1) be a full soft set over U and (U,S1) be a soft approximation space.
Let S = ( f , A) be a soft set over U. The following properties hold:

(1) sapr
S1
(S) ⊆ sapr

S1
(saprS1

(S)),
(2) saprS1

(S) ⊇ saprS1
(sapr

S1
(S)).

Proof. From property (1) in Proposition 1, it is obvious that sapr
S1
(S) ⊆ S ⊆ saprS1

(S). From property

(1) and (2) in Proposition 2, we get sapr
S1
(S) ⊆ sapr

S1
(saprS1

(S)) and saprS1
(S) ⊇ saprS1

(sapr
S1
(S)),

respectively.

In [12], a group decision-making approach based on F-soft rough sets was proposed; however,
if we carefully check their decision scheme, it is not hard to find that they actually use the tool of a
soft rough soft set since the best alternatives provided by each specialist gather together to form a soft
set and they compute the upper and lower soft rough approximations (soft sets) on the preliminary
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evaluation soft set during the decision process. That is, although the concept has not been formally
proposed, the application of soft rough soft sets has already appeared in literature. From another
perspective, the decision-making problem that can be solved by F-soft rough sets in [12] can also be
solved by using soft rough soft sets. It is necessary to propose the concept for soft rough soft sets as
well as its application to introduce parameter tools to the universe description, that is, make it feasible
to describe objects in the universe from different aspects at the same time, information obtained from
different aspects be able to be handled as a whole before the approximations of a soft set are computed,
and allow the flexibility to make operations such as the restricted intersection “∩” [25] on soft sets
whose soft rough approximations need to be computed; in this way, soft rough soft sets have the
potential to be applied in more complex decision-making situations to meet demands of applications in
real life cases. As follows, we provide a simple application of soft rough soft sets in decision-making.

Let G = {T1, T2, ..., Tp} and A1 = {e′1, e′2, ..., e′q} be two groups of specialists to evaluate all the
candidates U = {x1, x2, ..., xm}. In group G, each specialist is asked to point out if the candidates
satisfy benefit properties in A = {e1, e2, ..., en} or not. In this way, a serious of evaluations provided
by specialists are obtained as (g1, A), (g2, A), (g3, A), . . . , (gp, A). Afterwards, the evaluation
made by group G could be obtained by S = ( f , A) = (g1, A) ∩ (g2, A) ∩ (g3, A) ∩ . . . (gp, A).
Meanwhile, in another group A1 = {e′1, e′2, ..., e′q}, the specialists are under time pressure, and a lack of
patience, or, because of some other issues, each specialist only points out the best alternatives; however,
we have no clear idea about which properties are under their consideration. The best alternatives
chosen by specialists in group A1 form another soft set S1 = ( f1, A1). We say the assessments provided
by group G are more reliable since the assessments provided by them are more specific than group
A1. However, in order to make full use of information provided by the two independent groups,
we can compute the lower soft rough approximation on ( f , A) in soft approximation space (U, S1).
If xi ∈ fS1(ej), from the axiomatic definition of soft rough soft sets, we know that the best alternatives of
one or more specialists in A1 are totally contained in f (ej), that is, the best alternatives chosen by some
specialists in A1 certainly occupy property ej, which indicates that this benefit property ej considered
by group G may also be very important to group A1. The final decision is to select the alternative that
occupies the most number of beneficial properties that may be important for both groups.

The steps of this soft rough soft sets based multi-group decision-making approach can be listed as:
Step 1. Input the evaluations on alternatives U = {x1, x2, ..., xm} provided by specialists group

G = {T1, T2, ..., Tp} as (g1, A), (g2, A), (g3, A), . . . , (gp, A).
Step 2. Input the best alternatives selected by specialists group A1 as S1 = ( f1, A1).
Step 3. Compute the group evaluation made by the specialists in G as S = ( f , A) = (g1, A) ∩

(g2, A) ∩ (g3, A) ∩ . . . (gp, A).
Step 4. Compute the lower soft rough approximation of ( f , A) in (U, S1), i.e. ( fS1 , A).
Step 5. Compute the score of alternatives of each xj (j = 1, 2, . . . , m) as s(xj) = ∑n

i=1 fS1(ei)(xj),
and the decision result is xk if it satisfies s(xk) = maxj=1,2,...,m s(xj).

Example 3. Suppose that a factory needs to purchase the best machine from U = {x1, x2, ..., x6} according to
evaluations provided by two specialists groups G and A1, which form a multi-group decision-making problem.
G = {T1, T2, T3, T4} consists of four specialists and each of them provides assessments on machines in U
with respect to beneficial properties A = {e1 = low price, e2 = high endurance, e3 = advanced technology,
e4 = good compatibility}. Each specialist in G points out if the machines satisfy properties in A or not.
In this way, a serious of evaluation soft sets provided by specialists are obtained as (g1, A), (g2, A), (g3, A),
(g4, A) (see Tables 5–8 as their tabular representations) and the group evaluation of G can be computed by
( f , A) = (g1, A) ∩ (g2, A) ∩ (g3, A) ∩ (g4, A) (see also Table 2 as the tabular representation for ( f , A)).
Meanwhile, each specialist in another specialist group A1 = {e′3, e′4, e′5, e′6, e′7} only points out the best machines
according to his/her own cognition, which form soft set ( f1, A1) (replace e′3 − e′7 by e3 − e7 and see also Table 1
for its tabular representation). The lower soft rough approximation of ( f , A) in (U, S1) can be easily computed
as ( fS1 , A) (see also Table 3 for its tabular representation). It is easy to obtain that s(x1) = s(x2) = s(x3) = 2,
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s(x4) = s(x5) = 1 and s(x6) = 3, hence x6 should be the machine purchased by the factory since it satisfies
largest number of beneficial properties that are important to two groups.

Table 5. Soft set (g1, A).

A
U x1 x2 x3 x4 x5 x6

e1 1 1 1 1 0 1
e2 0 1 1 0 0 0
e3 0 0 0 1 1 1
e4 1 1 1 1 0 1

Table 6. Soft set (g2, A).

A
U x1 x2 x3 x4 x5 x6

e1 1 1 0 1 0 1
e2 1 1 1 0 0 0
e3 0 0 0 1 1 1
e4 1 1 1 1 0 1

Table 7. Soft set (g3, A).

A
U x1 x2 x3 x4 x5 x6

e1 1 1 0 1 0 1
e2 0 1 1 0 0 0
e3 1 0 0 1 1 1
e4 1 1 1 1 0 1

Table 8. Soft set (g4, A).

A
U x1 x2 x3 x4 x5 x6

e1 1 1 0 1 0 1
e2 0 1 1 0 0 0
e3 0 0 1 1 1 1
e4 1 1 1 1 0 1

As is mentioned at the beginning of this section, soft rough soft set is an extension model of F-soft
rough set. Sometimes, in a practical situation, the universe set that needs to be granulated is presented
from different attributes’ aspects simultaneously. In other words, the parameter tools are necessary not
only for the knowledge presentation, but also for the universe description. The new model provides
a framework for dealing with these kinds of problems and the exploration of its potential use in
decision-making is promising. Compared to F-soft rough sets, soft rough soft sets introduce parameter
tools to the universe description and a soft set (instead of a subset of the universe) is approximated.
Compared to rough soft set [12], a soft set instead of an equivalence relation has been adopted in
soft rough soft sets to compute the approximations of soft sets [36,37]. In this section, only a small
application attempt of soft rough soft sets in decision-making has been provided, which is far from
enough to meet various demands in real life situations. More flexible and effective approaches need to
be developed in the future.

6. Conclusions

This paper has presented a comparative study of some existing soft rough set models, and new
discoveries on the relationships among various hybrid sets have been summarized in Table 9. It has
been shown that the Z-soft rough fuzzy set is a kind of rough fuzzy set. Therefore, decision-making



74 4.2. A comparative study of some soft rough sets

Symmetry 2017, 9, 252 18 of 20

approaches based on rough fuzzy sets have the potential to be addicted to more specific situations in
which Z-soft rough fuzzy sets should be applied to solve the problem. Various soft rough set models
have shown great potential in coping with decision-making problems. Some potential applications of
connections among various soft rough set models in decision-making have been briefly discussed in
the current work. For instance, benefitting from the connections between F-soft rough approximations
and MSR approximations that have been discussed, it is possible to further study the relationships
between the decision results made by using soft rough sets and MSR sets. In future works, deeper and
more specific research on the applications of these connections in decision-making will be conducted.

Table 9. Summary on relationships among various hybrid models.

Various Hybrid Models Relationships

F-soft rough approximations and modified soft Xϕ ⊆ aprP(X), aprP(X) ⊆ Xϕ, Xϕ ⊆ apr
P
(X),

rough approximations (MSR approximations) if some specific conditions hold, respectively
(see Theorems 1–3)

F-soft rough sets in (U, S) and Pawlak’s rough sets F-soft rough sets in (U, S) could be identified
in (U, RS) with Pawlak’s rough sets in (U, RS), when the

underlying soft set is a partition soft set
(see Theorems 4 and 5)

MSR approximations and Pawlak’s MSR approximation operator is a kind of
rough approximations Pawlak rough approximation operator

(see Theorem 6)

Z-lower, Z-upper soft rough approximation operators Z-lower and Z-upper soft rough approximation
and Dubois and Prade’s lower and upper rough fuzzy operators are equivalent to Dubois and Prade’s
approximation operators in [6] lower and upper rough fuzzy approximation

operators in [6] (see Corollary 3)

The (classical) rough fuzzy sets and M-soft rough The (classical) rough fuzzy sets in Pawlak
fuzzy sets approximation space (U, R) and M-soft rough

fuzzy sets in soft approximation space (U, S)
are equivalent when the underlying soft
set S is a partition soft set (see Theorem 7)

Z-soft rough approximation operators and M-soft sap
P
(µ) ⊆ sap

′

P
(µ) ⊆ µ

ϕ
⊆ µ ⊆ µϕ ⊆ sap

′
P(µ)

Rough approximation operators and F-soft rough ⊆ sapP(µ) (see Theorem 8 and Corollary 4)
approximation operators

The soft fuzzy rough approximation in Definition 9 The soft fuzzy rough approximation is a kind of
and Dubois and Prade’s fuzzy rough approximation Dubois and Prade’s fuzzy rough approximation
in [6] in [6] (see Theorem 9)

F-soft rough set and soft rough soft set Soft rough soft set is an extension of F-soft
rough set

Acknowledgments: This work has been supported by the National Natural Science Foundation of China
(Grant Nos. 61473239, 61372187, and 61673320) and the Spanish National Research Project TIN2015-66524-P.

Author Contributions: All authors have contributed equally to this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353.
2. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356.
3. Pawlak, Z.; Skowron, A. Rudiments of rough sets. Inf. Sci. 2007, 177, 3–27.
4. Molodtsov, D. Soft set theory-First results. Comput. Math. Appl. 1999, 37, 19–31.



4. Publications 75

Symmetry 2017, 9, 252 19 of 20

5. Jiang, Y.; Tang, Y.; Chen, Q.; Liu, H.; Tang, J. Interval-valued intuitionistic fuzzy soft sets and their properties.
Comput. Math. Appl. 2010, 60, 906–918.

6. Dubois, D.; Prade, H. Rough fuzzy set and fuzzy rough sets. Int. J. Gen. Syst. 1990, 17, 191–209.
7. Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602.
8. Maji, P.K.; Roy, A.R.; Biswas, R. On intuitionistic fuzzy soft sets. J. Fuzzy Math. 2004, 12, 669–683.
9. Liu, Y.; Luo, J.; Wang, B.; Qin, K.Y. A theoretical development on the entropy of interval-valued intuitionistic

fuzzy soft sets based on the distance measure. Int. J. Comput. Intell. Syst. 2017, 10, 569–592.
10. Xu, W.; Ma, J.; Wang, S.; Hao, G. Vague soft sets and their properties. Comput. Math. Appl. 2010, 59, 787–794.
11. Qin, K.Y.; Meng, D.; Pei, Z.; Xun, Y. Combination of interval set and soft set. Int. J. Comput. Intell. Syst. 2013,

2, 370–380.
12. Feng, F.; Li, C.X.; Davvaz, B.; Ali, M.I. Soft sets combined with fuzzy sets and rough sets: A tentative

approach. Soft Comput. 2010, 14, 899–911.
13. Feng, F.; Liu, X.; Leoreanu-Fotea, V.; Jun,Y.B. Soft sets and soft rough sets. Inf. Sci. 2011, 181, 1125–1137.
14. Meng, D.; Zhang, X.H.; Qin, K.Y. Soft rough fuzzy sets and soft fuzzy rough sets. Comput. Math. Appl. 2011,

62, 4635–4645.
15. Qin, K.Y.; Thereforeng, Z.M.; Xu, Y. Soft rough sets based on similarity measures. In Rough Sets and Knowledge

Technology; RSKT 2012; Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J.W., Janicki, R., Hassanien, A.-E.,
Yu, H., Eds.; Springer: Berlin, Germany, 2012; pp. 40–48.

16. Shabir, M.; Ali, M.I.; Shaheen, T. Another approach to soft rough sets. Knowl.-Based Syst. 2013, 40, 72–80.
17. Zhan, J.; Zhu, K. A novel soft rough fuzzy sets: Z-soft rough fuzzy ideals of hemirings and corresponding

decision-making. Soft Comput. 2017, 21, 1923–1936.
18. Alcantud, J.C.R.; Santos-Garcia, G. A New Criterion for Soft Set Based Decision Making Problems under

Incomplete Information. Int. J. Comput. Intell. Syst. 2017, 10, 394–404.
19. Alcantud, J.C.R.; Mathew, T.J. Separable fuzzy soft sets and decision-making with positive and negative

attributes. Appl. Soft Comput. 2017, 59, 586–595.
20. Zhan, J.; Liu, Q.; Herawan, T. A novel soft rough set: Soft rough hemirings and its multicriteria group

decision-making. Appl. Soft Comput. 2017, 54, 393–402.
21. Zhan, J.; Ali, M.I.; Mehmood, N. On a novel uncertain soft set model: Z-soft fuzzy rough set model and

corresponding decision making methods. Appl. Soft Comput. 2017, 56, 446–457.
22. Khalil, A.M.; Hassan, N. A novel approach to multi attribute group decision-making based on trapezoidal

interval type-2 fuzzy soft sets. Appl. Math. Model. 2016, 41, 684–690.
23. Zhang, G.; Li, Z.; Qin, B. A method for multi-attribute decision-making applying soft rough sets. J. Intell.

Fuzzy Syst. 2016, 30, 1803–1815.
24. Yu, G. An algorithm for multi-attribute decision-making based on soft rough sets. J. Comput. Anal. Appl.

2016, 20, 1248–1258.
25. Ali, M.I.; Feng, F.; Liu, X.Y.; Min, W.K.; Shabir, M. On some new operations in soft set theory. Comput. Math. Appl.

2009, 57, 1547–1553.
26. Pei, D.; Miao, D. From soft sets to information systems. In Proceedings of the 2005 IEEE International

Conference on Granular Computing, Beijing, China, 25–27 July 2005; pp. 617–621.
27. Ali, M.I. A note on soft sets, rough soft sets and fuzzy soft sets. Appl. Soft Comput. 2011, 11, 3329–3332.
28. Wu, W.Z.; Mi, J.S.; Zhang, W.X. Generalized fuzzy rough sets. Inf. Sci. 2003, 151, 263–282.
29. Yao, Y.Y. Relational interpretations of neighborhood operators and rough set approximation operators.

Inf. Sci. 1998, 111, 239–259.
30. Zhu, W. Relationship between generalized rough sets based on binary relation and covering. Inf. Sci. 2009,

179, 210–225.
31. Feng, F. Soft rough sets applied to multicriteria group decision-making. Ann. Fuzzy Math. Inf. 2011, 2, 69–80.
32. Sun, B.; Ma, W. Soft fuzzy rough sets and its application in decision-making. Artif. Intell. Rev. 2014, 41, 67–80.
33. Wille, R. Restructuring lattice theory: An approach based on hierarchies of concepts. In Ordered Sets;

Rival, I., Ed.; Springer: Dordrecht, The Netherlands; Reidel Dordrecht: Boston, MA, USA, 1982; pp. 445–470.
34. Benitez-Caballero, M.J.; Medina, J.; Ramirez-Poussa, E. Attribute Reduction in Rough Set Theory and Formal

Concept Analysis. In Rough Sets; IJCRS 2017; Polkowski, L., Yao, Y., Artiermjew, P., Ciucci, D., Liu, D.,
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1. Introduction

Most of the real-world problems are under uncertainty and inadequacy con-
texts which can not be handled with classical crisp mathematical models. The
demands for mathematic tools for dealing with uncertainty increases with the
rapid development of socio-economic environment. During the past few decades,
rough set theory (Pawlak (1982)), fuzzy set theory (Zadeh (1965)) and several
other models contribute to meet the demands for coping with uncertain situa-
tions, however, all of these theories suffer from a common limitation, that is,
incompatible with parameterization tools. To overcome this limitation, soft set
theory was initiated by Molodtsov (1999), which makes it possible to consider
objects in the universe from different parameter aspects.

To facilitate the applicability of soft set theory for dealing with uncertainty,
one simple and feasible approach is the combination with other mathematic
tools. For instance, fuzzy soft sets (Maji et al. (2001)), vague soft sets (Xu et al.
(2010)) and interval-valued intuitionistic fuzzy soft sets (Jiang et al. (2010)) are
some existing hybrid soft set models obtained in this way. Recently, the ap-
plication of hybrid soft set models in decision making (DM) have drawn atten-
tion from researchers, such as, Alcantud & Santos-Garcı́a (2017); Fatimah et al.
(2017a,b); Ma et al. (2016). Taking advantage of the parameterization tools of
soft set theory, during the process of decision making based on hybrid soft sets,
the evaluations/assessments on alternatives provided by decision makers could
be considered from different parameters aspects.

In real world situations, decision makers tend to provide linguistic informa-
tion rather than quantitative forms considering the qualitative aspects of prob-
lems. The modeling of linguistic information has been facilitated by fuzzy lin-
guistic approach (FLA) (Zadeh (1975a)) which represents qualitative terms by
linguistic variables. To effectively model linguistic information in situations
in which decision makers hesitate among different linguistic values for a lin-
guistic variable, hesitant fuzzy linguistic term set (HFLT S) was introduced by
Rodrı́guez et al. (2012). HFLT Ss could be flexibly applied in the computing with
words (CW) process (Rodrı́guez et al. (2016); Rodrı́guez & Martı́nez (2013)) by
means of their envelopes in form of linguistic intervals or fuzzy numbers (Liu &
Rodrı́guez (2014); Rodrı́guez et al. (2012)).

Up to present, we are only aware of one paper that combines linguistic vari-
ables and soft set theory, Sun et al. (2017) introduced the concept of linguistic
value soft set, in which the assessment on each alternative with respect to ev-
ery parameter was presented as a linguistic term (LT). However, the application
of single linguistic terms (LTs) constraints the elicitation of complex linguistic
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preferences in real life DM situations (Ma et al. (2007); Rodrı́guez et al. (2012);
Tanga & Zhengb (2006)). Various proposals have been proposed by researchers
for modeling complex linguistic preferences, such as, linguistic model based
on fuzzy relation introduced by Tanga & Zhengb (2006), proportional 2-tuple
linguistic model introduced by Wang & Hao (2006), and linguistic distribution
assessment introduced by Dong et al. (2013). Compared with all other exist-
ing models, comparative linguistic expressions (CLEs) proposed by Rodrı́guez
et al. (2012) are closer to cognition of human-being, easily generated by using
a context free grammar in a formal way, and convenient to be transformed into
HFLTSs for carrying out CW process. Subsequently, this research is focused on
further combination of fuzzy linguistic approach and soft set theory to propose a
novel model called hesitant linguistic expression soft set (HLE soft set), which
overcomes previous limitation of linguistic value soft set and fulfills require-
ments in real world DM problems for elicitation of complex linguistic informa-
tion in a human-being cognitive way by using CLEs modeled with HFLT Ss.

The remainder of the paper is structured as follows: soft set, HFLT S, and
related concepts are briefly reviewed in Section 2. In Section 3, it is proposed
HLE soft set together with some operations. Section 4 introduces a multi-criteria
DM approach based on HLE soft set. In Section 5, we present a novel group
decision making (GDM) approach based on HLE soft set as well as a consensus
model cooperates with this approach. Comparison between our GDM proposal
and other existing approaches is provided in Section 6. Conclusions are given in
Section 7.

2. preliminaries

In this section, we provide a brief review on soft set, FLA, HFLT S and other
related concepts which will be useful in the following sections.

2.1. Soft set theory
The concept of soft set theory was initiated by Molodtsov (1999) to overcome

the inadequacy of the parametrization tools of many widely used mathematic
tools for dealing with uncertainty.

Let U be the initial universe of objects and E be the set of parameters related
to objects in U . Both U and E are assumed to be nonempty finite sets. Let P(U)
be the power set of U and A⊆ E.

Definition 1. (Molodtsov (1999)) A pair (F,A) is called a soft set over the uni-
verse U, where F is a mapping given by

F : A−→ P(U).
3
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A soft set can be viewed as a parameterized family of subsets of the universe
U considering that F(e) can be viewed as the set of e−approximate elements of
the soft set (F,A) for parameter e ∈ A.

Null and absolute soft sets were defined by Maji et al. (2003): For (F,A), if
∀e ∈ A,F(e) = /0, it is a null soft set denoted by /0; if ∀e ∈ A,F(e) = U , it is an
absolute soft set denoted by Ã.

Soft set and its generalization models show great applicability in different
topics such as, data predicting (Liu et al. (2017)), rule mining (Feng et al. (2016)),
medical diagnosis (Muthukumar & Krishnan (2016)) and decision making (Zhan
et al. (2017a,b); Zhan & Zhu (2017)).

2.2. Fuzzy linguistic approach.
Fuzzy linguistic approach uses the fuzzy set theory to model linguistic in-

formation based on linguistic variable, that was described by Zadeh (1975a) as
“a variable whose values are not numbers but words or sentences in a natural or
artificial language” and formally defined as follows:

Definition 2. (Zadeh (1975b)) A linguistic variable is characterized by a quintu-
ple (H,T (H),U,G,M) in which H is the name of the variable; T (H) is the term
set of H, i.e., the set of names of linguistic values of H, with each value being a
fuzzy variable that is denoted by X and ranging across a universe of discourse U,
which is associated with the base variable u, G is a syntactic rule (which usually
takes the form of a grammar) for the generation of the names of values of H; and
M is the semantic rule for associating its meaning with each H, M(X), which is
a fuzzy subset of U.

Suitable descriptors for the terms as well as appropriate semantics are neces-
sary for dealing with linguistic variables. Linguistic descriptors could be selected
by using an ordered structure approach (Herrera et al. (2000); Yager (1995)), or
a context-free grammar approach: the linguistic term set is defined by a context-
free grammar G therefore the LTs are sentences generated by G (Bonissone
(1980); Bordogna & Pasi (1993); Zadeh (1975b)).

Accordingly, the semantics for terms can be defined based on the ordered
structure defined over the linguistic term set, or based on membership functions
and a semantic rule (Rodrı́guez et al. (2012)). Mixed semantics are also allowed.
Each linguistic term is assumed as a fuzzy number defined in [0,1], and the use of
parameters of the membership functions is effective to represent fuzzy numbers.
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2.3. Hesitant fuzzy linguistic term set.
Recently, a new linguistic model was provided in Rodrı́guez et al. (2012) to

improve the elicitation of CLEs by using HFLT S and a context-free grammar.

Definition 3. (Rodrı́guez et al. (2012)) Let S be a linguistic term set, and HFLT S
HS, is an ordered finite subset of consecutive linguistic terms of S.

The complement of HFLT S, HS, is defined as Hc
S = S−HS = {si/si ∈ S and si /∈

HS}.
The following context-free grammar GH was introduced by Rodrı́guez et al.

(2013) to generate CLEs closer to the cognition of human-being.

Definition 4. Let GH be a context-free grammar and S = {s0, . . . ,sg} be a lin-
guistic term set. The elements of GH = (VN ,VT , I,P) are defined as follows:
VN = {〈primary term〉,〈composite term〉,〈unary relation〉,〈binary relation〉,〈conjunction〉}.
VT = {at most,at least,between,and,s0, . . . ,sg}.
I ∈VN .
P = {I ::= 〈primary term〉|〈composite term〉
〈composite term〉 ::= 〈unary relation〉〈primary term〉|〈binary relation〉〈primary
term〉〈conjunction〉〈primary term〉
〈primary term〉 ::= s0|s1| . . . |sg
〈unary relation〉 ::= at most|at least
〈binary relation〉 ::= between
〈conjunction〉 ::= and}.
Definition 5. (Rodrı́guez et al. (2012)) A transformation function EGH from CLE,
ll to HFLT S, HS, where S is the linguistic term set used by EGH is defined as:

EGH : ll→ HS (1)

Based on EGH , CLEs generated by GH can be transformed into HFLT Ss in
different ways according to their meaning in the processes of CW:
EGH (si) = {si|si ∈ S},
EGH (at most si) = {s j|s j ≤ si and s j ∈ S},
EGH (at least si) = {s j|s j ≥ si and s j ∈ S},
EGH (between si and s j) = {sk|si ≤ sk ≤ s j and sk ∈ S}.

Direct operations on CLEs are hard to be carried out, one feasible approach
is to transform them into HFLT Ss by using EGH , afterwards perform the com-
putations based on representation models for HFLT Ss.

Envelope, as an important representation tool for HFLT Ss, was firstly pro-
posed in form of linguistic intervals by Rodrı́guez et al. (2012), after in form of
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trapezoidal fuzzy numbers (TFNs) by Liu & Rodrı́guez (2014). We will adopt
the latter in this work since it keeps the fuzzy characters of linguistic information
and follows the fuzzy linguistic approach. The fuzzy envelope FHS for a HFLT S
HS could be computed using the proposal in Liu & Rodrı́guez (2014) and its
parameterization could be FHS = T (a,b,c,d).

3. Hesitant linguistic expression soft set

The concept of hesitant linguistic expression soft set (HLE soft set) will be
introduced in this section by combining soft sets and CLEs. Operations on HLE
soft sets will also be discussed.

3.1. Definition of HLE soft sets
HLE soft set will be defined under the background of decision making. In

order to linguistically model the assessments provided by the decision makers,
we choose linguistic descriptors by providing terms directly and the semantics
for the LTs will be represented by fuzzy numbers defined in the interval [0,1].

Definition 6. Let U = {x1,x2, . . . ,xm} be the universe set and E = {e1,e2, . . . ,en}
be related parameters. Let S = {s0,s1, . . . ,sg} be a linguistic term set and P(U)
be the power set of all CLEs built from S for the universe U. A pair (Fcle,E) is
called a HLE soft set over U, where Fcle is a mapping from a parameter set E to
the power set of all CLEs built from S for U, i.e., Fcle : E→P(U).

A HLE soft set (Fcle,E) is a parameterized family of CLEs built from S for
the universe U . For any e j ∈ E, Fcle(e j) is the set of e j−approximation elements
of HLE soft set (Fcle,E). Fcle(e j)(xi) is a CLE that indicates to which degree
object xi ∈U satisfies parameter e j ∈ E.

The HLE soft matrix is defined as

Fcle = (Fcle(e j)(xi))m×n,

(i = 1,2, . . . ,m, j = 1,2, . . . ,n). Each HLE soft set corresponds to a HLE soft
matrix.

In the definition of HLE soft sets, CLEs are generated by using the context-
free grammar GH (Rodrı́guez et al. (2013)) based on S. The semantics for CLEs
can be computed as parametric trapezoidal membership functions using the ap-
proach in Liu & Rodrı́guez (2014) considering that TFNs are good enough to
capture the vagueness of linguistic assessments (Delgado et al. (1998a,b)). The
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descriptors for CLEs should be suitable to characterize the degree to which ob-
jects satisfy parameters. To achieve this goal, the first term in S should be a single
term that indicates an object does not satisfy a parameter at all (label “none” will
be used to represent this assessment in the current work) and the last term is a sin-
gle term that means an object absolutely satisfies a parameter (label “absolute”
will be adopted to represent this assessment in the current work). An example
of the linguistic term set S = {s0,s1, . . . ,sg} (g = 8) with its semantic is shown
by Fig.1, where the TFNs representations for LTs “none” and “absolute” are the
single terms T (0,0,0,0) and T (1,1,1,1), respectively.

None

Almost none Very low MediumLow High Very high Almost absolute

Absolute

0 0.17 0.33 0.5 0.67 0.83 1

Figure 1: A linguistic term set of nine terms with its semantic.

LTs are special CLEs, hence the concept of HLE soft set generalizes the
concept of linguistic value soft set proposed by Sun et al. (2017). If all CLEs
in a HLE soft set degenerate to LTs, the HLE soft set will degenerate to a lin-
guistic value soft set. In real world DM situations, decision makers might hesi-
tate among different LTs when they are under time pressure, lack of confidence,
knowledge or uncertain issues. The main limitation of linguistic value soft set
is that it fails to deal with these hesitant situations. HLE soft set overcomes
this limitation by allowing more flexible way in eliciting linguistic information,
therefore we say that the use of HLE soft set will be more practical.

A simple example for the definition of HLE soft set could be the presented:

Example 1. Suppose that U = {x1,x2,x3} is a set of houses, E = {e1 = convenient
traffic,e2 = low price,e3=good decoration,e4=nice environment,e5=large area}
is a set of parameters expected by Mr. Jonhson when he chooses a house from U.
An expert provides assessments on these houses by using CLEs built from a lin-
guistic term set S = {s0 : none(N),s1 : almost none (AN),s2 : very low (V L),s3 :
low (L),s4 :medium (M),s5 :high (H),s6 :very high (V H),s7 :almost absolute (AA),
s8 : absolute (A)} by using the context-free grammar GH . The CLEs assessments
for houses with respect to different parameters form a HLE soft set (Fcle,E) as
is shown in Table 1.
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Table 1: Tabular representation of a HLE soft set

U e1 e2 e3 e4 e5

x1 between V L and H between V L and H at most H at least M N
x2 at most L at most L at least V L at most H at least M
x3 between L and M between L and V H between L and V H between V L and H at most V L

In detail, by Def. 6, we obtain Fcle(e3) = {x1 : at most H,x2 : at least V L,x3 :
between L and V H}, which means that Fcle(e3)(x1)=at most H,Fcle(e3)(x2)=
at least V L,Fcle(e3)(x3)= between L and V H. Here, “Fcle(e3)(x1)= at most H”
indicates that the degree to which house x1 satisfies parameter “good decora-
tion” (e3) is “at most high”.

Some relavant definitions will also be provided:

Definition 7. Let U be a universe set, E be the set of parameters related to U
and A ⊆ E. Let a linguistic term set S = {s0,s1, · · · ,sg} in which the term s0 is
“none” and the term sg is “absolute”. For a HLE soft set (Fcle,A) over U, if

(i) for any e ∈ A, x ∈U, Fcle(e)(x) = none, we call (Fcle,A) a HLE null soft
set (with respect to A), denoted as ( /0cle,A); and

(ii) for any e ∈ A, x ∈ U, Fcle(e)(x) = absolute, we call (Fcle,A) a HLE
absolute soft set (with respect to A), denoted as (Icle,A).

The definition of HLE absolute (null) soft set is consistent with the defini-
tion of absolute (null) soft set introduced by Maji et al. (2003), absolute (null)
vague soft set introduced by Xu et al. (2010), and absolute (null) interval-valued
intuitionistic fuzzy soft set introduced by Jiang et al. (2010) to indicate that all
objects satisfy all parameters (any object does not satisfy any parameter at all).

3.2. Operations on HLE soft sets
A method to compute the fuzzy envelopes of HFLT Ss corresponds to CLEs

has been provided in Liu & Rodrı́guez (2014). However, LTs “none” and “ab-
solute” were not taken into consideration when fuzzy envelopes are computed
in Liu & Rodrı́guez (2014). To carry out operations on HLE soft set without
ambiguity, the scheme for computing fuzzy envelopes of HFLT Ss based on a
linguistic term set S has to be adjusted (A brief adjustment is given in Appendix
A).

Operations on HLE soft sets are defined on the basis of ranking of CLEs in
this work, therefore a ranking approach for CLEs based on ranking of the fuzzy
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envelopes for HFLTSs in form of TFNs will be introduced firstly. The ranking
approaches for TFNs are various, in the current work the one in Abbasbandy &
Hajjari (2009) will be adopted for ranking fuzzy envelopes of CLEs which is
based on a measure called “magnitude”, and the magnitude of a TFN u will be
denoted as Mag(u) (reviewed in Appendix B).

Definition 8. Let S be a linguistic term set, ll1, ll2 be two CLEs built from S
by using the context-free grammar GH , and EGH be the transformation function
from CLEs to HFLT Ss, we say
(1) ll1 < ll2 iff FH1

S
≺ FH2

S
; (2) ll1 > ll2 iff FH1

S
� FH2

S
; (3) ll1 = ll2 iff FH1

S
∼ FH2

S
,

where EGH (ll1) = H1
S , EGH (ll2) = H2

S are HFLT Ss on S, and FH1
S
, FH2

S
are their

fuzzy envelopes, respectively. Sequently, the order ll1 ≤ ll2, ll1 ≥ ll2 can be
formulated as:
(4) ll1 ≤ ll2 iff ll1 < ll2 or ll1 = ll2; (5) ll1 ≥ ll2 iff ll1 > ll2 or ll1 = ll2.
∧ and ∨ operators can be formulated as:

(6) ll1∧ ll2 = ll1 iff ll1 ≤ ll2; (7) ll1∨ ll2 = ll1 iff ll1 ≥ ll2.

Afterwards, the linguistic complement of CLEs built from S will be defined
considering their meaning.

Definition 9. Let S be a linguistic term set and ll be a CLE built from S =
{s0,s1, · · · ,sg} by using the context-free grammar GH . The linguistic comple-
ment of ll is denoted by llc and defined by

llc =





at least sg−i, for ll = at most si,∀si ∈ S;
at most sg−i, for ll = at least si,∀si ∈ S;
between sg− j and sg−i, for ll = between si and s j,∀si,s j ∈ S;
sg−i, f or ll = si,∀si ∈ S.

(2)

Afterwards, some operations on HLE soft sets will be defined.

Definition 10. Let U be a universe set and E be the set of parameters related to
U. Let P(U) be the power set of all CLEs built from S for the universe U. F, G
are two mappings from parameter set E to P(U). For any e ∈ E, we note

Fcle(e)⊆ Gcle(e) iff Fcle(e)(x)≤ Gcle(e)(x), ∀x ∈U.

Definition 11. Let U be a universe set and E be the set of parameters related
to U. Let (Fcle,A) and (Gcle,B) be two HLE soft sets over U, where A,B ⊆ E.
We say that (Fcle,A) is a HLE soft subset of (Gcle,B), denoted as (Fcle,A) ⊆
(Gcle,B), if

9
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(i) A⊆ B, and
(ii) for any e ∈ A, Fcle(e)⊆ Gcle(e).

Example 2. (Continued from Example 1) Suppose that A={e1=convenient traffic,
e2=low price}, B= {e1=convenient traffic, e2=lowprice,e3=good decoration}
are two parameter sets. (Fcle,A)and (Gcle,B) are two HLE soft sets.
Fcle(e1) = {x1 : between V L and H,x2 : at most L,x3 : between L and M};
Fcle(e2) = {x1 : between V L and H,x2 : at most L,x3 : between L and V H};
Gcle(e1) = {x1 : at least H,x2 : at most L,x3 : between L and V H};
Gcle(e2) = {x1 : between M and H,x2 : at least H,x3 : at least H};
Gcle(e3) = {x1 : at most H,x2 : at least L,x3 : between M and V H};
By using the transformation function EGH , we obtain HFLT Ss corresponds to
Fcle(e1) and Gcle(e1):
EGH (F

cle(e1)(x1)) = EGH (between V L and H) = {V L,L,M,H},
EGH (F

cle(e1)(x2)) = EGH (at most L) = {N,AN,V L,L},
EGH (F

cle(e1)(x3)) = EGH (between L and M) = {L,M},
EGH (G

cle(e1)(x1)) = EGH (at least H) = {H,V H,AA,A},
EGH (G

cle(e1)(x2)) = EGH (at most L) = {N,AN,V L,L},
EGH (G

cle(e1)(x3)) = EGH (between L and V H) = {L,M,H,V H}.
Denote the fuzzy envelope for EGH (F

cle(e j)(xi)) as Fi j and EGH (G
cle(e j)(xi)) as

Gi j, compute the fuzzy envelopes of the above HFLT Ss:
F11=T (0,0.27,0.57,0.83), F21=T (0,0,0.15,0.5), F31=T (0.17,0.33,0.50,0.67);
G11 = T (0.5,0.85,1,1), G21 = T (0,0,0.15,0.5), G31 = T (0.17,0.43,0.73,1);
The magnitudes for these fuzzy envelopes are listed:
Mag(F11)≈0.42, Mag(F21)≈0.10, Mag(F31)≈0.42,
Mag(G11)≈0.90, Mag(G21)≈0.10, Mag(G31)≈0.58.
Since Mag(F11)≤Mag(G11), Mag(F21)≤Mag(G21), Mag(F31)≤Mag(G31), we know
F11 � G11, F21 � G21, F31 � G31.
From Def. 8, we know Fcle(e1)(x1)≤ Gcle(e1)(x1), Fcle(e1)(x2)≤ Gcle(e1)(x2),
Fcle(e1)(x3)≤ Gcle(e1)(x3), then we obtain Fcle(e1)⊆ Gcle(e1) from Def. 10.
In a similar way, we can obtain Fcle(e2)⊆ Gcle(e2).
Obviously, A⊆ B, then (Fcle,A)⊆ (Gcle,B) can be obtained from Def. 11.

Definition 12. (Maji et al. (2003)) Let E = {e1,e2, . . . ,en} be a parameter set.
The not set of E denoted by ¬E is defined by ¬E = {¬e1,¬e2, . . . ,¬en} where
¬ei = not ei.

Definition 13. Let U be a universe set, E be the set of parameters related to
U, and A ⊆ E. The complement of HLE soft set (Fcle,A), can be denoted by
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(Fcle,A)c and defined by:

(Fcle,A)c = ((Fcle)c,¬A)

where ¬A ∈ ¬E, and (Fcle)c(¬e)(x) = (Fcle(e)(x))c,¬e ∈ ¬A,x ∈U.

Another kind of complement operation called “relative complement” of HLE
soft set is also provided:

Definition 14. Let U be a universe set, E be the set of parameters related to U,
and A ⊆ E. The relative complement of HLE soft set (Fcle,A), can be denoted
by (Fcle,A)′ and defined by:

(Fcle,A)′ = ((Fcle)′,A)

where (Fcle)′(e)(x) = (Fcle(e)(x))c,e ∈ A,x ∈U.

An example is provided to show the difference between Defs. 13 and 14.

Example 3. (Continued from Example 2) Let U = {x1,x2,x3} be the set of
houses, A = {e1=convenient traffic,e2 = low price} be the considered parame-
ters. Given a HLE soft set (Fcle,A).

The relative complement of (Fcle,A) is (Fcle,A)′ in which
(Fcle)′(e1) = {x1 : between L and V H,x2 : at least H,x3 : between M and H};
(Fcle)′(e2) = {x1 :between L and V H,x2 :at least H,x3 :between V L and H},
where “(Fcle)′(e1)(x2) = at least H” means the satisfactive degree of house x2
with respect to “convenient traffic” is “at least high”.

The complement of (Fcle,A) is (Fcle,A)c in which
(Fcle)c(¬e1) = {x1 : between L and V H,x2 : at least H,x3 : between M and H};
(Fcle)c(¬e2) = {x1 :between L and V H,x2 :at least H,x3 :between V L and H},
where “(Fcle)c(¬e1)(x2) = at least H” means the satisfactive degree of house x2
with respect to “not convenient traffic” is “at least high”.

Definition 15. Let U be a universe set and E be the set of parameters related to
U. For any two HLE soft sets (Fcle,A) and (Gcle,B) over U, where A,B⊆ E,

(i) The extended union of (Fcle,A) and (Gcle,B) is defined as

(Hcle,C) = (Fcle,A)∪̃(Gcle,B),

where C = A∪B and

Hcle(e)(x) =





Fcle(e)(x), for e ∈ A,e /∈ B;
Fcle(e)(x)∨Gcle(e)(x), for e ∈ A∩B;
Gcle(e)(x), for e /∈ A,e ∈ B,

(3)
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for all x ∈U.
(ii) The restricted intersection of (Fcle,A) and (Gcle,B) is defined as

(Hcle,C) = (Fcle,A)∩ (Gcle,B),

where C = A∩B and

Hcle(e)(x) = Fcle(e)(x)∧Gcle(e)(x) (4)

for all x ∈U, e ∈ A∩B.
(iii) The restricted union of (Fcle,A) and (Gcle,B) is defined as

(Hcle,C) = (Fcle,A)∪ (Gcle,B),

where C = A∩B and

Hcle(e)(x) = Fcle(e)(x)∨Gcle(e)(x) (5)

for all x ∈U, e ∈ A∩B.
(iv) The extended intersection of (Fcle,A) and (Gcle,B) is defined as

(Hcle,C) = (Fcle,A)∩̃(Gcle,B),

where C = A∪B and

Hcle(e)(x) =





Fcle(e)(x), f or e ∈ A,e /∈ B;
Fcle(e)(x)∧Gcle(e)(x), f or e ∈ A∩B;
Gcle(e)(x), f or e /∈ A,e ∈ B.

(6)

for all x ∈U.

In the following, some basic operation laws for HLE soft set are presented.

Proposition 1. Let U be a universe set and E be the set of parameters related
to U. Let (Fcle,A) be a HLE soft set defined on U, where A ⊆ E, the following
results hold.
(1) ((Fcle,A)c)c = (Fcle,A); (2) ((Fcle,A)′)′= (Fcle,A); (3) ( /0cle,A)′= (Icle,A).

Proposition 2. Let U be a universe set and E be the set of parameters related
to U. Let (Fcle,A),(Gcle,B) be HLE soft sets defined on U, where A,B⊆ E, the
following results hold.
(1) (Fcle,A)∪ ( /0cle,A) = (Fcle,A), (Fcle,A)∩ ( /0cle,A) = ( /0cle,A);
(2) (Fcle,A)∪ (Icle,A) = (Icle,A), (Fcle,A)∩ (Icle,A) = (Fcle,A);
(3) (Fcle,A)∪ (Fcle,A) = (Fcle,A), (Fcle,A)∩ (Fcle,A) = (Fcle,A);
(4) (Fcle,A)∩(Gcle,B)= (Gcle,B)∩(Fcle,A), (Fcle,A)∪(Gcle,B)= (Gcle,B)∪(Fcle,A).
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Proposition 3. Let U be a universe set and E be the set of parameters related to
U. Let (Fcle,A),(Gcle,A) be HLE soft sets defined on U, where A ⊆ E, the De
Morgan’s laws hold as follows.
(1) ((Fcle,A)∪ (Gcle,A))c = (Fcle,A)c∩ (Gcle,A)c,
(2) ((Fcle,A)∩ (Gcle,A))c = (Fcle,A)c∪ (Gcle,A)c.

Proof. We only provide the proof for (1), the proof for (2) can be obtained in a
similar way.

(1) From Defs. 13 and 15, (Fcle∪Gcle)c(¬e)(x) = ((Fcle∪Gcle)(e)(x))c =
(Fcle(e)(x)∨Gcle(e)(x))c for all ¬e ∈ ¬A, x ∈U . ((Fcle)c∩ (Gcle)c)(¬e)(x) =
(Fcle)c(¬e)(x)∧ (Gcle)c(¬e)(x) = (Fcle(e)(x))c∧ (Gcle(e)(x))c for all ¬e ∈ ¬A,
x ∈U . Since (Fcle(e)(x)∨Gcle(e)(x))c = (Fcle(e)(x))c∧ (Gcle(e)(x))c from the
definition of complement of CLE, we have ((Fcle,A)∪ (Gcle,A))c = (Fcle,A)c∩
(Gcle,A)c.

Remark 1. Properties (1)∗ and (2)∗ below do not hold unless A=B, considering
that ¬(A∩B) 6= ¬A∩¬B unless A = B.
(1)∗ ((Fcle,A)∪ (Gcle,B))c = (Fcle,A)c∩ (Gcle,B)c,
(2)∗ ((Fcle,A)∩ (Gcle,B))c = (Fcle,A)c∪ (Gcle,B)c.

Proposition 4. Let U be a universe set and E be the set of parameters related to
U. Let (Fcle,A),(Gcle,B) be HLE soft sets defined on U, where A,B⊆ E, the De
Morgan’s laws hold as follows.
(1) ((Fcle,A)∪ (Gcle,B))′ = (Fcle,A)′∩ (Gcle,B)′,
(2) ((Fcle,A)∩ (Gcle,B))′ = (Fcle,A)′∪ (Gcle,B)′.

Proof. We only provide the proof for (1), the proof for (2) can be obtained in a
similar way.

(1) From Defs. 14 and 15, it is easy to obtain that
(Fcle∪Gcle)′(e)(x)= ((Fcle∪Gcle)(e)(x))c =(Fcle(e)(x)∨Gcle(e)(x))c =(Fcle(e)
(x))c ∧ (Gcle(e)(x))c = (Fcle)′(e)(x)∧ (Gcle)′(e)(x) = ((Fcle)′ ∩ (Gcle)′)(e)(x)
for all e ∈ A∩B, x ∈U .

Proposition 5. Let U be a universe set and E be the set of parameters related
to U. Let (Fcle,A), (Gcle,B), (Hcle,C) be HLE soft sets defined on U, where
A,B,C ⊆ E, the following results hold.
(1) ((Fcle,A)∪ (Gcle,B))∪ (Hcle,C) = (Fcle,A)∪ ((Gcle,B)∪ (Hcle,C));
(2) ((Fcle,A)∩ (Gcle,B))∩ (Hcle,C) = (Fcle,A)∩ ((Gcle,B)∩ (Hcle,C));
(3) ((Fcle,A)∪ (Gcle,B))∩ (Hcle,C)=((Fcle,A)∩ (Hcle,C))∪ ((Gcle,B))∩ (Hcle,C));
(4) ((Fcle,A)∩ (Gcle,B))∪ (Hcle,C)=((Fcle,A)∪ (Hcle,C))∩ ((Gcle,B))∪ (Hcle,C)).

13
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Proof. (1) and (2) can be easily proved based on the definition of restricted union
and restricted intersection of HLE soft sets. We only provide the proof for (3),
the proof for (4) can be obtained in a similar way.

(3) From Def.15, it is easy to obtain that ((Fcle∪Gcle)∩Hcle)(e)(x)= (Fcle∪
Gcle)(e)(x)∧Hcle(e)(x)= (Fcle(e)(x))∨Gcle(e)(x))∧Hcle(e)(x)= (Fcle(e)(x)∧
Hcle(e)(x))∨(Gcle(e)(x)∧Hcle(e)(x))=(Fcle∩Hcle)(e)(x)∨(Gcle∩Hcle)(e)(x)
= ((Fcle∩Hcle)∪ (Gcle∩Hcle))(e)(x) for all e ∈ A∩B∩C, x ∈U .

4. A multi-criteria decision making approach based on HLE soft set

Exploration on DM approaches based on generalized soft set models shows
a huge development in recent years. However, most of these approaches fail to
deal with linguistic information. In this section, we will provide a DM algo-
rithm based on HLE soft set to deal with linguistic assessments on alternatives
by extending an approach based on fuzzy soft set in Alcantud (2016).

4.1. Decision making scheme
Let U = {x1,x2, . . . ,xm} be a universe of alternatives and E = {e1,e2, . . . ,en}

be the set of parameters closely related to U . The evaluation on every alternative
with respect to each parameter is presented by a CLE, in this way all assessments
form a HLE soft set. The goal is to select the optimal alternative according to
the linguistic information provided by a decision maker.

A multi-criteria DM algorithm based on HLE soft set can be presented as
below:

Algorithm 1

Step 1 Input a HLE soft set (Fcle,E) on m alternatives x1, x2, . . . , xm as an input
table whose cell (i, j) is Fcle(e j)(xi).

Step 2 For each cost criteria/parameter e j, replace column j by the result of ap-
plying linguistic complement (see Def. 9) of CLE in each cell. An uni-
formed HLE soft set could be presented as (Fcle

,E) with corresponding
cell (i, j) in tabular form as Fcle

(e j)(xi).

Step 3 Denote the fuzzy envelope of Fcle
(e j)(xi) by ui j. For each parameter e j,

let M j be the maximum magnitude value of fuzzy envelopes for HFLT Ss
corresponds to CLEs on all alternatives, i.e., M j = maxi=1,...,mMag(ui j)
for each j = 1, ...,n. Now we construct a comparison matrix A=(apq)m×m
where for any p, q, and let apq be the sum of the non-negative values in
the following finite sequence:
Mag(up1)−Mag(uq1)

M1
, Mag(up2)−Mag(uq2)

M2
, . . . , Mag(upn)−Mag(uqn)

Mn
.

14
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Step 4 For each i = 1, . . . ,m, compute Ri as the sum of the elements in row i of
comparison matrix A, and Ti as the sum of the elements in column i of A,
then compute the score of each alternative xi by Si = Ri−Ti.

Step 5 The decision is the alternative xk that maximizes the score, i.e., xk s.t.
Sk = maxi=1,...,mSi.

4.2. Illustrative example
An example is introduced to illustrate the application of Algorithm 1.
Suppose that a factory needs to purchase the best machine from U = {x1, . . . ,x6}

and parameters E={e1=high price,e2=long endurance,e3=advanced technology}
are under their consideration. Let a linguistic term set S = {s0 : none (N),s1 :
almost none (AN),s2 :very low (V L),s3 : low (L),s4 : medium (M),s5 : high (H),s6 :
very high (V H),s7 : almost absolute (AA),s8 : absolute(A)} (Fig. 1).

1) Input the initial HLE soft set.
The assessments form a HLE soft set (Table 2).

Table 2: Tabular representation of the initial HLE soft set

U e1 e2 e3

x1 at most L between L and M at most L
x2 at least H at most L M
x3 between V L and H between M and V H between M and V H
x4 H between L and V H at least H
x5 at least H between V L and H between B and V H
x6 between V L and H at most L between M and H

2) Normalize the decision information.
e1 is a cost criteria, e2 and e3 are benefit criteria, the normalized HLE soft set
is obtained (Table 3).

Table 3: Tabular representation of the normalized HLE soft set

U e1 e2 e3

x1 at least H between L and M at most L
x2 at most L at most L M
x3 between L and V H between M and V H between M and V H
x4 L between L and V H at least H
x5 at most L between V L and H between L and V H
x6 between L and V H at most L between M and H

15
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3) Compute the comparison matrix.
Transform CLEs in the normalized HLE soft set into HFLT Ss (Table 4), the
fuzzy envelopes of these HFLT Ss are computed (Table 5), as well as the
magnitudes of these fuzzy envelopes (Table 6).

Table 4: HFLT Ss generated from the CLEs

U e1 e2 e3

x1 {H,V H,AA,A} {L,M} {N,AN,V L,L}
x2 {N,AN,V L,L} {N,AN,V L,L} {M}
x3 {L,M,H,V H} {M,H,V H} {M,H,V H}
x4 {L} {L,M,H,V H} {H,V H,AA,A}
x5 {N,AN,V L,L} {V L,L,M,H} {L,M,H,V H}
x6 {L,M,H,V H} {N,AN,V L,L} {M,H}

Table 5: Fuzzy envelopes for the HFLT Ss

U e1 e2 e3

x1 T (0.5,0.85,1,1) T (0.17,0.33,0.50,0.67) T (0,0,0.15,0.5)
x2 T (0,0,0.15,0.5) T (0,0,0.15,0.5) T (0.33,0.5,0.5,0.67)
x3 T (0.17,0.43,0.73,1) T (0.33,0.64,0.70,1) T (0.33,0.64,0.70,1)
x4 T (0.17,0.33,0.33,0.5) T (0.17,0.43,0.73,1) T (0.5,0.85,1,1)
x5 T (0,0,0.15,0.5) T (0,0.27,0.57,0.83) T (0.17,0.43,0.73,1)
x6 T (0.17,0.43,0.73,1) T (0,0,0.15,0.5) T (0.33,0.5,0.67,0.83)

Table 6: Magnitudes of the fuzzy envelopes for the HFLT Ss

U e1 e2 e3

x1 0.896 0.416 0.104
x2 0.104 0.104 0.5
x3 0.581 0.669 0.669
x4 0.331 0.581 0.896
x5 0.104 0.419 0.581
x6 0.581 0.104 0.584

From M j = maxi=1,...,6Mag(ui j) for each j = 1,2,3, by Table 6, we obtain
16
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M1 = max(0.896,0.104,0.581,0.331,0.104,0.581) = 0.896,
M2 = max(0.416,0.104,0.669,0.581,0.419,0.104) = 0.669,
M3=max(0.104,0.5,0.669,0.896,0.581,0.584)=0.896,
Comparison matrix A is obtained as Eq. (7).

A =




0.000 1.350 0.352 0.631 0.884 0.818
0.442 0.000 0.000 0.000 0.000 0.000
1.009 1.566 0.000 0.411 1.004 0.939
1.131 1.408 0.253 0.000 0.847 1.061
0.537 0.561 0.000 0.000 0.000 0.471
0.536 0.626 0.000 0.279 0.536 0.000




(7)

4) Compute the scores.
It is easy to obtain that
R1 = 4.035, R2 = 0.442, R3 = 4.929, R4 = 4.7, R5 = 1.569, R6 = 1.977.
T1 = 3.655, T2 = 5.511, T3 = 0.605, T4 = 1.321, T5 = 3.271, T6 = 3.289.
Then the scores of alternatives are
S1 = 0.38, S2 =−5.069, S3 = 4.324, S4 = 3.379, S5 =−1.702, S6 =−1.312.

5) Make the decision.
The decision is x3, since S3 = maxi=1,...,6Si.

5. Consensus group decision making based on HLE soft set

Multi-criteria group decision making problems are common in daily life,
in these situations decision makers/experts may also use linguistic expressions
rather than numerical values to express their evaluation over alternatives. To
deal with these situations a novel GDM approach based on HLE soft set will be
introduced in this section. Meanwhile, to pursue a reasonable decision result a
novel consensus model will also be provided.

Before presenting the GDM scheme, we pay attention to the approach for
aggregating HLE soft sets, so first the way to aggregate CLEs will be studied.

An operator for aggregating linguistic evaluations in DM under ignorance
was defined in Yager (1995):

Definition 16. (Yager (1995)) Let a set of linguistic valuables L= {L1,L2, . . . ,Lm}
such that Li > L j if i > j. A mapping

FW : Ln −→ L

is called an ordinal OWA operator of dimension n if it has an associated weight-
ing vector

W = {w1,w2, . . . ,wn}T

17



96
4.3. Hesitant linguistic expression soft sets: Application to group

decision making

such that
1. w j ∈ L,
2. w j ≥ wi, if j > i,
3. Max j[w j] = Lm,
where for any set of values a1, . . . ,an

FW (a1, . . . ,an) = Max j[w j∧b j],

where b j is the jth largest of the a1, . . . ,an.

Several approaches to generate weighting vectors have been studied in Yager
(1995) to implement the aggregation of linguistic values in a linguistic scale by
using ordinal OWA operator. The idea in their work is to use linguistic values in
the linguistic scale as the weights. However, if we simply follow their approach
to generate weights for aggregating CLEs built from S, all CLEs built from S by
using the context-free grammar GH (denoted by C (S)) should be listed a prior,
which is hard to realize especially with the growth of numbers of terms in S. To
simplify the calculation, we suggest to aggregate CLEs with weights as LTs in
S, that is, use S instead of C (S) as the linguistic scale to generate the weighting
vector. The simplification is feasible considering that:
(1) the LTs in S are special CLEs built from S, i.e., S⊆ C (S);
(2) the largest CLE and smallest CLE in C (S) are all contained in S;
(3) the uniform and nondecreasing distribution of LTs in S.

In order to aggregate CLEs in C (S), now we define a CLE-OWA operator in
which the weighting vector will be consisted of LT s in S:

Definition 17. Let S= {s0,s1, . . . ,sg} be a linguistic term set and C (S) be all
CLEs built from S by using the context-free grammar GH . A mapping

θW : C (S)n −→ C (S)

is called a CLE-OWA operator of dimension n if it has an associated weighting
vector

W = {w1,w2, . . . ,wn}T

such that
1. w j ∈ S,
2. w j ≥ wi, if j > i,
3. Max j[w j] = sg,
where for any set of CLEs in C (S), a1, . . . ,an

θW (a1, . . . ,an) = Max j[w j∧b j],

where b j is the jth largest of the a1, . . . ,an.
18
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Remark 2. The “largest” of CLEs a1, . . . ,an in Def. 17 refers to a comparison
based on Def. 8.

Remark 3. CLE-OWA operators are special ordinary OWA operators Yager
(1995) in which the weights are LTs while the aggregation objects are CLEs.

Example 4. Assume that a linguistic term set S = {s0,s1,s2,s3,s4,s5,s6,s7,s8},
and four CLEs built from S by GH: “at least s4”, “at most s3”, “between s3 and
s6”, “at least s5” need to be aggregated using the following weighting vector:

W = {s1,s2,s6,s8}T

Ordering the elements in “at least s4, at most s3, between s3 and s6, at least s5”
by using Def. 8, we obtain
b1 = at least s5, b2 = at least s4, b3 = between s3 and s6, b4 = at most s3,
hence,
θW (at least s4,at most s3,between s3 and s6,at least s5)=Max[s1∧at least s5,s2∧
at least s4,s6 ∧ between s3 and s6,s8 ∧at most s3] =Max[s1,s2,between s3 and s6,
at most s3] = between s3 and s6.

By using the CLE-OWA operator, HLE soft sets can be aggregated in the
following way:

Definition 18. Let U = {x1,x2, . . . ,xm} be the universe, E = {e1,e2, . . . ,en} be
parameters related to U and S = {s0,s1, . . . ,sg} be a linguistic term set. Let
(Fcle

1 ,E), (Fcle
2 ,E), . . . , (Fcle

f ,E) be HLE soft sets over U, θW−related collective
HLE soft set comes from (Fcle

1 ,E), (Fcle
2 ,E), . . . , (Fcle

f ,E) is defined by

F̃cle(e j)(xi) = θW (Fcle
1 (e j)(xi), . . . ,Fcle

f (e j)(xi)) (8)

for all e j ∈ E and xi ∈U, where θW is a CLE-OWA operator associated with a
weighting vector W generated from S.

A consensus GDM algorithm based on HLE soft sets is given as follows:
Algorithm 2.

Step 1 Determine the GDM problem. This phase consists of defining experts
G= {t1, t2, . . . t f }, alternatives U = {x1,x2, . . .xm}, parameters E = {e1,e2,
. . .en}, and a linguistic term set S = {s0,s1, . . . ,sg}.

Step 2 Each expert tk ∈G provides evaluations on alternatives in U with respect
to all parameters in E by using CLEs built from S. The CLEs provided
by each expert tk (k = 1,2, . . . , f ) form a HLE soft set (Fcle

k ,E).
19
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Step 3 Select a CLE-OWA operator θW of dimension f associated with a weight-
ing vector W generated from S for aggregating CLEs.

Step 4 Carry out the consensus reaching process and denote the HLE soft set
provided by expert tk after several rounds of adjustments which finally
reaches consensus by (F ′cle

k ,E) (k ∈ {1,2, . . . , f}).
Step 5 Compute the θW−related collective HLE soft set (F̃ ′cle,E) comes from

(F ′cle
1 ,E), (F ′cle

2 ,E), . . . , (F ′cle
f ,E).

Step 6 Apply Algorithm 2 on (F̃ ′cle,E) and select the optimal alternative xk
which satisfies Sk = maxSi (i = 1,2, . . . ,m), where Si is the score of xi.

The optimal alternative can be one or several, and the CLE-OWA operators
that could be adopted in Step 3 are various.

When the GDM is performed with HLE soft sets, the assessments from dif-
ferent experts are collected from various parameter aspects, which makes more
comprehensive the use of information, however increase the amount of data
and the necessary for the consensus reaching process (CRP) (Palomares et al.
(2014)). As follows a consensus model is presented for HLE soft set based lin-
guistic GDM (see Fig. 2).

Obtain HLE soft sets 

Compute consensus 

degree

Compute fuzzy 

envelopes of CLEs 

Consensus Control

Advice generation Selection process

Problem

Alternatives 

Parameters

CLEs

Advice

Experts

  

Moderator

Figure 2: Consensus model

1) Compute the fuzzy envelopes for CLEs in all HLE soft sets provided by ex-
perts.
Transform CLE Fcle

k (e j)(xi) into a HFLT S by using the transformation func-
tion EGH . Denote the fuzzy envelope of EGH (F

cle
k (e j)(xi)) by a TFN uk

i j.
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2) Compute the consensus degree based on the magnitudes of fuzzy envelopes
for CLEs.

(a) For each pair of experts tl and tk, compute a similarity matrix SMlk =
(smlk

i j)m×n in which smlk
i j ∈ [0,1] represents the agreement level between

tl and tk on alternative xi with respect to parameter e j, computed by

smlk
i j = 1−|Mag(ul

i j)−Mag(uk
i j)| (9)

(b) The consensus degree of all experts on alternative xi with respect to
parameter e j is defined as

cpi j = 1− 2
f ( f −1) ∑

k,l∈{1,2,..., f},k 6=l
|Mag(ul

i j)−Mag(uk
i j)| (10)

(c) The consensus level between experts tl and tk (tl, tk ∈G) should be com-
puted by

cl(tl, tk) =
1

mn

n

∑
j=1

m

∑
i=1

smlk
i j (11)

(d) The group consensus level among the group G = {t1, t2, . . . t f } should
be defined by

CL =
2

f ( f −1) ∑
k,l∈{1,2,..., f},k 6=l

cl(tl, tk) (12)

3) Consensus control.
In this phrase, the consensus threshold µ established at the beginning is com-
pared with the group consensus level, if the consensus is not enough, the
assessments of some experts should be adjusted:
if CL > µ , the CRP ends and the selection process (steps 5-6 in Algorithm 2)
is carried out;
if CL < µ , some experts are suggested to adjust their assessments.
A number Maxround ∈ N could be set a prior to determine the maximum
number of adjusting rounds.

4) Advise Generation.
(a) Compute θW−related collective HLE soft set:

In this phase, θW−related collective HLE soft set (F̃cle,E) will be com-
puted from (Fcle

1 ,E), (Fcle
2 ,E), . . . , (Fcle

f ,E) (see Def. 18).
The fuzzy envelope of EGH (F̃

cle(e j)(xi)) is denoted by ũi j, the HLE
soft matrix corresponds to (F̃cle,E) is denoted by F̃cle, then a proximity
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matrix Pk = (pk
pq)m×n between each expert tk (k ∈ {1,2, . . . , f}) and F̃cle

could be obtained:

pk
i j = 1−|Mag(uk

i j)−Mag(ũi j)| (13)

where i ∈ {1,2, . . . ,m}, j ∈ {1,2, . . . ,n}.
An average proximity corresponds to xi and e j should be computed by
using an aggregation operator γ:

pi j = γ(p1
i j, p2

i j, . . . , p f
i j) (14)

(b) Identify the assessments of experts to be changed:
If CL ≤ µ , there must exist (i, j), s.t. cpi j ≤ µ , we should determine
that the experts need to adjust their assessments, as well as the position
(p,q) corresponds to xp and eq they should change. To do so,

i. Determine position (p,q) by cppq =min(cpi j) where i∈{1,2, . . . ,m}
and j ∈ {1,2, . . . ,n}.

ii. Determine the experts to adjust assessments in position (p,q):
Expert tk who satisfies pk

pq < ppq should be suggested to modify
their assessments on xp with respect to eq. Here, the experts who
should change assessments can be not unique.

(c) Determine the change direction.
In this phase, a positive value close to zero denoted by ε will be adopted
to define a margin of acceptability, and some direction rules are pre-
sented as follows:
• If (Mag(uk

pq)−Mag(ũpq)) < −ε , then expert tk should increase
assessment on alternative xp with respect to parameter eq.
• If (Mag(uk

pq)−Mag(ũpq)) > ε , then expert tk should decrease as-
sessment on alternative xp with respect to parameter eq.
• If −ε ≤ (Mag(uk

pq)−Mag(ũpq)) ≤ ε , then expert tk should not
change assessment on alternative xp with respect to parameter eq.

An example to illustrative the GDM scheme cooperates with the proposed
consensus model:

Example 5. Suppose that there are four experts G = {t1, t2, t3, t4} who provides
evaluations on alternatives in U = {x1,x2,x3,x4} to determine the best one. Pa-
rameters E = {e1,e2, . . . ,e5} are considered and the evaluations form four HLE
soft sets, in which CLEs are built from a linguistic term set S= {s0,s1, . . . ,s8}
(Fig. 1).
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In the CRP, consensus threshold µ = 0.9 and margin of acceptability ε = 0.1,
maximum adjusting rounds Maxround = 10. We use average aggregation as the
operator γ .

Step 1. Collect the CLEs provided by experts.
Assessments of each expert tk ∈ G form a HLE soft set (Fcle

k ,E). Corre-
sponding HLE soft matrices are denoted by Fcle

1 ,Fcle
2 , . . . ,Fcle

4 (see Eqs.
(15)-(18)).

Fcle
1 =




between s2 and s4 at least s5 at most s3 at most s4 between s2 and s4
at least s4 between s3 and s6 s5 at least s4 at least s5

between s2 and s5 at most s3 s3 at least s5 s0
at most s3 at least s5 at most s3 between s2 and s4 at least s4


 (15)

Fcle
2 =




between s4 and s6 at least s5 s2 at most s4 between s2 and s4
between s4 and s5 between s3 and s6 s5 between s4 and s5 at least s5

s2 at most s3 s0 at least s5 s0
between s2 and s3 at least s5 at most s3 between s2 and s4 s8


 (16)

Fcle
3 =




between s4 and s5 at least s5 s2 at most s4 between s2 and s4
between s4 and s5 between s3 and s6 s0 at least s5 at least s5

s8 at most s3 at most s3 at least s5 s0
at least s5 at least s5 at most s3 between s2 and s4 at least s4


 (17)

Fcle
4 =




between s4 and s6 at least s5 s2 at most s4 between s2 and s4
between s4 and s5 between s3 and s6 s8 at least s5 between s2 and s3
between s3 and s4 between s2 and s3 at most s3 at least s5 between s2 and s3

at most s3 at least s5 at most s3 between s2 and s4 at least s5


 (18)

Step 2. Choose a CLE-OWA operator θW of dimension f .
Here we carry out the unitor function1 from [0,1] to S to construct the
weighting vector W for aggregating CLEs built from S, and obtain W =
{s0,s3,s6,s8}.

1Assume L = {L1, . . . ,Lm}, an ordinal unitor function is a mapping defined in Yager (1995)
as H : [0,1]−→ L s.t. H(r) = Li,

i−1
m ≤ r ≤ i

m , i = 1, . . . ,m and H(1) = Lm.
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The reason why we choose this weighting vector is that it seems to be the
analog of the normative aggregation, wi = 1/n, in the numeric case. The
weights in W of dimension n was computed by Yager (1995):

w j = H(
j−1
n−1

), j = 1, . . . ,n.

In this case, the number of linguistic values in S is 9, and the dimension
of W is n = 4. Here the unit interval is divided into 9 pieces and maps
onto unitor function H. Then we get
w1 = H(0

3) = s0; w2 = H(1
3) = s3 (since 3

9 ≤ r < 4
9 ); w3 = H(2

3) = s6

(since 6
9 ≤ r < 7

9 ); w4 = H(3
3) = s8.

Step 3. Carry out the CRP.

1) Compute the consensus degree based on the magnitudes of fuzzy en-
velopes for CLEs.
(a) Transform the CLEs into HFLT Ss (see Eqs. (19)-(22)).

Fcle
1 =




{s2,s3,s4} {s5,s6,s7,s8} {s0,s1,s2,s3} {s0,s1,s2,s3,s4} {s2,s3,s4}
{s4,s5,s6,s7,s8} {s3,s4,s5,s6} s5 {s4,s5,s6,s7,s8} {s5,s6,s7,s8}
{s2,s3,s4,s5} {s0,s1,s2,s3} s3 {s5,s6,s7,s8} s0
{s0,s1,s2,s3} {s5,s6,s7,s8} {s0,s1,s2,s3} {s2,s3,s4} {s4,s5,s6,s7,s8}


 (19)

Fcle
2 =




{s4,s5,s6} {s5,s6,s7,s8} s2 {s0,s1,s2,s3,s4} {s2,s3,s4}
{s4,s5} {s3,s4,s5,s6} s5 {s4,s5} {s5,s6,s7,s8}

s2 {s0,s1,s2,s3} s0 {s5,s6,s7,s8} s0
{s2,s3} {s5,s6,s7,s8} {s0,s1,s2,s3} {s2,s3,s4} s8


 (20)

Fcle
3 =




{s4,s5} {s5,s6,s7,s8} s2 {s0,s1,s2,s3,s4} {s2,s3,s4}
{s4,s5} {s3,s4,s5,s6} s0 {s5,s6,s7,s8} {s5,s6,s7,s8}

s8 {s0,s1,s2,s3} {s0,s1,s2,s3} {s5,s6,s7,s8} s0
{s5,s6,s7,s8} {s5,s6,s7,s8} {s0,s1,s2,s3} {s2,s3,s4} {s4,s5,s6,s7,s8}


 (21)

Fcle
4 =




{s4,s5,s6} {s5,s6,s7,s8} s2 {s0,s1,s2,s3,s4} {s2,s3,s4}
{s4,s5} {s3,s4,s5,s6} s8 {s5,s6,s7,s8} {s2,s3}
{s3,s4} {s2,s3} {s0,s1,s2,s3} {s5,s6,s7,s8} {s2,s3}

{s0,s1,s2,s3} {s5,s6,s7,s8} {s0,s1,s2,s3} {s2,s3,s4} {s5,s6,s7,s8}


 (22)

(b) Compute the fuzzy envelopes of HFLT Ss (see Eqs. (23)-(26)).
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Fcle
1 =




T (0,0.30,0.36,0.67) T (0.5,0.85,1,1) T (0,0,0.15,0.5) T (0,0,0.35,0.67) T (0,0.30,0.36,0.67)
T (0.33,0.65,1,1) T (0.17,0.43,0.73,1) T (0.5,0.67,0.67,0.83) T (0.33,0.65,1,1) T (0.5,0.85,1,1)

T (0,0.27,0.57,0.83) T (0,0,0.15,0.5) T (0.17,0.33,0.33,0.5) T (0.5,0.85,1,1) T (0,0,0,0)
T (0,0,0.15,0.5) T (0.5,0.85,1,1) T (0,0,0.15,0.5) T (0,0.30,0.36,0.67) T (0.33,0.65,1,1)




(23)

Fcle
2 =




T (0.33,0.64,0.7,1) T (0.5,0.85,1,1) T (0,0.17,0.17,0.33) T (0,0,0.35,0.67) T (0,0.30,0.36,0.67)
T (0.33,0.5,0.67,0.83) T (0.17,0.43,0.73,1) T (0.5,0.67,0.67,0.83) T (0.33,0.5,0.67,0.83) T (0.5,0.85,1,1)
T (0,0.17,0.17,0.33) T (0,0,0.15,0.5) T (0,0,0,0) T (0.5,0.85,1,1) T (0,0,0,0)
T (0,0.17,0.33,0.5) T (0.5,0.85,1,1) T (0,0,0.15,0.5) T (0,0.30,0.36,0.67) T (1,1,1,1)




(24)

Fcle
3 =




T (0.33,0.5,0.67,0.83) T (0.5,0.85,1,1) T (0,0.17,0.17,0.33) T (0,0,0.35,0.67) T (0,0.30,0.36,0.67)
T (0.33,0.5,0.67,0.83) T (0.17,0.43,0.73,1) T (0,0,0,0) T (0.5,0.85,1,1) T (0.5,0.85,1,1)

T (1,1,1,1) T (0,0,0.15,0.5) T (0,0,0.15,0.5) T (0.5,0.85,1,1) T (0,0,0,0)
T (0.5,0.85,1,1) T (0.5,0.85,1,1) T (0,0,0.15,0.5) T (0,0.30,0.36,0.67) T (0.33,0.65,1,1)




(25)

Fcle
4 =




T (0.33,0.64,0.7,1) T (0.5,0.85,1,1) T (0,0.17,0.17,0.33) T (0,0,0.35,0.67) T (0,0.30,0.36,0.67)
T (0.33,0.5,0.67,0.83) T (0.17,0.43,0.73,1) T (1,1,1,1) T (0.5,0.85,1,1) T (0,0.17,0.33,0.5)
T (0.17,0.33,0.5,0.67) T (0,0.17,0.33,0.5) T (0,0,0.15,0.5) T (0.5,0.85,1,1) T (0,0.17,0.33,0.5)

T (0,0,0.15,0.5) T (0.5,0.85,1,1) T (0,0,0.15,0.5) T (0,0.30,0.36,0.67) T (0.5,0.85,1,1)




(26)

2) By using Eqs. (9), (11) and (12), the consensus degree of the group
is CL = 0.868.

3) Consensus control.
Since CL = 0.868 < µ , we go to next step.

4) Advise Generation.
(a) Compute θW−related collective HLE soft set (F̃cle,E) comes from

HLE soft sets (Fcle
1 ,E), (Fcle

2 ,E), . . . , (Fcle
f ,E). Corresponding

HLE soft matrix is denoted by F̃cle (see Eq. (27)).

F̃cle =




between s4 and s5 at least s5 s2 at most s4 between s2 and s4
between s4 and s5 between s3 and s6 s5 at least s4 s6
between s3 and s4 at most s3 at most s3 at least s5 s0
between s2 and s3 at least s5 at most s3 between s2 and s4 at least s4


 (27)
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By using Eq. (13), proximity matrix Pk = (pk
pq)i× j (k = 1,2,3,4)

between each expert tk and F̃cle could be obtained as:

P1 =




0.752 1 0.935 1 1
0.786 1 1 1 0.935
0.997 1 0.773 1 1
0.854 1 1 1 1




P2 =




0.915 1 1 1 1
1 1 1 0.786 0.935

0.753 1 0.896 1 1
1 1 1 1 0.798




P3 =




1 1 1 1 1
1 1 0.331 0.902 0.935

0.416 1 1 1 1
0.354 1 1 1 1




P4 =




0.915 1 1 1 1
1 1 0.669 0.902 0.419
1 0.854 1 1 0.75

0.854 1 1 1 0.902




(b) Identify the assessments of experts to be changed:
A. Determine the position (p,q): since cp23 = min(cpi j) = 0.5

where i∈ {1,2, . . . ,m}, j ∈ {1,2, . . . ,n}, we know the assess-
ment on x2 with respect to e3 should be changed.

B. Determine the expert to adjust ssessments:
By Eq.(14), we obtain p23 = 0.75. Since p3

23 = 0.331 < p23,
p4

23 = 0.669 < p23, t3 and t4 should modify assessments on
x2 with respect to e3.

(c) Determine the change direction.
In this phase, ε = 0.1 is the margin of acceptability, and:
• Mag(u3

23)−Mag(ũ23) = 0−0.669 < −ε , then t3 should in-
crease assessment on x2 with respect to e3.
• Mag(u4

23)−Mag(ũ23) = 1− 0.669 > ε , then t4 should de-
crease assessment on x2 with respect to e3.

(d) Suppose that expert t3 increase assessment to “between s3 and s6”,
and expert t4 decrease assessment to “s4”, the new consensus de-
gree is computed as 0.888 which has still not reach the threshold
0.90, turn to second round.
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5) Consensus reaching.
In the second round, expert t3 is suggested to decrease his/her as-
sessment on x4 with respective to e1. Suppose that t3 decreases this
assessment to “between s3 and s4”, then the new group consensus
degree becomes 0.903 > µ , the CRP ends.

Step 4. The adjusted assessments provided by experts after CRP form HLE soft
sets (F ′cle

1 ,E), (F ′cle
2 ,E), . . . , (F ′cle

f ,E). Now the new θW−related col-
lective HLE soft set (F̃ ′cle,E) is computed from them, and its correspond-
ing HLE soft matrix is denoted by F̃ ′cle (see Eq. (28)).

F̃ ′cle
=




between s4 and s5 at least s5 s2 at most s4 between s2 and s4
between s4 and s5 between s3 and s6 between s3 and s6 at least s4 s6
between s3 and s4 at most s3 at most s3 at least s5 s0
between s2 and s3 at least s5 at most s3 between s2 and s4 at least s4




(28)

Step 5. Based on (F̃ ′cle,E), we obtain the scores of alternatives as
S1 =−0.726, S2 = 5.746, S3 =−4.380, S4 =−0.635.

Step 6. The final decision is alternative x2.

6. Comparative study

From our knowledge, there is only one exiting algorithm (Algorithm 1 in
Sun et al. (2017), denoted by Sun et al.’s algorithm) proposed for dealing with
linguistic GDM problems under the framework of soft set theory, that is based on
the introduction of a model called linguistic value soft set. A HLE soft set will
degenerate to a linguistic value soft set when all CLEs in it degenerate to LTs.
Therefore, Algorithm 2 based on HLE soft set is also able to deal with situations
in which experts’ assessments are LTs. To carry out a comparison study between
Algorithm 2 and Sun et al.’s algorithm, in this section, we will present a linguistic
GDM problem in which experts’ assessments are LTs, and afterwards deal with
the problem by using Algorithm 2 and Sun et al.’s algorithm separately. Based
on different decision results obtained from these two approaches, we will show
the advantage of our proposal.

6.1. Decision making problem
Suppose that experts G = {t1, t2, t3, t4} provide assessments on alternatives

U = {x1,x2,x3,x4} by using LTs in a linguistic term set S = {s0,s1, . . . ,s8} in or-
der to determine the best one. The parameters considered are E = {e1,e2, . . . ,e5}
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and the information provided by experts form four linguistic value soft sets (see
Eqs. (29)-(32) as corresponding linguistic value soft matrices 2).

FL
1 =




s6 s5 s4 s0 s8
s8 s1 s2 s5 s2
s3 s8 s2 s0 s2
s2 s8 s3 s1 s3


 (29)

FL
2 =




s5 s5 s4 s0 s8
s8 s1 s2 s0 s1
s5 s8 s2 s0 s2
s2 s8 s3 s1 s4


 (30)

FL
3 =




s6 s8 s4 s0 s1
s8 s1 s2 s0 s1
s8 s8 s2 s0 s2
s2 s8 s3 s1 s4


 (31)

FL
4 =




s8 s6 s4 s0 s8
s8 s6 s2 s0 s1
s3 s8 s2 s0 s2
s2 s8 s3 s1 s4


 (32)

6.2. Deal with the problem by using Sun et al.’s algorithm in Sun et al. (2017).
The linguistic term set S used in Sun et al. (2017) is symmetric about a middle

term s0, however to facilitate comparison here we make tiny adjustments by setting the
middle term as s4 and smallest term as s0, the adjustments will not cause perturbation to
the application.

Denote the parameter set considered by expert t j by tE
j , since the parameters con-

sidered by all experts are the same, the choice value matrices (see Def. 11 in Sun et al.
(2017)), C

(tE
k ,∩

|G|
j=1, j 6=ktE

j )
(k = 1,2,3,4), are always

2The definition of linguistic value soft metric is provided in Sun et al. (2017).
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C
(tE

k ,∩
|G|
j=1, j 6=ktE

j )
=




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



.

Transformations −1 , s0 and 1 , s8 will be adopted to handle the choice value
matrix to perform the product operation (see Def. 12 in Sun et al. (2017)) with linguistic
value soft sets. For each expert tk (k = 1,2,3,4), the product operation result could be
achieved as

PL
k = FL

k ⊗C
(tE

k ,∩
|G|
j=1, j 6=ktE

j )
=




s8 s8 s8 s8 s8
s8 s8 s8 s8 s8
s8 s8 s8 s8 s8
s8 s8 s8 s8 s8


 .

Meanwhile, the weights of the four experts can be easily computed as the same, that
is, W = (w1,w2,w3,w4) = (0.25,0.25,0.25,0.25) (see Def. 13 in Sun et al. (2017)), then
the result of the weighted sum is

PL =
|G|
∑
k=1

wkPL
k =




s8 s8 s8 s8 s8
s8 s8 s8 s8 s8

experts8 s8 s8 s8 s8
s8 s8 s8 s8 s8


 .

According to Sun et al’s algorithm the decision will be made based on PL. However,
it can be observed that the aggregated result PL is far from the evaluations of each expert.
For instance, assessment on x2 with respect to e3 provided by every expert is always s2,
whereas the aggregation result in PL is s8, which is far from assessment of the majority.
Here, we can not make any decision from PL since the ranking function (see Def. 14 in
Sun et al. (2017)) for all alternatives are the same, that is, RFL(xi) = s8, i = 1,2,3,4.

6.3. Deal with the problem by using Algorithm 2.
Here we adopt the same weighting vector used in Example 5 to carry out the ag-

gregation of HLE soft sets. The GDM process is similar to Example 5, so only a brief
description will be provided here:

The initial consensus degree among experts is 0.891. During the consensus process,
in the first round t4 will be suggested to increase the assessment on alternative x1 with
respect to parameter e5. At this moment, the group assessment on x1 with respect to e5
is s6, whereas the assessment of t4 is s1. Suppose that t4 increases it from s1 to s6, the
new consensus degree reaches 0.912.
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After the CRP, the HLE soft matrix F̃ ′cle corresponds to θW−collective HLE soft set
(F̃ ′cle,E) is obtained as Eq. (33), from which the scores of alternatives are S1 = 3.826,
S2 =−4.699, S3 =−2.684, S4 = 3.557. Obviously the optimal alternative is x1.

F̃ ′cle =




s6 s5 s4 s0 s6
s8 s1 s2 s0 s1
s3 s8 s2 s0 s2
s2 s8 s3 s1 s4


 (33)

6.4. Comparison analysis
Based on the decision result obtained from Algorithm 2 and Sun et al.’s algorithm,

now we present a comparison analysis between them.

1. It is shown by the above example that there exist GDM problems which can not
be handled by Sun et al’ algorithm, however can be solved by Algorithm 2.

2. Sun et al’s algorithm is proposed based on linguistic value soft set, while Algo-
rithm 2 is based on HLE soft set. It is determined by the models that Sun et
al’s algorithm can only be applied when experts’ assessments are LTs, whereas
Algorithm 2 can be applied when assessments could be both CLEs and LTs.

3. Although the concept of consensus has been mentioned in Sun et al. (2017), ex-
perts’ assessments have not been adjusted to get closer to the majority to ensure
a group consensus in Sun et al’ algorithm. In Algorithm 2, by introducing a con-
sensus model, the assessments provided by experts farthest from the majority has
been adjusted, the goal of consensus has been reached.

4. In the computation process of Sun et al’s algorithm, virtual terms have been ap-
plied (see example in Section 4.3 in Sun et al. (2017)), which are actually not
linguistic values (no syntax) (Rodrı́guez & Martı́nez (2013)), and don’t follow
the fuzzy linguistic approach. In the computation process of Algorithm 2, only
linguistic values have been applied with the help of their fuzzy representations.

Table 7 is provided to summarize the comparison. From comparison analysis we
conclude that Algorithm 2 goes beyond Sun et al’s algorithm.

Table 7: Comparison between Algorithm 2 and Sun et al’s algorithm

Method Model Assessments Consensus Decision result

Sun et al’ algorithm Linguistic value soft set LTs No consensus No result in some situations
Algorithm 2 HLE soft set CLEs (contain LTs) Consensus Result obtained
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7. Conclusion

This paper introduces a new generalization of soft set called HLE soft set. It is an
extension of linguistic value soft set which overcomes its limitations in eliciting complex
linguistic information in hesitant DM settings. Based on HLE soft sets, we provide a
multi-criteria DM algorithm and afterwards a GDM algorithm. Remarkably, a novel
consensus model based on HLE soft set supports the GDM scheme. Through numerical
examples the effectiveness and feasibility of the proposed algorithms are shown.
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Appendix A: Adjustment for the approach for computing fuzzy envelops of
HFLT Ss corresponds to CLEs in HLE soft sets

In HLE soft sets, suppose that CLEs are built from a linguistic term set S={s0,s1, . . . ,sg},
where s0 = “none′′ and sg = “absolute′′ and g+ 1 is the granularity. LTs sk ∈ S are
defined by trapezoidal (triangular) membership functions Ak = T (ak

L,a
k
M,ak

M,ak
R), k =

0,1, . . . ,g. The semantic for LT none is defined as T (0,0,0,0) and LT absolute is de-
fined as T (1,1,1,1).

When LTs “none′′ and “absolute′′ are considered, for CLEs built from S, scheme
for computing their fuzzy envelopes in Liu & Rodrı́guez (2014) could be adjusted as
follows:

1. Fuzzy envelope for CLE “at least si”.

(1) If s1 ≤ si ≤ sg−1, the fuzzy envelope for “at least si” could be computed as
following.

i. Obtain the elements to aggregate.
Assume that LTs in S are defined as a triangular membership functions,
the set of elements to aggregate is
T = {ai

L,a
i
M,ai+1

L ,ai
R,a

i+1
M ,ai+2

L ,ai+1
R , . . . ,ag

L,a
g−1
R ,ag

M,ag
R},

From fuzzy partitions in Ruspini (1969) it can be simplified as
T = {ai

L,a
i
M,ai+1

M , . . . ,ag−1
M ,ag−1

R }.
ii. Compute the parameters of the trapezoidal fuzzy membership function.

A trapezoidal fuzzy membership function FHS = T (a,b,c,d) is used as
the envelope of HFLT S, HS, transformed from “at least si”, where a and
d can be easily computed by the min and max operators, i.e.,
a = min{ai

L,a
i
M, . . . ,ag−1

M ,ag−1
R }= ai

L,
d = max{ai

L,a
i
M, . . . ,ag−1

M ,ag−1
R }= ag−1

R ,
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at the same time, b and c are obtained by aggregating the remaining
elements ai

M,ai+1
M , . . . ,ag−1

M with OWA operators, i.e.,

b = OWAW 2(ai
M,ai+1

M , . . . ,ag−1
M ), (15)

c = OWAW 2(ai
M,ai+1

M , . . . ,ag−1
M ) (16)

where W 2 will be given in iii.
iii. Obtain the OWA weights.

The OWA weights in Fileva & Yagerb (1998) will be adopted in the
current research to reflect importance of different LTs.
b and c are computed by W 2 with n = g− i, i.e. W 2 = (w2

1,w
2
2, . . . ,w

2
g−i),

where
w2

1 = αg−i−1, w2
2 = (1−α)αg−i−2, w2

3 = (1−α)αg−i−3, . . . , w2
g−i−1 =

(1−α)α , w2
g−i = 1−α .

c is computed by W 2 with α = 1, so c = ag−1
M .

iv. Obtain the fuzzy envelope.
For the HFLT S, HS, from the CLE “at least si”, its fuzzy envelope FHS is
defined as a TFN T (ai

L,b,a
g−1
M ,ag−1

R ), where b is computed by Eq. (15).
Remark 1 An approach to determine α for computing b:
Let us consider the value of α to compute b, it should support the properties:
(a) 0 = a1

M ≤ ai
M ≤ b≤ ag−1

M = 1;
(b) For a fixed si in “at least si”, if α→ 0, then b→ ai

M, if α > 0, then b > ai
M,

if α → 1, then b→ ag−1
M ;

(c) If si→ s1, then α → 0 and b→ a1
M = 0;

(d) If si→ sg−1, then α → 1 and b→ ag−1
M = 1.

The value α increases from 0 to 1 as si increases from s1 to sg−1. That is, α
depends on the index of si. To compute α , a linear function is defined as
f1(i) = β i+ r, s.t. α = f1(i),
which satisfies the boundary conditions
f1(1) = 0, f1(g−1) = 1
the form of f1 can be obtained as:
f1(i) = i−1

g−2 , i.e., α = i−1
g−2 .

(2) If si = s0, consider that s0 can be regarded as an inside term of s1, the fuzzy
envelop for the CLE “at least s0” is the same as the fuzzy envelope for the
CLE “at least s1” which can be computed by steps in (1) with the values of
α = i−1

g−2 by Remark 1.
(3) If si = sg, the fuzzy envelop for the CLE “at least sg” will be T (1,1,1,1).

2. Fuzzy envelope for the CLE “at most si”.
When “none′′ and “absolute′′ are taken into consideration, the steps to achieve
the fuzzy envelope for the CLE “at most si” in Liu & Rodrı́guez (2014) should be
adjusted as below:
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(1) If s1 ≤ si ≤ sg−1, the steps for computing the fuzzy envelope of CLE “at most
si” in Liu & Rodrı́guez (2014) should be adjusted as follows.

i. Obtain the elements to aggregate.
The set of elements to aggregate is
T = {a0

L,a
0
M,a1

L,a
0
R,a

1
M,a2

L,a
1
R, . . . ,a

i
L,a

i−1
R ,ai

M,ai
R}

which can be simplified as
T = {a1

L,a
1
M,a2

M, . . . ,ai
M,ai

R}
ii. Compute the parameters of the trapezoidal fuzzy membership function.

A TFN FHS = T (a,b,c,d) is used as the envelope of HFLT S, HS, trans-
formed from the CLE “at most si”, where a and d can be computed as
a = min{a1

L,a
1
M,a2

M, . . . ,ai
M,ai

R}= a1
L,

d = max{a1
L,a

1
M,a2

M, . . . ,ai
M,ai

R}= ai
R,

b and c are obtained by aggregating the remaining elements a1
M,a2

M, . . . ,ai
M

with OWA operators, i.e.,

b = OWAW 1(a1
M,a2

M, . . . ,ai
M), (17)

c = OWAW 1(a1
M,a2

M, . . . ,ai
M) (18)

where W 1 will be defined in iii.
iii. Obtain the OWA weights.

The weights used to compute b and c are in form of W 1 with n = i, i.e.
W 1 = (w1

1,w
1
2, . . . ,w

1
i ), where

w1
1 = α , w1

2 = α(1− α), w1
3 = α(1− α)2, . . . , w1

i−1 = α(1− α)i−2,
w1

i = (1−α)i−1.
The weights W 1 used to compute b is with α = 0, so b = a1

M.
iv. Obtain the fuzzy envelope.

For the HFLT S, HS, from the CLE “at least si”, its fuzzy envelope FHS is
defined as a TFN T (a1

L,a
1
M,c,ai

R), where c is computed using Eq. (18).
Remark 2 An approach to determine α for computing c:
Let us consider the value of α to compute c, it should support the properties:
(a) 0 = a1

M ≤ c≤ ai
M ≤ ag−1

M = 1;
(b) For a fixed si, if α → 0, then c→ a1

M, if α > 0, then c > a1
M, if α → 1,

then c→ ai
M.

(c) If si→ s1, then α → 0 and c→ a1
M = 0.

(d) If si→ sg−1, then α → 1 and c→ ag−1
M = 1.

The value of α increases from 0 to 1 as si increases from s1 to sg−1, it can be
computed in a similar way as “at least si”, i.e., α = i−1

g−2 .
(2) If si = s0, the fuzzy envelope for the CLE “at most s0” will be T (0,0,0,0).
(3) If si = sg, consider that sg can be regarded as an inside term of sg−1, the fuzzy

envelope for “at most sg” is the same as the fuzzy envelope for “at most sg−1”
which can be computed by steps in (1) with α = i−1

g−2 by Remark 2.
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3. Fuzzy envelope for the CLE “between si and s j”.
(1) If s1 ≤ si ≤ s j ≤ sg−1, the approach of computing the fuzzy envelope for the

CLE “between si and s j” should follow steps in Liu & Rodrı́guez (2014).
A TFN FHS = T (a,b,c,d) is used as the envelope of HFLT S, HS, transformed
from the CLE “between si and s j”, where a and d can be easily computed by
the min and max operators, b and c are obtained by seperatly aggregating
some of the remaining elements ai

M,ai+1
M , . . . ,a j

M with OWA operators. b is
computed with weight W 2 which is related to a parameter α1 and c is com-
puted with weight W 1 which is related to a parameter α2. Please see more
details in Liu & Rodrı́guez (2014).
However, the approach for computing α1 and α2 should be adjusted as fol-
lows:
Remark 3 Let us consider the value of α1 and α2 to compute c and b. The
method for computing values α1 and α2 in the weights W 2 and W 1 has to be
adjusted consider the following two extreme cases:
(a) if j− i= 1, in this case there is no necessary to aggregate, α1 should be set
as 1 so that this assumption will not affect the result, since b = α1×ai

M = ai
M.

(b) if si→ s1 and s j→ sg−1, we have j− i→ g−2 and α1→ 0.
Thus, there exists a function f2 : [1,g−2)→ (0,1], so that α1 = f2( j− i),
which satisfies boundary conditions f2(1) = 1 and f2(g−2) = 0.
Here f2 is also assumed as a linear function, i.e. f2( j− i) = β ( j− i)+ γ ,
where β , γ are unknown parameters.
f2 can be obtained as: f2( j−i)= g−2−( j−i)

g−3 , where i= index(si), j = index(s j),
and g+1 is the granularity of S = {s0, . . . ,sg}.
Therefore, α1 is defined by α1 =

g−2−( j−i)
g−3 , and α2 = 1−α1 =

( j−i)−1
g−3 .

(2) If si = s0, consider that s0 can be regarded as an inside term of s1, the fuzzy
envelop for the CLE “between s0 and s j” is the same as the fuzzy envelope for
the CLE “between s1 and s j” which can be computed by the approach in Liu &
Rodrı́guez (2014) with the values of α1 and α2 computed as in Remark 3.

(3) If s j = sg, consider that sg can be regarded as an inside term of sg−1, the fuzzy
envelop for the CLE “between si and sg” is the same as the fuzzy envelope for
the CLE “between si and sg−1” which can be computed by the approach in Liu &
Rodrı́guez (2014) with the values of α1 and α2 chosen as in Remark 3.

Appendix B: An approach for ranking trapezoidal fuzzy numbers.

A ranking approach of TFNs based on magnitude in Abbasbandy & Hajjari (2009)
will be briefly recalled here.

Firstly, we recall the parametric form of fuzzy numbers presented in Ma et al. (1999)
which was considered in Abbasbandy & Hajjari (2009):
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Definition 19. (Ma et al. (1999)) A fuzzy number u in parametric form is a pair (u,u) of
functions u(r), u(r), 0≤ r ≤ 1, which satisfies the following requirements:

1. u(r) is a bounded monotonic increasing left continuous function,
2. u(r) is a bounded monotonic decreasing right continuous function,
3. u(r)≤ u(r),0≤ r ≤ 1.

The trapezoidal fuzzy number u= (x0,y0,α,β ) (Fig. 3), with two defuzzifiers x0, y0,
and left fuzziness α > 0 and right fuzziness β > 0 is a fuzzy set where the membership
function is

u(x) =





1
α (x− x0 +α), x0−α ≤ x≤ x0

1, x ∈ [x0,y0]
1
α (y0− x+β ), y0 ≤ x≤ y0 +β
0, otherwise,

(19)

and its parametric form is u(r) = x0−α +αr, u(r) = y0+β −β r. u is a triangular fuzzy
number which can be written as u = (x0,α,β ) if it is provided that x0 = y0.

1

1

x0
y0

Figure 3: Trapezoidal fuzzy number u = (x0,y0,α,β ).

Based on the parametric form of FNs, a measure called magnitudes of TFNs was
introduced in Abbasbandy & Hajjari (2009) for the purpose of ranking TFNs:

For an arbitrary trapezoidal fuzzy number u = (x0,y0,α,β ), with parametric form
u = (u(r),u(r)), the magnitude of the trapezoidal fuzzy number is defined as

Mag(u) =
1
2

(∫ 1

0
(u(r)+u(r)+ x0 + y0) f (r)dr

)
(20)

where the function f (r) is a non-negative and increasing function on [0,1] with f (0) =
0, f (1) = 1 and

∫ 1
0 f (r)dr = 1

2 . Function f (r) can be chosen according to the actual
situation. In this paper we use f (r) = r, following the way in Abbasbandy & Hajjari
(2009).

The rule for ranking TFNs is the larger Mag(u), the larger the fuzzy number, for-
malized as: for any two trapezoidal fuzzy numbers u and v, their ranking is determined
by:

• u≺ v iff Mag(u)< Mag(v),
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• u� v iff Mag(u)> Mag(v),

• u ∼ v iff Mag(u) = Mag(v),

then the order u� v, u� v can be formulated as

• u� v iff u≺ v or u ∼ v,

• u� v iff u� v or u ∼ v.
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Type-2 fuzzy envelope of hesitant fuzzy linguistic
term set: a new representation model of

comparative linguistic expressions
Yaya Liu, Rosa M. Rodrı́guez, Hani Hagras, Hongbin Liu, Keyun Qin*, and Luis Martı́nez

Abstract—The use of hesitant fuzzy linguistic term sets con-
tributes to the elicitation of comparative linguistic expressions
in decision contexts when experts hesitate among different
linguistic terms to provide their assessments. Since the existing
representation models for linguistic expressions based on hesitant
fuzzy linguistic term sets do not consider properly the uncertainty
caused by the inherent vagueness of such linguistic expressions,
it is necessary to improve their modeling to cope with such
vagueness. In this paper, we propose a new fuzzy envelope for
the hesitant fuzzy linguistic term sets in form of type-2 fuzzy
sets for representing comparative linguistic expressions. Such an
envelope overcomes the limitation of existing representations in
coping with inherent uncertainties and facilitates the processes
of computing with words for linguistic decision making problems
dealing with comparative linguistic expressions.

Index Terms—Hesitant fuzzy linguistic term sets, Type-2 fuzzy
sets, Envelope, Comparative linguistic expressions.

I. INTRODUCTION

IN many real world decision making situations the use of
linguistic information is appropriate due to the qualitative

aspects of the problem [26]. The application of linguistic
information usually implies to carry out computing with words
(CW) processes, which is defined as a methodology for
reasoning, computing and decision making using linguistic
information [24]. CW in decision making will enhance the
reliability and flexibility of classical decision models, since it
does not only makes the reasoning processes related to the
decision making closer to human cognition, but also improves
the resolution of decision making under uncertainty with
linguistic information [15].
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One common approach that has provided successful and
reliable results in linguistic decision making is the fuzzy
linguistic approach [39], taking advantage of the fact that
it represents the qualitative terms by means of linguistic
variables rather than numerical values. The fuzzy linguistic
approach [18], [39] facilitates the modeling of linguistic in-
formation to capture inherent language uncertainties. However,
usually the use of the fuzzy linguistic approach is restricted
to the elicitation of single and simple terms to express the
information provided by the experts, which may not reflect
exactly the expert’s real assessment in a linguistic context with
a high level of uncertainty, in which experts hesitate among
multiple terms.

To overcome this limitation, several linguistic approaches
have been introduced to elicit more elaborated linguistic
expressions than single linguistic terms [25], including the
proportional 2-tuple model that adopts the proportion of two
consecutive linguistic terms [35], the linguistic model that
merges different single linguistic terms into a new synthesized
term [13], and the linguistic model built by logical connectives
and fuzzy relations that measure the similarity between any
two linguistic terms [33]. Although these proposals provide
greater flexibility to elicit linguistic expressions in hesitant
decision situations, it is noticed that the expressions generated
by them are either far from common language used by experts
in decision problems or lack of systematic formalization.

Recently, Rodrı́guez et al. introduced the concept of Hesi-
tant Fuzzy Linguistic Term Set (HFLTS) [27], its application
to CW processes improves previous approaches by eliciting
comparative linguistic expressions (CLEs) that are closer to
human beings’ cognition based on context-free grammars,
which formalize the generation of flexible linguistic expres-
sions.

In CW the statement “words mean different things for the
different people” has been studied and managed from different
views such as the use of multi-granularity linguistic term sets
in order to deal with multiple sources of linguistic information
[7], [10], and the linguistic model based on type-2 fuzzy sets
representation that represents the semantics of linguistic terms
as type-2 membership functions [17], [34], [40].

Similarly, CLEs also mean different things to different
people, fuzzy models can be used to capture the uncertainties
of such expressions. For CW dealing with CLEs represented
as HFLTSs, it is necessary to explore suitable fuzzy repre-
sentations for HFLTSs. So far, two different representation
models of HFLTS have been developed to facilitate CW
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processes. In [27], [28] the computational linguistic model
cooperates with the envelope of HFLTS which is repre-
sented as linguistic intervals and the process of CW is finally
accomplished with the help of a symbolic model, losing
information. However, in [12] a fuzzy envelope for HFLTS
has been introduced whose representation is a type-1 fuzzy
membership function obtained through the aggregation of the
fuzzy membership functions of the linguistic terms contained
in the HFLTS. Both envelopes for HFLTS fail to reflect
and deal with the fact that linguistic expressions mean different
things for different people, therefore the semantics of CLEs
generated by the context-free grammar and based on HFLTS
should be improved to overcome such a limitation.

Following the idea of type-2 fuzzy sets in CW with linguis-
tic terms, in this paper we adopt interval type-2 fuzzy sets for
representing the meaning of CLEs based on HFLTSs, by us-
ing the entropy of HFLTS [38] to compute the uncertainties
contained in such expressions. Such a proposal offers a new
way of providing a wide and adaptive vocabulary for decision
making problems dealing with linguistic information.

The remainder of the paper is structured as follows: Section
2 reviews the type-2 fuzzy set theory, the CLEs based on
HFLTSs and several related concepts. Section 3 proposes a
type-2 fuzzy envelope for CLEs based on HFLTSs. Section
4 presents examples of the type-2 fuzzy envelope. In Section
5, a comparison between type-1 and type-2 fuzzy envelopes of
HFLTSs in decision making is provided. And finally, Section
6 provides several conclusions and future work.

II. PRELIMINARIES

This section reviews some basis concepts of type-2 fuzzy
sets (T2 FS), interval type-2 fuzzy sets (IT2 FS), the elicitation
of CLEs based on HFLTS with its type-1 fuzzy envelope and
the entropy measure of HFLTS that will be used to obtain
the type-2 fuzzy envelope.

A. Type-2 fuzzy sets and interval type-2 fuzzy sets

Some basic concepts on T2 FS and IT2 FS are reviewed
in this subsection. The background materials are mainly taken
from [16], [19], [21], [22], adapted to the recommendations
in [23].

A T2 FS, initiated by Zadeh [39] as an extension of an
ordinary fuzzy set (type-1 fuzzy set), is denoted by Ã and
characterized by a type-2 membership function µÃ(x, u) [20],
[21], where x ∈ X and

Ã = {((x, u), µÃ(x, u))|x ∈ X,u ∈ [0, 1]} (1)

in which 0 ≤ µÃ(x, u)) ≤ 1.
If all µÃ(x, u) = 1, the T2 FS Ã turns to an IT2 FS ( see

Fig. 1 ), it is characterized as

Ã=

∫

x∈X

∫

u∈Jx
1/(x, u)=

∫

x∈X
[

∫

u∈Jx
1/u]/x, Jx ⊆ [0, 1]

(2)
where x, the primary variable, has domain X; u ∈ U , the

secondary variable, has domain Jx at each x ∈ X; Jx is
called the primary membership of x and is defined in Eq. (6).

1

0

Fig. 1. FOU (shaded), LMF (dashed) and UMF (solid) for IT2 FS Ã

Note that Eq. (2) means: Ã : X → {[a, b] : 0 ≤ a ≤ b ≤
1}. Uncertainty about IT2 FS Ã is conveyed by a bounded
region called the footprint of uncertainty (FOU ), that is the
aggregation of all primary memberships, i.e.,

FOU(Ã) = {(x, u) : u ∈ Jx ⊆ [0, 1]} (3)

The upper membership function (UMF) of Ã, denoted by
µÃ(x), ∀x ∈ X , and lower membership function (LMF) of
Ã, denoted by µ

Ã
(x), ∀x ∈ X , are two type-1 membership

functions that bound the FOU , i.e.

µÃ(x) = sup{u|u ∈ [0, 1], µÃ(x, u) > 0}, ∀x ∈ X (4)

µ
Ã
(x) = inf{u|u ∈ [0, 1], µÃ(x, u) > 0}, ∀x ∈ X (5)

Note that Jx is an interval set, i.e.

Jx = {(x, u) : u ∈ [µ
Ã
(x), µÃ(x)]} (6)

FOU(Ã) in Eq. (3) can also be expressed as

FOU(Ã) = {(x, u) : x ∈ X,u ∈ [µ
Ã
(x), µÃ(x)]} (7)

An IT2 FS Ã can also be represented as

Ã = 1/FOU(Ã) (8)

with the understanding that this means putting a secondary
grade of 1 at all points of FOU(Ã).

Recently, the relationship between interval-valued fuzzy sets
(IVFS) [30] and IT2 FS have been discussed in [20], [32]. It
is pointed out that the phrase “IT2 FS” is a more general term
than the phrase “IVFS” and includes IVFS as a special case
[32]. The operations, methods, and systems that have been
developed and published about IT2 FSs are, so far, only valid
in the special case when IT2 FS = IVFS [20]. Actually when
Jx is defined as Eq. (6), the IT2 FS should be called a CIT2 FS
1. Since every CIT2 FS is an IVFS [23], the proposed envelope
in form of IT2 FS calculated by Eqs. (7) and (8) will not lead
to ambiguous operations in future applications. Besides, in this
paper when phrase “IT2 FS” is used it means CIT2 FS. At
this moment, the use of FOU(Ã) is unambiguous, as well as
Eqs. (6) and (7) [23].

1An IT2 FS should be called a closed IT2 FS (CIT2 FS) if {u ∈
[0, 1]|µÃ(x, u) = 1} is a closed interval for every x ∈ X [23].
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B. Type-1 fuzzy envelope of HFLTS

Recently, several proposals have been provided using lin-
guistic expressions richer than a single linguistic term [13],
[33], [35], they are not close to common language of human
being or lack of defined formalization to generate the linguistic
expressions. A new linguistic model was provided in [27] that
overcomes this limitation by using HFLTS and the context-
free grammars which provide a formal way to generate CLEs.

Definition 1. [27] Let S = {s0, ..., sg} be a linguistic term
set. A HFLTS, HS , is an ordered finite subset of the
consecutive linguistic terms of S.

To generate simple but rich linguistic expressions suitable
to provide preferences in decision making problems modeled
by means of HFLTS, a context-free grammar [2] GH was
defined in [28]. Usually the CLEs generated by the context-
free grammar GH are hard to be directly used in the processes
of CW, to tackle this issue a transformation function EGH was
defined in [27], which can transform CLEs into HFLTSs.

The concept of envelope for HFLTS was firstly provided
in form of linguistic intervals [27]. Nevertheless, the models
based on linguistic intervals loss the initial fuzzy represen-
tation for linguistic information. A type-1 fuzzy envelope of
HFLTS has been proposed to overcome this limitation [12].
Here we make a brief review on the steps to achieve the type-1
fuzzy envelope.

1. Obtain the elements to aggregate. Assume that every lin-
guistic term can be defined by a triangular membership
function, the set of elements to aggregate is
T = {aiL, aiM , ai+1

L , aiR, a
i+1
M , ai+2

L . . . , agL, a
g−1
R , agM , a

g
R}

It follows the fuzzy partitions [29] that ak−1R = akM = ak+1
L

(k = 1, 2, . . . , g − 1), hence the elements to aggregate can
be simplified as
T = {aiL, aiM , ai+1

M , . . . , agM , a
g
R}

2. Compute the parameters of the trapezoidal fuzzy member-
ship function. A trapezoidal fuzzy membership function
FHS = T (a, b, c, d) is used as the type-1 fuzzy set
representation of a CLE using HFLTS HS as a media,
where a and d can be easily computed by the min and
max operators, i.e.,
a = min{aiL, aiM , ai+1

M , . . . , ajM , a
j
R} = aiL,

d = max{aiL, aiM , ai+1
M , . . . , ajM , a

j
R} = ajR,

b and c are obtained by aggregating the remaining elements
aiM , a

i+1
M , . . . , ajM with OWA operators, i.e.,

b = OWAW s(aiM , a
i+1
M , . . . , ajM ),

d = OWAW t(aiM , a
i+1
M , . . . , ajM ),

with s, t = 1, 2, s 6= t or s = t.
3. Obtain the OWA weights. Different importance degrees

of linguistic terms are reflected by means of the OWA
weights, which can be computed as follows:

Definition 2. [8] Let α ∈ [0, 1], the first type of OWA
weights W 1 = (w1

1, w
1
2, . . . , w

1
n) is defined as

w1
1 = α, w1

2 = α(1 − α), w1
3 = α(1 − α)2, . . . , w1

n−1 =
α(1− α)n−2, w1

n = (1− α)n−1;
the second type of OWA weights W 2 = (w2

1, w
2
2, . . . , w

2
n)

is defined as

w2
1 = αn−1, w2

2 = (1− α)αn−2, w2
3 = (1− α)αn−3, . . . ,

w2
n−1 = (1− α)α, w2

n = 1− α.
4. Obtain the type-1 fuzzy envelope. Let HS be a HFLTS,

its type-1 fuzzy envelope FHS can be defined as the
trapezoidal fuzzy membership function T (a, b, c, d), i.e.,
FHS = T (a, b, c, d), where parameters a, b, c, d are
computed using the previous steps. The type-1 fuzzy mem-
bership function in accordance with FHS is denoted by
FHS (x), x ∈ X .

C. Entropy for HFLTS

Recently, Wei et al. [38] studied the entropy measures
for extended hesitant fuzzy linguistic term set (EHFLTS)
considering not only the fuzziness, but also the hesitation of
the EHFLTS. HFLTS is a special case of EHFLTS.
Taking into account that HFLTS is the only tool that will
be applied in the current work, we will deduce the entropy
measures of EHFLTS in [38] into HFLTS cases in the
following review.

Definition 3. [38] Let S = {s0, s1, . . . , sg} be a linguistic
term set, HS = {sα1

, sα2
, . . . , sαl} be a HFLTS on S. The

deviation function of a HFLTS HS is defined as:

η(HS) =
2

l(l − 1)

l−1∑

i=1

l∑

j=i+1

(I(sαj )− I(sαi)) (9)

where I(sαk) is the index of the linguistic term sαk .

Definition 4. [38] Let HS = {sα1 , sα2 , . . . , sαl} be a
HFLTS on the linguistic term set S = {s0, s1, . . . , sg}, and
H(S) be the set of all the HFLTSs on S. Let Ef , Eh, Ec :
H(S) −→ [0, 1] be three mappings, if they satisfy the following
axiomatic requirements:
(F1) Ef (HS) = 0 if and only if HS = {s0}, HS = {sg},
HS = {s0, sg};
(F2) Ef (HS) = 1 if and only if HS = {s g

2
};

(F3) Let H1
S = {sα1

, sα2
, . . . , sαl} be a HFLTS, and H2

S

be another HFLTS given by changing any element sαi(i =
1, 2, . . . , l) in H1

S to sα′i . If |I(sαi)− g
2 | ≥ |I(sα′i)−

g
2 |, then

Ef (H
1
S) ≤ Ef (H2

S);
(F4) Ef (HS) = Ef (Neg(HS)), where Neg(HS) is the
negation operator of HS ,
and
(H1) Eh(HS) = 0, if and only if HS = {sα1} (no hesitancy);
(H2) Eh(HS) = 1, if and only if HS = {s0, s1, . . . , sg}
(whole hesitancy);
(H3) Eh(H

1
S) ≤ Eh(H2

S), if η(H1
S) ≤ η(H2

S);
(H4) Eh(HS) = Eh(Neg(HS)), where Neg(HS) is the
negation operator of HS ,
and
(E1) Ec(HS) = 0 if and only if HS = {s0}, HS = {sg};
(E2) Ec(HS) = 1 if and only if HS = {s g

2
};

(E3) Let H1
S = {sα1

, sα2
, . . . , sαl} be a HFLTS, and

H2
S be another HFLTS given by changing any element

sαi(i = 1, 2, . . . , l) in H1
S to sα′i . If |I(sαi)− g

2 | ≥ |I(sα′i)−
g
2 |

and η(H1
S) ≤ η(H2

S), then Ec(H1
S) ≤ Ec(H2

S);
(E4) Ec(HS) = Ec(Neg(HS)).
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Then Ef , Eh and Ec are the fuzzy, hesitant and comprehensive
entropies of a HFLTS, respectively.

The axiomatic definition of comprehensive entropies is
actually based on the combination of fuzzy and hesitant
entropies, therefore it arises naturally that the specific calcu-
lation formulas for comprehensive entropies can be achieved
through the combination of calculation formulas of fuzzy and
hesitant entropies. It is noteworthy that a general formula to
construct the comprehensive entropies of HFLTS through
fuzzy entropies and the hesitant entropies have been provided
in [38], as well as a class of comprehensive entropies with a
parameter to control the importance degree of hesitancy when
the overall uncertainty need to be computed.

Theorem 1. [38] If a real valued function Ec : H(S) −→
[0, 1] is defined by

Ec(HS) = f(Ef (HS), Eh(HS)) (10)

where the function f : [0, 1] × [0, 1] −→ [0, 1] satisfies the
following conditions

1)f(0, 0) = 0, f(1, 0) = 1;
2)f(x, y) is strictly monotone increasing with respect to x

and y, respectively,
then Ec is a comprehensive entropy measure of the HFLTS
HS .

Define f : [0, 1] −→ [0, 1] as f(x, y) = x+βy
1+βy , β ∈ [0, 1].

Since f(x, y) satisfies the two conditions in Theorem 1, the
comprehensive entropy measure of a HFLTS, HS , can be:

Ec(HS) =
Ef (HS) + βEh(HS)

1 + βEh(HS)
(11)

with β ∈ [0, 1] that can be fixed according to the importance
of the hesitation of HS . The smaller value of β indicates that
the less hesitancy will be taken into consideration if the overall
uncertainty of HS is evaluated by using Eq. (11), while β = 0
indicates that only the fuzzy uncertainty will be considered.

III. TYPE-2 FUZZY ENVELOPE OF HFLTS

Linguistic expressions are inherently vague and uncertain,
i.e. linguistic expressions mean different things to different
people, so a qualified representation model of linguistic ex-
pressions must be able to incorporate these uncertainties. How-
ever, previous representations for CLEs based on HFLTSs
in form of linguistic intervals [12] and type-1 fuzzy set
[27] do not consider these uncertainties. To overcome this
limitation, we propose the use of a type-2 fuzzy membership
function as the representation, that is similar to the way in
which linguistic terms may be represented by type-2 fuzzy
membership functions.

One precondition to deal with the uncertainty contained
in HFLTS is the proper estimation of the uncertainty. The
current proposal is proposed based on noticing that the hesi-
tancy among linguistic terms more fuzzy will result in more
uncertainty. Here is an example to illustrate:

Example 1: Suppose that a company need to make a deci-
sion on purchase of a machine or not based on the assessment
of an expert on this machine, the linguistic term set S =

{super bad, very bad, bad, a little bad, a little good, good,
very good, super good}. If the expert provides the evalua-
tion result as HS1 = {super bad, very bad}, then the com-
pany intends to avoid this machine; if the estimation is
HS2

= {very good, super good}, then the company intends
to buy this machine. However, if the assessment is HS3

=
{a little bad, a little good}, the company may be much more
harder to make a decision on “buy it” or “not buy it”
considering the uncertainty on the general condition of the
machine.

Based on the above consideration, we obtain:

Lemma 1. The hesitancy among linguistic terms more fuzzy
will lead to more uncertainty compared with hesitancy among
linguistic terms less fuzzy.

Therefore, the hesitancy of different HFLTSs should be
treated differently when dealing with the overall uncertainty.
In this proposal, we will use the comprehensive entropies
[38] as Eq. (11) to consider two different types of uncertainty
contained in HFLTS, the hesitancy and the fuzzy uncertainty
for constructing the type-2 fuzzy envelope. Furthermore a
mechanism to determine the importance of hesitancy accord-
ing to the linguistic terms contained in HFLTS themselves
will be carried out to achieve the goal of different treatments
of hesitancy of different HFLTSs.

In the following subsections a general process to construct
the type-2 fuzzy envelope for HFLTS will be introduced and
afterwards its applications in different CLEs generated from
the context-free grammar will be discussed separately.

A. Type-2 fuzzy envelope of HFLTS: general process

Let HS = {si, si+1, . . . , sj} be a HFLTS, where sk ∈
S = {s0, . . . , sg}, k ∈ {i, . . . , j}. A three-step process is
carried out to compute the type-2 fuzzy envelope of HFLTS
(see Fig. 2).

General process to obtain the type-2 fuzzy envelope

HFLTS Type-1 fuzzy 

envelope

Estimate the 

uncertainty
Type-2 fuzzy 

envelope

Fig. 2. General process to obtain the type-2 fuzzy envelope

1. Calculate the type-1 fuzzy envelope of HFLTS. Accord-
ing to [12], reviewed in Section II.

2. Evaluate the uncertainty contained in HFLTS. Taking into
account both types of uncertainty contained in a HFLTS.
The fuzzy uncertainty determined by the deviation of the
linguistic terms contained in the HFLTS from the fuzziest
element, and the hesitancy related to the number of terms
in HFLTS and to the fuzziness of terms (see lemma 1).
Therefore, comprehensive entropies introduced in [38] can
be constructed by using fuzzy and hesitancy entropies,
which provide the advantage of controlling the importance
degree of hesitancy when evaluating the overall uncertainty.
We prefer to use this class of comprehensive entropies to
measure the uncertainty contained in the HFLTSs in order
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to perform different treatments for hesitations contained in
different HFLTSs by determining their importance de-
grees of hesitancy according to their specific characteristics
. Thus, the comprehensive entropy of a HFLTS, HS , will
be calculated by

Ec(HS) =
Ef (HS) + β(HS)Eh(HS)

1 + β(HS)Eh(HS)
, (12)

where Ef (HS) and Eh(HS) are the fuzzy and hesitant
entropy of HS , respectively. The function β(HS) repre-
sents the importance/emphasis degree of hesitancy when
evaluating the overall uncertainty contained in HS . From
Eq. (12), the larger β(HS), the greater the value of overall
uncertainty Ec(HS), because the more hesitancy is con-
sidered for computing the overall uncertainty in HS . Two
main factors will be considered for determining the value
of β(HS) according to HS :
• The number of linguistic terms contained in the
HFLTS HS ;

• The positions of the terms in the HFLTS HS .
Several principles to determine β(HS) are listed below:
P1. β(HS) = 1 if HS = {s0, s1, . . . , sg}.

If all the linguistic terms are contained in HS , the
hesitancy reaches the max, which calls for a highest
level of attention being focused on hesitancy.

P2. β(HS) = 0 if HS = {si}, si ∈ S.
If only one single linguistic term is contained in HS ,
the hesitancy reaches the min, which calls for a lowest
level of attention being focused on hesitancy. It is
noteworthy that if the value of β(HS) reaches 0, by
Eq. (12) the comprehensive entropy degenerates to the
fuzzy entropy of HS .

P3. |H ′S | > |HS | ⇒ β(H ′S) > β(HS).
It reflects that the larger number of linguistic terms
contained in HS the higher importance of hesitancy.
Keeping in mind that our goal is to evaluate the
uncertainty contained in a CLE represented by the
HFLTS HS , the larger number of terms in HS the
higher level of hesitancy of the CLE, as well as the
higher impact of hesitancy on the overall uncertainty,
which is implemented by a larger value of β(HS) when
the overall uncertainty is estimated as Ec(HS) with Eq.
(12).

P4. The change quantity of β(HS) should be positively
correlated to the fuzzy degree of the linguistic term
added in/deleted from HS , i.e.,
• Add a linguistic term sp into HS and then it turns

to H ′S , add another linguistic term sq into H ′S and
therefore it turns to H ′′S . If Ef (sp) ≤ Ef (sq), then
|β(H ′S)− β(HS)| ≤ |β(H ′′S)− β(H ′S)|;

• Delete a linguistic term sp from HS and then it turns
to H ′S , delete another linguistic term sq from H ′S
and therefore it turns to H ′′S . If Ef (sp) ≤ Ef (sq),
then |β(H ′S)− β(HS)| ≤ |β(H ′′S)− β(H ′S)|.

Lemma 1 can be implemented by controlling the
change quantity of β(HS) to be positively correlated to
the fuzzy degree of the linguistic term added in/deleted

from a given HFLTS, HS . If a term is added into a
HS , the value of β(HS) should increase, positively
correlated to the fuzzy degree of the term added,
i.e., the larger fuzzy degree of the added term, the
more importance of hesitancy; on the other hand, if
a term is deleted from HS , the decrease quantity of
β(HS) should be positively correlated to the fuzzy
degree of the terms deleted from the HFLTS, i.e.,
the more fuzzy the deleted term, the less importance
of hesitancy.

P5. β(HS) = β(Neg(HS)).
According to the axiomatic definitions, (F4) and (H4)
the fuzzy uncertainty and hesitancy contained in the
HFLTSs, HS and Neg(HS) are always the same.
Hence the importance of hesitancy should be the same
for Ec(HS) and Ec(Neg(HS)).

Our ultimate goal is to construct a suitable representation
for CLEs based on HFLTSs. For different CLEs gen-
erated from the context-free grammar which can be trans-
formed to HS , β(HS) will be defined as different functions
with respect to variables closely related to the number and
positions of the terms in HS . The functions for calculating
β(HS) provided in this proposal will satisfy principles P1-
P5, and they will always be twice differentiable with respect
to the corresponding variables in order to be easily proved
satisfying principles P3 and P4.

3. Construct the type-2 fuzzy envelope for HFLTS.
For a HFLTS HS , its type-2 fuzzy envelope, denoted as
F̃HS , will be built based on its type-1 fuzzy envelope [12],
denoted as FHS . As an initial exploration of type-2 fuzzy
envelope for HFLTS, it will be defined as an IT2 FS for
simplification of calculation.
When the type-2 fuzzy envelope F̃HS of HS is constructed,
the type-1 fuzzy envelope FHS will be used as the UMF,
and then the LMF of F̃HS determined by its UMF consid-
ering the uncertainty contained in HS , which is measured
by the comprehensive entropy Ec(HS), i.e., the LMF of
F̃HS can be presented as
µ
F̃HS

(x) = max{0, FHS (x)− Ec(HS)}, ∀x ∈ X .
An IT2 FS can be uniquely determined by its FOU ,
when the LMF and UMF are determined, the FOU is
uniquely determined, as well as the IT2 FS. By constructing
LMF and UMF using the above approach, the uncertainty
contained in HS can be approximately reflected by the
width of the FOU , and envelope can be presented as an
IT2 FS F̃HS = 1/FOU(F̃HS ) with

FOU(F̃HS ) = {(x, u) : x ∈ X,u ∈ [max{0, FHS (x)
− Ec(HS)}, FHS (x)]}.

B. Type-2 fuzzy envelope for HFLTS

Now the specific type-2 fuzzy envelopes for different CLEs
represented by HFLTSs will be discussed. A mechanism to
make different treatments for hesitancy of different CLEs will
be provided by means of calculating the importance degrees of
hesitancy for different expressions using different functions.
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1) Type-2 fuzzy envelope for the CLE “at least si”: This
expression is used by an expert when he/she hesitates among
different linguistic terms however is clear about the worst
assessment. By using the transformation function EGH , it is
easy to obtain a HFLTS as
EGH (at least si)= {si, si+1, . . . , sg}
The type-2 fuzzy envelope is computed as:

1. Compute the type-1 fuzzy envelope for the HFLTS
EGH (at least si).

a) Obtain the elements to aggregate:
T = {aiL, aiM , ai+1

M , . . . , agM , a
g
R}

b) Remaining steps refer to [12], and the constructed type-1
fuzzy envelope FEGH (at least si)(x), x ∈ X is represented
as T (aiL, b, a

g
M , a

g
R).

2. Compute the uncertainty contained in EGH (at least si).
The uncertainty of HFLTS EGH (at least si) is evaluated
by Ec(EGH (at least si)) that is computed by Eq. (15). In
this case, both the number and the positions of linguistic
terms are closely related to the label of si, i.e., i. To
define β(EGH (at least si)) as a unary function related to
independent variable i, it cannot be determined only by the
number of linguistic terms in EGH (at least si), but also by
the fuzzy degree of linguistic terms added into/deleted from
EGH (at least si), associated with the positions of linguistic
terms contained in EGH (at least si). β(EGH (at least si))
is twice differentiable with respect to i to facilitate the
discussion, while the first-order derivative and second-
order derivative are denoted by d(β(EGH (at least si)))

di and
d2(β(EGH (at least si)))

di2 , respectively.
In order to ensure principles P1-P4, β(EGH (at least si))
should fulfill the following properties:

i. β(EGH (at least si)) = 1 if i = 0.
If i→ 0, i.e., si → s0, we have |EGH (at least si)| →
|EGH (at least s0)| = |{s0, s1, . . . , sg}| = g + 1.
This property ensures that if all the linguistic terms
in S are contained in EGH (at least si), the im-
portance degree of hesitancy reaches the max, i.e.,
β(EGH (at least si)) = 1.

ii. β(EGH (at least si)) = 0 if i = g.
If i→ g, i.e., si → sg , we have |EGH (at least si)| →
|EGH (at least sg)| = |{sg}| = 1. This property en-
sures that if there is only one single term in S contained
in EGH (at least si), the importance degree of hesitancy
reaches the min, i.e., β(EGH (at least si)) = 0.

iii. d(β(EGH (at least si)))
di ≤ 0 when i ∈ [0, g].

Since the number of linguistic terms contained in
EGH (at least si) decreases when i increases, the
monotone decreasing property of β(EGH (at least si))
with respect to i ensures that the value
β(EGH (at least si)) decreases when the number
of terms in EGH (at least si) decreases.

iv. d2(β(EGH (at least si)))
di2 ≤ 0 when i ∈ [0, g2 ], and

d2(β(EGH (at least si)))
di2 ≥ 0 when i ∈ [ g2 , g].

From d2(β(EGH (at least si)))
di2 ≤ 0 when i ∈ [0, g2 ]

it is easy to obtain d(β(EGH (at least si)))
di is a mono-

tone decreasing function with respect to i ∈ [0, g2 ],
which indicates that if the left-most linguistic terms in
EGH (at least si) are deleted one by one, the decrease
quantity of β(EGH (at least si)) increases when the
left-most linguistic term si changes from s0 to s g

2

(if g is even), or changes from s0 to s g−1
2

(if g is

odd); meanwhile, from d2(β(EGH (at least si)))
di2 ≥ 0 when

i ∈ [ g2 , g] it is easy to obtain d(β(EGH (at least si)))
di is

a monotone increasing function with respect to i ∈
[ g2 , g], which indicates that if the left-most linguistic
terms are deleted one by one from EGH (at least si),
the decrease quantity of β(EGH (at least si)) decreases
when the left-most linguistic term si changes from
s g

2
to sg (if g is even), or from s g+1

2
to sg (if g is

odd). Considering the axiomatic definition of fuzzy
entropy for linguistic terms, the above properties of
d2(β(EGH (at least si)))

di2 ensure that the change quantity
of β(EGH (at least si)) is positively correlated to the
fuzzy degree of the linguistic terms being deleted from
EGH (at least si), in other words, the more fuzzy the
deleted term, the more β(EGH (at least si)) decreases.

Based on the above analysis, now we give an example
definition of β(EGH (at least si)) as Eq. (13) (see Fig. 4),
which can be easily proved satisfying above properties i-iv.
The definition method is not unique, as long as it satisfies
principles P1-P5.

β(EGH (at least si)) =
1

2
cos

π

g
i+

1

2
, i ∈ [0, g]. (13)

3. Compute the type-2 fuzzy envelope for EGH (at least si).
For the HFLTS, EGH (at least si) obtained from the CLE
“at least si”, its type-2 fuzzy envelope can be defined as
an IT2 FS
F̃EGH (at least si) = 1/FOU(F̃EGH (at least si)) with its foot-
print (see Fig. 3):

FOU(F̃EGH (at least si)) = {(x, u) : x ∈ X,u ∈ [max{0,
FEGH (at least si)(x)− Ec(EGH (at least si))},
FEGH (at least si)(x)]}.

2) Type-2 fuzzy envelope for the comparative linguistic
expression “ at most si”: This expression is used by an
expert when he/she is clear about the best assessment however
still hesitates among different linguistic terms. By using the
transformation function EGH , the HFLTS is obtained as
EGH (at most si)= {s0, s1, . . . , si}
The type-2 fuzzy envelope is computed as:

1. Compute the type-1 fuzzy envelope for the HFLTS
EGH (at most si).

a) Obtain the elements to aggregate:
T = {a0L, a0M , a1M , . . . , aiM , aiR}

b) Remaining steps refer to [12], and the constructed type-1
fuzzy envelope FEGH (at most si)(x), x ∈ X is represented
as T (a0L, a

0
M , c, a

i
R).

2. Compute the uncertainty contained in EGH (at most si).
The uncertainty of HFLTS EGH (at most si) is evaluated
by Ec(EGH (at most si)) and computed by Eq.(16). In
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1
1

1-Ec

1-Ec

1-Ec

s0
si

a
0
L=a

0
M

1

C aiM aiR aiL aiM b ajMc ajR

si sj

aiL aiM baiR

si sg

a
g
M=a

g
R

Fig. 3. FOU for type-2 fuzzy envelopes of EGH (at least si), EGH (at most si) and EGH (between si and sj)

this case, both the number and the positions of linguistic
terms contained in EGH (at most si) are closely related
to the label of si, i.e., i, we define β(EGH (at most si))
as a unary function related to independent variable i.
β(EGH (at most si)) is twice differentiable with respect
to i to facilitate the discussion, while the first-order
derivative and second-order derivative are denoted by
d(β(EGH (at most si)))

di and d2(β(EGH (at most si)))
di2 , respectively.

In order to ensure principles P1-P4, β(EGH (at most si))
should fulfill the following properties:

i. β(EGH (at most si)) = 1 if i = g.
If i → g, i.e., si → sg , then |EGH (at most si)| →
|EGH (at most sg)| = |{s0, s1, . . . , sg}| = g + 1. It
ensures that if all the terms in S are contained in
EGH (at most si), the importance degree of hesitancy
reaches the max, i.e., β(EGH (at most si)) = 1.

ii. β(EGH (at most si)) = 0 if i = 0.
If i → 0, i.e., si → s0, then |EGH (at most si)| →
|EGH (at most s0)| = |{s0}| = 1. This property en-
sures that if there is only one single term in S contained
in EGH (at most si), the importance degree of hesi-
tancy reaches the min, i.e., β(EGH (at most si)) = 0.

iii. d(β(EGH (at most si)))
di ≥ 0 when i ∈ [0, g].

As i increases, the number of terms in the HFLTS
increases. From the monotone of the first-order
derivative, it is easy to obtain that the value of
β(EGH (at most si)) increases when i increases, which
indicates that the value of β(EGH (at most si)) in-
creases when the number of terms increases.

iv. d2(β(EGH (at most si)))
di2 ≥ 0 when i ∈ [0, g2 ], and

d2(β(EGH (at most si)))
di2 ≤ 0 when i ∈ [ g2 , g].

From the negative and positive of the second-
order derivative, we obtain that the first-order
derivatived(β(EGH (at most si)))

di is a monotone increas-
ing function with respect to i ∈ [0, g2 ], which
ensures that if new linguistic terms are added to
EGH (at most si) from the right side, the increase
quantity of β(EGH (at most si)) increases when the
right-most linguistic term changes from s0 to s g

2
(if

g is even), or changes from s0 to s g−1
2

(if g is

odd); meanwhile, d(β(EGH (at most si)))
di is a monotone

decreasing function with respect to i on domain [ g2 , g],
which ensures that if new linguistic terms are added
to EGH (at most si) from the right side, the increase

quantity of β(EGH (at most si)) decreases when the
right-most linguistic term changes from s g

2
to sg (if

g is even), or changes from s g−1
2

to sg (if g is odd).

The above properties of d2(β(EGH (at most si)))
di2 ensure

that the increase quantity of β(EGH (at most si)) is
positively correlated to the fuzzy degree of the lin-
guistic term being added in EGH (at most si), that is,
the more fuzzy the added linguistic term is, the more
β(EGH (at most si)) increases.

Based on the above analysis, now we offer an example
definition of β(EGH (at most si)) as Eq. (14) (see Fig. 4),
which can be easily proved satisfying above properties i-iv.
The definition method is not unique, as long as it satisfies
principles P1-P5.

β(EGH (at most si)) =
1

2
sin(

π

g
i−π

2
)+

1

2
, i ∈ [0, g]. (14)

g=10 g=20 g=30 g=40 g=50

Fig. 4. β(EGH (at least si)) defined by Eq.(13) and β(EGH (at most si))
defined by Eq. (14), when g = 10, 20, . . . , 50.

3. Compute the type-2 fuzzy envelope for EGH (at most si).
For the HFLTS, EGH (at most si) obtained from the CLE
“at most si”, its type-2 fuzzy envelope can be defined as
an IT2 FS
F̃EGH (at most si) = 1/FOU(F̃EGH (at most si)) with its foot-
print (see Fig. 3):

FOU(F̃EGH (at most si)) = {(x, u) : x ∈ X,u ∈ [max{0,
FEGH (at most si)(x)− Ec(EGH (at most si))},
FEGH (at most si)(x)]}.

3) Type-2 fuzzy envelope for the CLE “ between si and
sj”: This expression hesitates among different linguistic terms
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Ec(EGH (at least si)) =
Ef (EGH (at least si)) + β(EGH (at least si)) · Eh(EGH (at least si))

1 + β(EGH (at least si)) · Eh(EGH (at least si))
(15)

Ec(EGH (at most si)) =
Ef (EGH (at most si)) + β(EGH (at most si)) · Eh(EGH (at most si))

1 + β(EGH (at most si)) · Eh(EGH (at most si))
(16)

Ec(EGH (between si and sj))=
Ef (EGH (between si and sj)) + β(EGH (between si and sj)) · Eh(EGH (between si and sj))

1+β(EGH (between si and sj))·Eh(EGH (between si and sj))
(17)

but the best and worst assessments are clear. By using the
transformation function, we obtain the HFLTS as
EGH (between si and sj)={si, si+1, . . . , sj}.
The type-2 fuzzy envelope is computed as:

1. Compute the type-1 fuzzy envelope for the HFLTS
EGH (between si and sj).

a) Obtain the elements to aggregate:
T = {aiL, aiM , ai+1

M , . . . , ajM , a
j
R}

b) Remaining steps refer to [12], and the constructed type-
1 fuzzy envelope, FEGH (between si and sj)(x), x ∈ X is
represented as T (aiL, b, c, a

j
R).

2. Compute the uncertainty in EGH (between si and sj).
The uncertainty of HFLTS EGH (between si and sj) is
evaluated as Ec(EGH (between si and sj)) and computed
by Eq. (17). In this case, both the number and the positions
of terms in the HFLTS EGH (between si and sj) are
actually determined by the positions of si and sj , in order
to construct a link between β(EGH (between si and sj))
and the number of linguistic terms contained in
EGH (between si and sj), as well as the positions of lin-
guistic terms contained in EGH (between si and sj), we de-
fine β(EGH (between si and sj)) as a function of two vari-
ables, i and j. β(EGH (between si and sj)) is twice differ-
entiable with respect to i and j respectively. The first-order
partial derivative and second-order partial derivative with
respect to i are denoted by ∂(β(EGH (between si and sj)))

∂i and
∂2(β(EGH (between si and sj)))

∂i2 , respectively, while the first-
order partial derivative and second-order partial derivative
with respect to j are denoted by ∂(β(EGH (between si and sj)))

∂j

and ∂2(β(EGH (between si and sj)))
∂j2 , respectively.

To ensure principles P1-P4, β(EGH (between si and sj))
should fulfill some properties which will be shown in three
different cases as follows:

a) if

0 ≤ i ≤ g

2
≤ j ≤ g.

β(EGH (between si and sj)) should satisfy the following
properties:

i. if i = 0, j = g, β(EGH (between si and sj)) = 1;
ii. if i = j = g

2 , β(EGH (between si and sj)) = 0;
iii. (1) ∂(β(EGH (between si and sj)))

∂i ≤ 0 (i ∈ [0, g2 ]),
(2)∂(β(EGH (between si and sj)))

∂j ≥ 0 (j ∈ [ g2 , g]);
If j is already determined, the larger i, the less

number of terms in the HFLTS. From iii. (1),
β(EGH (between si and sj)) is monotonically de-
creasing on the independent variable i, which en-
sures that β(EGH (between si and sj)) decreases
when the number of terms in a HFLTS decreases;
If i is determined, the larger j, the more
number of terms in the HFLTS. From iii.
(2), β(EGH (between si and sj)) is monotoni-
cally increasing on the independent variable j,
which ensures that the importance of hesitancy
β(EGH (between si and sj)) increases with the
growth of terms in a HFLTS;

iv. (1)∂
2(β(EGH (between si and sj)))

∂i2 ≤ 0 (i ∈ [0, g2 ]),

(2)∂
2(β(EGH (between si and sj)))

∂j2 ≤ 0 (j ∈ [ g2 , g]).
From iv. (1), suppose that j is a fixed value,
∂(β(EGH (between si and sj)))

∂i is monotonically
decreasing with respect to i ∈ [0, g2 ],
which ensures that the decrease quantity of
β(EGH (between si and sj)) increases when the
left-most linguistic term changes from s0 to s g

2
(if

g is even), or changes from s0 to s g−1
2

(if g is odd).
From the axiomatic definition of fuzzy entropy
for linguistic terms, that means if the left-most
linguistic terms are deleted one by one from a
HFLTS, the more fuzzy the deleted term, the
more β(EGH (between si and sj)) decreases.
From iv. (2), suppose that i is a fixed value,
∂(β(EGH (between si and sj)))

∂j is monotonically
decreasing with respect to j ∈ [ g2 , g],
which ensures that the increase quantity of
β(EGH (between si and sj)) decreases when the
right-most linguistic term changes from s g

2
to sg

(if g is even), or changes from s g+1
2

to sg (if g is
odd), that is, if linguistic terms are added one by
one into EGH (between si and sj) from the right
hand end, the less fuzzy the added linguistic term
is, the less β(EGH (between si and sj)) increases.

b) if
0 ≤ i ≤ j ≤ g

2
.

β(EGH (between si and sj)) should satisfy the following
properties:

i. if i = 0, j = g
2 , β(EGH (between si and sj)) = 1

2 ;
ii. if i = j, β(EGH (between si and sj)) = 0;



4. Publications 127

9

iii. (1)∂(β(EGH (between si and sj)))
∂i ≤ 0 (i ∈ [0, g2 ]),

(2)∂(β(EGH (between si and sj)))
∂j ≥ 0 (j ∈ [0, g2 ]);

iv. (1) ∂2(β(EGH (between si and sj)))
∂i2 ≤ 0 (i ∈ [0, g2 ]),

(2)∂
2(β(EGH (between si and sj)))

∂j2 ≥ 0 (j ∈ [0, g2 ]).
Here we only illustrate property iv. (2):
From iv. (2), ∂(β(EGH (between si and sj)))

∂j is
monotonically increasing with respect to j ∈ [0, g2 ],
which ensures that the increase quantity of
β(EGH (between si and sj)) increases when right-
most linguistic term sj changes from s0 to s g

2
(if g

is even), or changes from s0 to s g−1
2

(if g is odd),
that is, if linguistic terms are one by one added
into EGH (between si and sj) from the right hand
end, the more fuzzy the added linguistic term is,
the more β(EGH (between si and sj)) increases.

c) if
g

2
≤ i ≤ j ≤ g.

β(EGH (between si and sj)) should satisfy the following
properties:

i. if i = g
2 , j = g, β(EGH (between si and sj)) = 1

2 ;
ii. if i = j, β(EGH (between si and sj)) = 0;

iii. (1)∂(β(EGH (between si and sj)))
∂i ≤ 0 (i ∈ [ g2 , g]),

(2)∂(β(EGH (between si and sj)))
∂j ≥ 0 (j ∈ [ g2 , g]);

iv. (1)∂
2(β(EGH (between si and sj)))

∂i2 ≥ 0 (i ∈ [ g2 , g]),

(2)∂
2(β(EGH (between si and sj)))

∂j2 ≤ 0 (j ∈ [ g2 , g]).
Here we only illustrate property iv. (1):
From iv. (1), ∂(β(EGH (between si and sj)))

∂i is
monotonically increasing with respect to i ∈ [ g2 , g],
which ensures that the decrease quantity of
β(EGH (between si and sj)) decreases when the
left-most linguistic term changes from s g

2
to sg

(if g is even), or changes from s g+1
2

to sg (if g is
odd), that is, if the left-most linguistic terms are
one by one deleted from EGH (between si and sj),
the less fuzzy the deleted linguistic term is, the less
β(EGH (between si and sj)) decreases.

Remark 1. The property iv in cases (a)-(c)
can only ensure that the change quantity of
β(EGH (between si and sj)) is positively related
to the fuzzy degree of linguistic terms added to/deleted
from EGH (between si and sj) from one single
side. A supplementary condition to ensure that
β(EGH (between si and sj)) satisfies principle P4 is
needed, that is, if linguistic terms are respectively
added into EGH (between si and sj) from the right side
and from the left side, as long as the fuzzy degree of
added linguistic term is larger, the increase quantity
of β(EGH (between si and sj)) will be larger. This
supplementary condition can be formalized as follows:
(1) β(EGH (between si−1 and sj))-β(EGH (between si

and sj)) = β(EGH (between si and sj+1))-

β(EGH (between si and sj)) if Ef (si−1) =
Ef (sj+1), i, j ∈ {1, 2, . . . , g − 1} and i ≤ j.

(2) β(EGH (between si−1 and sj))-β(EGH (between
si and sj))<β(EGH (between si and sj+1))-
β(EGH (between si and sj)) if Ef (si−1) <
Ef (sj+1), i, j ∈ {1, 2, . . . , g − 1} and i ≤ j.

(3) β(EGH (between si−1 and sj))-β(EGH (between
si and sj))>β(EGH (between si and sj+1))-
β(EGH (between si and sj)) if Ef (si−1) >
Ef (sj+1), i, j ∈ {1, 2, . . . , g − 1} and i ≤ j.

Based on the above analysis, an example of
β(EGH (between si and sj)) is presented as Eq.
(18), which can be easily proved satisfying properties
i-iv in cases (a)-(c) and satisfying the supplementary
condition in Remark 1 as will be shown in Theorem
2. The formula is not unique, as long as it satisfies
principles P1-P5.

β(EGH (between si and sj))=
1

2
cos

π

g
i+

1

2
sin(

π

g
j − π

2
),

i, j ∈ [0, g].
(18)

Theorem 2. β(EGH (between si and sj)) calculated by
Eq. (18) satisfies the condition in Remark 1.

Proof. The proof can be found in Appendix A.

3. Compute the type-2 fuzzy envelope for
EGH (between si and sj). For the HFLTS,
EGH (between si and sj) obtained from the CLE
“between si and sj”, its type-2 fuzzy envelope can be
defined as an IT2 FS

F̃EGH (between si and sj) = 1/FOU(F̃EGH (between si and sj))

whose footprint is (see Fig. 3):

FOU(F̃EGH (between si and sj)) = {(x, u) : x ∈ X,u ∈
[max{0, FEGH (between si and sj)(x)− Ec(EGH
(between si and sj))}, FEGH (between si and sj)(x)]}.

Several theorems to support the mechanism to determine the
importance degree of hesitancy by means of Eqs. (13), (14)
and (18) are provided.

Theorem 3. If β(EGH (at most si)) is calculated by Eq. (14)
and β(EGH (between s0 and si)) is calculated by Eq. (18),
then β(EGH (at most si))= β(EGH (between s0 and si)), i ∈
{0, 1, . . . , g}.
Proof. β(EGH (between s0 and si)) =1

2cos0+
1
2sin(

π
g i− π

2 ) =
1
2 + 1

2sin(
π
g i− π

2 )=β(EGH (at most si)).

Theorem 4. If β(EGH (at least si)) is calculated by Eq. (13)
and β(EGH (between si and sg)) is calculated by Eq. (18),
then β(EGH (at least si))= β(EGH (between si and sg)), i ∈
{0, 1, . . . , g}.
Proof. β(EGH (between si and sg)) = 1

2cos
π
g i +

1
2sin(

π
g g −

π
2 ) =

1
2cos

π
g i +

1
2sin

π
2 = 1

2cos
π
g i +

1
2=β(EGH (at least si)).
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Remark 2. Noticing that EGH (at most si)=EGH (between
s0 and si) and EGH (at least si) = EGH (between si and sg),
from theorems 3 and 4, we conclude that Eqs. (13), (14) and
(18) are consistent.

Theorem 5. If β(EGH (at most si)) is calculated by Eq.
(14) and β(EGH (at least sg−i)) is calculated by Eq. (13),
then β(EGH (at most si))= β(EGH (at least sg−i)), i ∈
{0, 1, . . . , g}.
Proof. β (EGH (at least sg−i))= 1

2cos(
π
g (g − i)) + 1

2 =
1
2cos(π − π

g i) +
1
2 = − 1

2cos
π
g i +

1
2 = − 1

2sin(
π
2 + π

g i) +
1
2 = − 1

2sin(π + (πg i − π
2 )) + 1

2 = 1
2sin(

π
g i − π

2 ) +
1
2=β(EGH (at most si)).

Theorem 6. If β(EGH (between si and sj)) and
β(EGH (between sg−j and sg−i)) are calculated by Eq.
(18), then β(EGH (between si and sj))=β(EGH (between sg−j
and sg−i)), i, j ∈ {0, 1, . . . , g} and i ≤ j.
Proof. β(EGH (between sg−j and sg−i)) = 1

2cos(
π
g (g − j)) +

1
2sin(

π
g (g− i)− π

2 ) =
1
2cos(π− π

g j) +
1
2sin(π− π

g i− π
2 ) =

1
2cos(

π
2 − (πg j − π

2 )) +
1
2sin(

π
g i +

π
2 ) = 1

2sin(
π
g j − π

2 ) +
1
2cos

π
g i=β(EGH (between si and sj)).

Remark 3. Noticing that EGH (at most si)=
Neg(EGH (at least sg−i)) and EGH (between si and sj)
= Neg(EGH (between sg−j and sg−i)), from theorems 5
and 6 it is obvious that the importance degrees of hesitancy
obtained by Eqs. (13), (14) and (18) satisfy principle P5.
For future formulas computing the importance degrees
of hesitancy that will replace Eqs. (13), (14) and (18),
they should satisfy β(EGH (at most si))= β(EGH (at least
sg−i)), i ∈ {0, 1, . . . , g} and β(EGH (between si and
sj))=β(EGH (between sg−j and sg−i)), i, j ∈ {0, 1, . . . , g}
and i ≤ j in order to satisfy principle P5.

IV. COMPUTING THE TYPE-2 FUZZY ENVELOPES:
ILLUSTRATIVE EXAMPLES

Let us reconsider the example illustrated in [12] that pre-
sented type-1 fuzzy envelopes for CLEs, the type-2 fuzzy
envelopes for such expressions generated by the context-free
grammar GH will be introduced as below.

Example 2 Let S = {s0 : nothing, s1 : very bad, s2 :
bad, s3 : medium, s4 : good, s5 : very good, s6 : perfect} be a
linguistic term set shown in Fig. 5.

nothing very bad bad medium good very good perfect

0 0.17 0.33 0.5 0.67 0.83 1

Fig. 5. The linguistic term set S = {s0, s1, . . . , s6}

In this example, we will adopt the measures proposed
in [38] to estimate the fuzzy entropy of HFLTS HS =

{sα1
, sα2

, . . . , sαl} by Ef (HS) = 1
l

∑l
i=1 4

I(sαi )

g (1 −

I(sαi )

g ), and the hesitant entropy of HS by Eh(HS) =
1
gη(HS), where η(HS) is calculated by Eq. (9).

Several type-2 fuzzy envelopes for HFLTSs transformed
from different CLEs are computed as follows.
• Type-2 fuzzy envelope for the HFLTS
EGH (at least s4) = {s4, s5, s6} corresponds to
ll1 = at least s4.

1. The type-1 fuzzy envelope for EGH (at least s4) is
FEGH (at least s4) = T (0.5, 0.85, 1, 1).

2. It is easy to obtain that
Ef (EGH (at least s4)) = 1

3 ×
∑3
i=1 4

I(sαi )

6 (1 −
I(sαi )

6 ) ≈ 0.48 (sα1
= s4, sα2

= s5, sα3
= s6);

Eh(EGH (at least s4)) = 1
6 × 2

3(3−1) ×∑2
i=1

∑3
j=i+1(I(sαj ) − I(sαi)) ≈ 0.22

(sα1
= s4, sα2

= s5, sα3
= s6);

β(EGH (at least s4)) = 1
2cos(

π
6 × 4) + 1

2 = 0.25 by
Eq. (13),
therefore Ec(EGH (at least s4)) ≈ 0.51 by Eq. (15).

3. The type-2 fuzzy envelope is given as an IT2 FS
F̃EGH (at least s4) = 1/FOU(F̃EGH (at least s4))
with its footprint (see Fig. 6)

FOU(F̃EGH (at least s4)) = {(x, u) : x ∈ [0, 1], u ∈ [max

{0, FEGH (at least s4)(x)− 0.51}, FEGH (at least s4)(x)]}

nothing very bad bad medium good very good perfect

0 0.17 0.33 0.5 0.67 0.83 10.85

1

0.49

Fig. 6. FOU for the type-2 fuzzy envelope of the HFLTS corresponds to
ll1

• Type-2 fuzzy envelope for the HFLTS
EGH (at most s2) = {s0, s1, s2} corresponds to
ll2 = at most s2, EGH (between s3 and s5) = {s3, s4, s5}
corresponds to ll3 = between s3 and s5 and
EGH (between s4 and s6) = {s4, s5, s6} corresponds
to ll4 = between s4 and s6 can be found in the
supplementary material Appendix B.

V. COMPARISONS ON APPLICATIONS OF TYPE-1 AND
TYPE-2 FUZZY ENVELOPES IN DECISION MAKING.

In this section, we will make a comparison on the appli-
cations of type-1 fuzzy envelopes and type-2 fuzzy envelopes
in decision making and show the advantages of the use of
type-2 fuzzy envelopes through reconsidering the multi-criteria
decision making problem in [12].

Example 3 Suppose that the manager of a company wants
to select a material supplier to purchase some key components
of a new product. After preliminary screening, four alternatives
X = {x1, x2, x3, x4} remained in the candidate list. The con-
sidered criteria are C = {c1 = quality, c2 = delivery speed}.
Because of the lack of information and knowledge about
problem, the manager hesitates among several linguistic terms
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therefore use CLEs close to the natural language used by
human beings in decision making problems. To do so, the
context-free grammar GH in [28] and the linguistic term set
S = {s0 : nothing (N), s1 : very bad (VB), s2 : bad (B), s3 :
medium (M), s4 : good (G), s5 : very good (VG), s6 :
perfect (P)} are used. The assessments provided for this prob-
lem are shown in Table I.

To avoid the interference induced by different treatment
methodologies for cost criteria in different fuzzy TOPSIS ap-
proaches, only benefit criteria have been adopted. Meanwhile,
the weights of all criteria are supposed to be equal in order to
make the comparison feasible. It is based on the consideration
that type-1 fuzzy TOPSIS schemes are usually carried out
with setting the weights of criteria type-1 fuzzy numbers
[1], [3], [14], [37], [36], type-2 fuzzy TOPSIS schemes are
usually carried out with setting the weights of criteria type-
2 fuzzy numbers [4], [5], [6], [11], [31], however it will be
unreasonable to make the comparison of the applications of
type-1 and type-2 envelopes in a decision making problem if
the weights of criteria are in different forms.

The CLEs (rating) for alternative xi (i ∈ {1, 2, 3}) with
respect to criteria cj (j ∈ {1, 2}) are denoted by llij (i ∈
{1, 2, 3}, j ∈ {1, 2}) and shown in Table I. The corresponding
HFLTS F̃EGH (llij) of these CLEs are shown in Table II.

TABLE I
ASSESSMENTS (I) OF THE PROBLEM.

- c1 c2
x1 between B and M between B and M
x2 at most B at least G
x3 between M and G between B and M
x4 between B and V G between V B and G

TABLE II
HFLTSs GENERATED FROM THE CLES.

- c1 c2
x1 {B,M} {B,M}
x2 {N,V B,B} {G,V G, P}
x3 {M,G} {B,M}
x4 {B,M,G, V G} {V B,B,M,G}

Now we handle this problem with type-1 fuzzy envelopes
of linguistic expressions by using the approach in [12], which
actually follows the fuzzy TOPSIS model in [3].

The calculation process can be found in the supplementary
material Appendix C, the alternatives are ranked according to
their closeness coefficients:
x1 ≺ x2 = x3 = x4.
Therefore, the best alternative is x2 or x3 or x4.
In [6], an interval type-2 trapezoidal fuzzy TOPSIS method

has been proposed for dealing with fuzzy decision making
problems. By conducting several comparisons with other inter-
val type-2 fuzzy multiple criteria decision analysis approaches,
they proved that their method is easy to implement and
produces effective and valid results for solving multiple criteria
decision-making problems. Since the type-2 fuzzy envelopes
proposed in the current work are also interval type-2 trape-

zoidal fuzzy numbers (IT2TrFN), we can handle the problem
in this example by using their method.

The calculation process can be found in the supplementary
material Appendix D, the alternatives are ranked according to
the likelihood based closeness coefficients:
x1 ≺ x4 ≺ x3 ≺ x2.
Therefore, the best alternative is x2.
Some other examples can be found in the supplementary

material Appendix E.
Analysis:
The use of type-2 fuzzy envelope is consistent with type-

1 fuzzy envelope in obtaining best result. However, through
the above example it is shown that in situations when two
alternatives cannot be distinguished by using type-1 fuzzy
envelope, the use of type-2 envelope provides a more precise
result. It is determined by the fact that, compared with type-
1 fuzzy envelope, the construction of type-2 fuzzy envelope
considers more comprehensive information contained in lin-
guistic expressions, taking better use of the linguistic uncer-
tainties which have been reflected by the fuzzy uncertainty
and hesitancy of the HFLTSs. That is, compared with type-
1 TOPSIS cooperates with type-1 fuzzy envelope of CLEs,
type-2 TOPSIS cooperates with type-2 fuzzy envelope of
such expressions (with closeness coefficient as crisp values)
perform better in reducing information loss in the decision
process, that is the reason why it achieves more accurate
decision result.

VI. CONCLUSIONS AND FUTURE WORKS

The use of CLEs based on context-free grammars and
HFLTSs has already provided some successful applications
in linguistic decision making. The context-free grammar pro-
vides the generative mechanism for comparative linguistic
preferences, meanwhile the use of HFLTSs provides a
manner to present CLEs by using several consecutive lin-
guistic terms. In order to facilitate the CW process using
CLEs presented by HFLTSs, it is necessary to figure out
a suitable representation model which is capable to deal with
the uncertainty contained in such expressions. To reach this
goal, in the current work,
• A reasonable and effective way to estimate the uncer-

tainties contained in HFLTSs has been provided, taking
into account both the fuzzy uncertainty and the hesitancy.

• A new fuzzy envelope of HFLTSs in form of IT2
FSs has been constructed based on its type-1 fuzzy
envelope, which can be successfully used to deal with
the uncertainty contained in a HFLTS.

• By means of transforming CLEs to HFLTSs and then
construct the type-2 fuzzy envelopes of HFLTSs, a
representation method for CLEs in form of IT2 FSs has
been achieved.

In the future, we plan to work on the following issues.
• Considering that linguistic decision making problems

require CLEs in real life cases, it would be promising
to study the application of the proposed representation
for CLEs in the information representation process and
the CW process of such problems.
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• New group decision making models will be developed
that manage complex linguistic preference information
presented as CLEs by means of type-2 fuzzy envelopes.

• Since IT2 FSs are special cases of general T2 FSs, it
would be interesting to see how the envelope can be
extended to generate general T2 FS models for CLEs.
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APPENDIX A
THE PROOF FOR THEOREM 2.

(1) If Ef (si−1) = Ef (sj+1), considering i ≤ j, by the
axiomatic definition of fuzzy entropy for linguistic terms in
[38], we obtain (i − 1) + (j + 1) = g, i.e. i + j = g. It is
easy to prove that 1

2cos
π
g (i−1)+ 1

2sin(
π
g j− π

2 ) =
1
2cos

π
g i+

1
2sin(

π
g (j + 1) − π

2 ), that is, β(EGH (between si−1 and sj))
= β(EGH (between si and sj+1)), then β(EGH (between si−1
and sj))-β(EGH (between si and sj))=β(EGH (between si and
sj+1))-β(EGH (between si and sj)).
(2) From the axiomatic definition of fuzzy entropy of lin-
guistic terms, there are only two possibilities for Ef (si−1) <
Ef (sj+1):

(i) 0 ≤ i− 1 < i ≤ j < j + 1 ≤ g
2 .

We only need to prove β(EGH (between si−1 and
sj))<β(EGH (between si and sj+1)),
i.e., 1

2cos
π
g (i − 1) + 1

2sin(
π
g j − π

2 ) < 1
2cos

π
g i +

1
2sin(

π
g (j + 1)− π

2 ),
i.e., 1

2cos
π
g (i − 1) − 1

2cos
π
g i <

1
2sin(

π
g (j + 1) − π

2 ) −
1
2sin(

π
g j − π

2 ),
i.e., 1

2sin(
π
g i− π

2 )− 1
2sin(

π
g (i− 1)− π

2 ) <
1
2sin(

π
g (j+

1)− π
2 )− 1

2sin(
π
g j − π

2 ).
Construct a function f(x) = 1

2sin(
π
g x − π

2 ), it is easy
to obtain f ′(x) = 1

2 · πg · cos(πg x − π
2 ) ≥ 0, x ∈ [0, g2 ]

and f ′′(x) = − 1
2 · π

2

g2 · sin(πg x− π
2 ) ≥ 0, x ∈ [0, g2 ], that

indicates f(x) is an increase function and its increase
quantity increases when x changes from 0 to g

2 , since
i − 1 < j, it is obvious that f(x) changes more when
x changes from j to j + 1 than it changes from i − 1
to i, that is, 1

2sin(
π
g i − π

2 ) − 1
2sin(

π
g (i − 1) − π

2 ) <
1
2sin(

π
g (j + 1)− π

2 )− 1
2sin(

π
g j − π

2 ).
(ii) 0 ≤ i − 1 < i ≤ g

2 ≤ j < j + 1 ≤ g and
g
2 − (i− 1) > (j + 1)− g

2 , i.e., j < g − i.
From (1) we obtain that β(EGH (between si−1 and
sg−i))-β(EGH (between si and sg−i))= β(EGH (between
si and sg−i+1))-β(EGH (between si and sg−i)) since
Ef (si−1) = Ef (sg−i+1) by the axiomatic definition of
fuzzy entropy for linguistic terms and the definition of
negation operator of a linguistic term in [38].
Considering 1 ≤ i ≤ g

2 ≤ j < g − i, it is easy to obtain
g
2 < j+1 < g− i+1. Refer to the analysis for property
iv. (2) in case (a), when si is fixed, β(EGH (between
si and sg−i+1))-β(EGH (between si and sg−i)) <
β(EGH (between si and sj+1))-β(EGH (between si and
sj)) since Ef (sg−i+1) < Ef (sj+1).
By Eq. (18), it is easy to prove β(EGH (between si−1
and sj))-β(EGH (between si and sj)) = β(EGH (between
si−1 and sg−i))-β(EGH (between si and sg−i)).
Based on the above considerations, we obtain that
β(EGH (between si−1 and sj))-β(EGH (between
si and sj)) = β(EGH (between si−1 and sg−i))-
β(EGH (between si and sg−i))= β(EGH (between
si and sg−i+1))-β(EGH (between si and sg−i)) <
β(EGH (between si and sj+1))-β(EGH (between si and
sj)).

(3) It can be proved in a similar way of (2).
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SUPPLEMENTARY MATERIAL

APPENDIX B
COMPUTING THE TYPE-2 FUZZY ENVELOPES:

ILLUSTRATIVE EXAMPLES

• Type-2 fuzzy envelope for the HFLTS
EGH (at most s2) = {s0, s1, s2} corresponds to
ll2 = at most s2.

1. The type-1 fuzzy envelope for EGH (at most s2) is
FEGH (at most s2) = T (0, 0, 0.15, 0.5).

2. It is easy to obtain that
Ef (EGH (at most s2)) = 1

3 ×
∑3
i=1 4

I(sαi )

6 (1 −
I(sαi )

6 ) ≈ 0.48 (sα1
= s0, sα2

= s1, sα3
= s2);

Eh(EGH (at most s2)) = 1
6 × 2

3(3−1) ×∑2
i=1

∑3
j=i+1(I(sαj ) − I(sαi)) ≈ 0.22

(sα1
= s0, sα2

= s1, sα3
= s2);

β(EGH (at most s2)) = 1
2sin(

π
6 × 2− π

2 ) +
1
2 = 0.25

by Eq. (14),
therefore Ec(EGH (at most s2)) ≈ 0.51 by Eq. (16).
If the result of theorem 5 is used, the computation can
be significantly simplified.

3. The type-2 fuzzy envelope is given as an IT2 FS
F̃EGH (at most s2) = 1/FOU(F̃EGH (at most s2))
with its footprint (see Fig. 7)

FOU(F̃EGH (at most s2)) = {(x, u) : x ∈ [0, 1], u ∈ [max

{0, FEGH (at most s2)(x)− 0.51}, FEGH (at most s2)(x)]}.

nothing very bad bad medium good very good perfect

0 0.17 0.33 0.5 0.67 0.83 1

1

0.49

0.15

Fig. 7. FOU for the type-2 fuzzy envelope of the HFLTS corresponds to
ll2

• Type-2 fuzzy envelope for the HFLTS
EGH (between s3 and s5) = {s3, s4, s5} corresponds to
ll3 = between s3 and s5.

1. The type-1 fuzzy envelope for
EGH (between s3 and s5) is
FEGH (between s3 and s5) = T (0.33, 0.64, 0.70, 1).

2. It is easy to obtain that
Ef (EGH (between s3 and s5)) = 1

3×
∑3
i=1 4

I(sαi )

6 (1−
I(sαi )

6 ) ≈ 0.82 (sα1
= s3, sα2

= s4, sα3
= s5);

Eh(EGH (between s3 and s5)) = 1
6 × 2

3(3−1) ×∑2
i=1

∑3
j=i+1(I(sαj ) − I(sαi)) ≈ 0.22 (sα1

=
s3, sα2 = s4, sα3 = s5);
β(EGH (between s3 and s5)) = 1

2cos(
π
6 × 3) +

1
2sin(

π
6 × 5− π

2 ) ≈ 0.43 by Eq. (18),
therefore Ec(EGH (between s3 and s5)) ≈ 0.84 by Eq.
(17).

3. The type-2 fuzzy envelope is given as an IT2 FS

F̃EGH
(between s3 and s5)=1/FOU(F̃EGH

(between s3 and s5))

with its footprint (see Fig. 8)

FOU(F̃EGH (between s3 and s5)) = {(x, u) : x ∈ [0, 1],

u ∈ [max{0, FEGH (between s3 and s5)(x)− 0.84},
FEGH (between s3 and s5)(x)]}.

nothing very bad bad medium good very good perfect

0 0.17 0.33 0.5 0.67 0.83 1

1

0.16

0.15
0.64 0.70

Fig. 8. FOU for the type-2 fuzzy envelope of the HFLTS corresponds to
ll3

• Type-2 fuzzy envelope for the HFLTS
EGH (between s4 and s6) = {s4, s5, s6} corresponds to
ll4 = between s4 and s6.

1. The type-1 fuzzy envelope for
EGH (between s4 and s6) is
FEGH (between s4 and s6) = T (0.5, 0.80, 0.86, 1).

2. It can be easily obtained that
Ef (EGH (between s4 and s6)) ≈ 0.48,
Eh(EGH (between s4 and s6)) ≈ 0.22, and
β(EGH (between s4 and s6)) = 1

2cos(
π
6 × 4) +

1
2sin(

π
6 × 6− π

2 ) = 0.25 by Eq. (18),
therefore Ec(EGH (between s4 and s6)) ≈ 0.51 by
Eq. (17).

3. The type-2 fuzzy envelope is given as an IT2 FS

F̃EGH
(between s4 and s6) = 1/FOU(F̃EGH

(between s4 and s6)).

with its footprint (see Fig. 9)

FOU(F̃EGH (between s4 and s6)) = {(x, u) : x ∈ [0, 1],

u ∈ [max{0, FEGH (between s4 and s6)(x)− 0.51},
FEGH (between s4 and s6)(x)]}.

nothing very bad bad medium good very good perfect

0 0.17 0.33 0.5 0.67 0.83 1

1

0.49

0.80 0.86

Fig. 9. FOU for the type-2 fuzzy envelope of the HFLTS corresponds to
ll4

In the above example, the HFLTS, {s4, s5, s6} occupies
two different type-1 fuzzy envelope FEGH (at least s4) =
T (0.5, 0.85, 1, 1) and FEGH (between s4 and s6) =
T (0.5, 0.80, 0.86, 1), meanwhile it occupies different type-2
fuzzy envelope F̃EGH (at least s4) and F̃EGH (between s4 and s6),
according to different CLEs it represents. In real life cases,
we believe that the representations of “at least s4” and
“between s4 and s6” should be different, since “at least s4”
and “between s4 and s6” means different things according
to human-being’s cognition/intuition. However, these two
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different linguistic expressions are translated into the same
HFLTS by using the transform function EGH . It is caused by
the information losing during the transforming process from
linguistic expressions to HFLTS. Constructing different
envelopes for HFLTS according to corresponding CLEs is
a good way to reduce this kind of information losing.

APPENDIX C
THE CALCULATION PROCESS FOR DECISION MAKING WITH

TYPE-1 FUZZY ENVELOPES OF HFLTSs.

(1) Transform the CLEs into HFLTSs and their type-1 fuzzy
envelopes.
The type-1 fuzzy envelopes for HFLTSs transformed
from CLEs can be listed as follows:
FEGH (ll11) = (0.17, 0.33, 0.5, 0.67);
FEGH (ll12) = (0.17, 0.33, 0.5, 0.67);
FEGH (ll21) = (0, 0, 0.15, 0.5);
FEGH (ll22) = (0.5, 0.85, 1, 1);
FEGH (ll31) = (0.33, 0.5, 0.67, 0.83);
FEGH (ll32) = (0.17, 0.33, 0.5, 0.67);
FEGH (ll41) = (0.17, 0.43, 0.73, 1);
FEGH (ll42) = (0, 0.27, 0.57, 0.83).
The above type-1 fuzzy envelopes remain unchanged after
normalization and therefore the normalization process is
omitted here.

(2) Calculate the distance from the type-1 fuzzy envelope of
each HFLTS to the fuzzy positive ideal solution A+ =
(T (1, 1, 1, 1), T (1, 1, 1, 1)), and the fuzzy negative ideal
solution A− = (T (0, 0, 0, 0), T (0, 0, 0, 0)).
The same geometrical distance [9] as in [12] is adopted
here to calculate the distances, and the distances are listed
as follows:
D+

1 = 4.66, D−1 = 3.34, D+
2 = 4, D−2 = 4, D+

3 = 4,
D−3 = 4, D+

4 = 4, D−4 = 4.
(3) Calculate the closeness coefficient of each alternative.

CC1 ≈ 0.418, CC2 = 0.5, CC3 = 0.5, CC4 = 0.5.
(4) Selection process.

In this phase, the alternatives are ranked according to their
closeness coefficients:
x1 ≺ x2 = x3 = x4.
Therefore, the best alternative is x2 or x3 or x4.

APPENDIX D
THE CALCULATION PROCESS FOR DECISION MAKING WITH

TYPE-2 FUZZY ENVELOPES OF HFLTSs

For the convenience of discussion, as follows all type-2
fuzzy numbers will be adjusted to the form as presented in
[6]. That is, let an IT2TrFN Ãij denote the assessment of the
alternative xi ∈ X with respect to criteria cj ∈ C. Ãij is
expressed as

Ãij = [Ã−ij , Ã
+
ij ] = [(a−1ij , a

−
2ij , a

−
3ij , a

−
4ij ;h

−
Ãij

), (a+1ij , a
+
2ij ,

a+3ij , a
+
4ij ;h

+

Ãij
)],

where Ã+
ij and Ã−ij denote the respective lower and upper

membership functions of Ãij .

(1) Transform the CLEs into HFLTSs and their type-2 fuzzy
envelopes.
The type-2 fuzzy envelopes for HFLTSs transformed
from CLEs can be listed as follows:

Ã11 = [Ã−11, Ã
+
11] = [(0.32, 0.33, 0.5, 0.51; 0.05), (0.17,

0.33, 0.5, 0.67; 1)],

Ã12 = [Ã−12, Ã
+
12] = [(0.32, 0.33, 0.5, 0.51; 0.05), (0.17,

0.33, 0.5, 0.67; 1)],

Ã21 = [Ã−21, Ã
+
21] = [(0, 0, 0.15, 0.32; 0.49), (0, 0, 0.15,

0.5; 1)],

Ã22 = [Ã−22, Ã
+
22] = [(0.68, 0.85, 1, 1; 0.49), (0.5, 0.85, 1, 1;

1)],

Ã31 = [Ã−31, Ã
+
31] = [(0.49, 0.5, 0.67, 0.68; 0.05), (0.33, 0.5,

0.67, 0.83; 1)],

Ã32 = [Ã−32, Ã
+
32] = [(0.32, 0.33, 0.5, 0.51; 0.05), (0.17, 0.33,

0.5, 0.67; 1)],

Ã41 = [Ã−41, Ã
+
41] = [(0.39, 0.43, 0.73, 0.77; 0.14), (0.17, 0.43,

0.73, 1; 1)],

Ã42 = [Ã−42, Ã
+
42] = [(0.23, 0.27, 0.57, 0.61; 0.14), (0, 0.27,

0.57, 0.83; 1)].

(2) Calculate the negative-ideal solution and positive-ideal
solution.
Since the criteria considered in this example are all ben-
efit criteria, according to [6], the negative-ideal solution
Ãηj and positive-ideal solution Ãρj with respect to each
criteria cj(j = 1, 2) are defined as following:

Ãηj = [Ã−ηj , Ã
+
ηj ] = [(a−1ηj , a

−
2ηj , a

−
3ηj , a

−
4ηj ;h

−
Ãηj

), (a+1ηj ,

a+2ηj , a
+
3ηj , a

+
4ηj ;h

+

Ãηj
)]

where

Ã−ηj = (∧mi=1a
−
1ij ,∧mi=1a

−
2ij ,∧mi=1a

−
3ij ,∧mi=1a

−
4ij ;∧mi=1h

−
Ãij

)

and

Ã+
ηj = (∧mi=1a

+
1ij ,∧mi=1a

+
2ij ,∧mi=1a

+
3ij ,∧mi=1a

+
4ij ;∧mi=1h

+

Ãij
);

meanwhile,

Ãρj = [Ã−ρj , Ã
+
ρj ] = [(a−1ρj , a

−
2ρj , a

−
3ρj , a

−
4ρj ;h

−
Ãρj

), (a+1ρj ,

a+2ρj , a
+
3ρj , a

+
4ρj ;h

+

Ãρj
)]

where

Ã−ρj = (∨mi=1a
−
1ij ,∨mi=1a

−
2ij ,∨mi=1a

−
3ij ,∨mi=1a

−
4ij ;∧mi=1h

−
Ãij

)



134
4.4. Type-2 fuzzy envelope for HFLTSs and its application to

multi-criteria decision making

3

and

Ã+
ρj = (∨mi=1a

+
1ij ,∨mi=1a

+
2ij ,∨mi=1a

+
3ij ,∨mi=1a

+
4ij ;∧mi=1h

+

Ãij
).

In this case, it is easy to obtain that

Ãη1 = [Ã−η1, Ã
+
η1] = [(0, 0, 0.15, 0.32; 0.05), (0, 0, 0.15, 0.5;

1)],

Ãη2 = [Ã−η2, Ã
+
η2] = [(0.23, 0.27, 0.5, 0.51; 0.05), (0, 0.27,

0.5, 0.67; 1)],

meanwhile,

Ãρ1 = [Ã−ρ1, Ã
+
ρ1] = [(0.49, 0.5, 0.73, 0.77; 0.05), (0.33,

0.5, 0.73, 1; 1)],

Ãρ2 = [Ã−ρ2, Ã
+
ρ2] = [(0.68, 0.85, 1, 1; 0.05), (0.5, 0.85, 1,

1; 1)].

(3) Calculate the likelihood of IT2TrF binary relation.
Let

Ãij(= [Ã−ij , Ã
+
ij ] = [(a−1ij , a

−
2ij , a

−
3ij , a

−
4ij ;h

−
Ãij

), (a+1ij ,

a+2ij , a
+
3ij , a

+
4ij ;h

+

Ãij
)]),

B̃ij(= [B̃−ij , B̃
+
ij ] = [(b−1ij , b

−
2ij , b

−
3ij , b

−
4ij ;h

−
B̃ij

), (b+1ij ,

b+2ij , b
+
3ij , b

+
4ij ;h

+

B̃ij
)])

be any two IT2TrF numbers in X . Let ς be a positive
integer. Assume that at least one of h−A 6= h+B , a−4 6= a−1 ,
b+4 6= b+1 , and a−ς 6= b+ς holds, and at least one of h+A 6=
h−B , a+4 6= a+1 , b−4 6= b−1 , and a+ς 6= b−ς holds, where
ς = 1, 2, 3, 4.
The lower likelihood L−(Ã ≥ B̃) of an IT2TrF binary
relation Ã ≥ B̃ is defined by Eq. (19).

L−(Ã ≥ B̃) = max
{
1−max[

∑4
ς=1max(b

+
ς −a−ς ,0)+(b+4 −a−1 )+2max(h+

B−h
−
A ,0)∑4

ς=1|b
+
ς −a−ς |+(a−4 −a−1 )+(b+4 −b+1 )+2|h+

B−h
−
A |

, 0], 0
}

(19)
The upper likelihood L−(Ã ≥ B̃) of an IT2TrF binary
relation Ã ≥ B̃ is defined by Eq. (20).

L+(Ã ≥ B̃) = max
{
1−max[

∑4
ς=1max(b

−
ς −a+ς ,0)+(b−4 −a+1 )+2max(h−B−h

+
A,0)∑4

ς=1|b
−
ς −a+ς |+(a+4 −a+1 )+(b−4 −b−1 )+2|h−B−h

+
A|

, 0], 0
}

(20)
The likelihood L(Ã ≥ B̃) of an IT2TrF binary relation
Ã ≥ B̃ is defined by:

L(Ã ≥ B̃) =
L−(Ã ≥ B̃) + L+(Ã ≥ B̃)

2
(21)

In this case, the necessary likelihoods of IT2TrF binary
relations are listed as follows, which will be adopted in
Eq. (22):
L(Ã11 ≥ Ãη1) ≈ 0.692, L(Ã21 ≥ Ãη1) ≈ 0.524,
L(Ã31 ≥ Ãη1) ≈ 0.777, L(Ã41 ≥ Ãη1) ≈ 0.770,
L(Ã12 ≥ Ãη2) ≈ 0.568, L(Ã22 ≥ Ãη2) ≈ 0.876,
L(Ã32 ≥ Ãη2) ≈ 0.568, L(Ã42 ≥ Ãη2) ≈ 0.544;
L(Ãρ1 ≥ Ã11) ≈ 0.679, L(Ãρ1 ≥ Ã21) ≈ 0.789,
L(Ãρ1 ≥ Ã31) ≈ 0.534, L(Ãρ1 ≥ Ã41) ≈ 0.556,

L(Ãρ2 ≥ Ã12) ≈ 0.793, L(Ãρ2 ≥ Ã22) ≈ 0.449,
L(Ãρ2 ≥ Ã32) ≈ 0.793, L(Ãρ2 ≥ Ã42) ≈ 0.778.

(4) Calculate the likelihood based closeness coefficient of
each alternative.
Since the criteria considered in this example are all
benefit criteria, according to [6], the likelihood based
closeness coefficient can be calculated by

LCi =

∑n
j=1 L(Ãij ≥ Ãηj)∑n

j=1(L(Ãρj ≥ Ãij) + L(Ãij ≥ Ãηj))
(22)

It is easy to obtain that LC1 ≈ 0.461, LC2 ≈ 0.531,
LC3 ≈ 0.503, LC4 ≈ 0.496. (The process for determining
likelihood-based comparison indexes has been omitted
here, considering that all criteria are of benefit type.)

(5) Selection process.
In this phase, the alternatives are ranked according to the
likelihood based closeness coefficients:
x1 ≺ x4 ≺ x3 ≺ x2.
Therefore, the best alternative is x2.

APPENDIX E
MORE EXAMPLES

If the problem assessment I change to assessment II as
is shown by Table III, the ranking obtained by using type-
1 fuzzy envelopes is x2 ≺ x1 ≺ x4 = x3, whereas
the ranking obtained by using type-2 fuzzy envelopes is
x2 ≺ x1 ≺ x4 ≺ x3. If the problem assessment I change to
assessment III as is shown by Table IV, the ranking obtained
by using type-1 fuzzy envelopes is x2 ≺ x4 = x3 ≺ x1,
whereas the ranking obtained by using type-2 fuzzy envelopes
is x2 ≺ x4 ≺ x3 ≺ x1.

TABLE III
ASSESSMENTS (II) OF THE PROBLEM.

- c1 c2
x1 between M and V G between V B and B
x2 at most B between M and V G
x3 between M and G between B and M
x4 between B and V G between V B and G

TABLE IV
ASSESSMENTS (III) OF THE PROBLEM.

- c1 c2
x1 at most B at least G
x2 at most B between M and V G
x3 between M and G between B and M
x4 between B and V G between V B and G



Chapter 5

Conclusions and Future Works

Finally, this section concludes the current research memory, reviews the main pro-

posals and results, and points out some future works.

5.1 Conclusions

Linguistic DM problems under uncertainty are common in our daily life. The diver-

sity and complexity of uncertainties calls for useful mathematic models to deal with

these problems. The generalized models of soft sets obtained by combing them with

fuzzy sets, rough sets and linguistic models show great potential dealing with un-

certain DM situations, since the hybrid models take advantages of different models

and therefore enhance the ability for dealing with diverse uncertainties.

For DM approaches based on fuzzy soft sets and rough soft sets, there are still

arguments that need to be settled and limitations need to be overcome. By providing

the following proposals, we successfully reach the first objective (see Section 1.2):

1. An analysis on limitations for fuzzy soft sets based DM approaches has been

carried out. One of the popular DM approaches based on fuzzy soft sets, called

the score based approach, has been improved by introducing the concepts of

D-Score and D-Score table. The improved approach decreases successfully

the time consumption when parameters need to be deleted/added during the

process of DM.

2. An adjustable approach based on fuzzy soft sets has been proposed by intro-

ducing threshold values or threshold fuzzy sets when the scores for alternatives

are computed. The proposed approach can be used to solve problems which

cannot be handled by existing ones.
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3. An analysis on limitations for rough soft sets based DM approaches has been

carried out. Two DM approaches and one GDM approach based on rough

soft sets have been introduced. In the GDM approach, the weights of decision

makers are obtained by using similarity measures between soft sets.

Various soft rough set models have been proposed in the literature by construct-

ing different approximation operators on crisp sets [15, 63] or fuzzy sets [15, 49, 83].

However, no systematic research on them has been carried out about the connec-

tions among them. By carrying out the following researches, the second objective

(see Section 1.2) has been reached:

1. The relationships among various soft rough approximations have been dis-

cussed in a systematic way.

2. A novel model called soft rough soft sets has been proposed by using a soft

set as the knowledge to compute the approximations of another soft set. The

application of soft rough soft sets in DM has been illustrated by using an

example.

Although a model called linguistic value soft sets was already introduced in the

literature, which combines soft set theory with linguistic information, this model

only allows decision makers to provide initial assessments by using single linguistic

terms, which limits the elicitation of linguistic information because sometimes deci-

sion makers need to use more complex expressions to express their knowledge. To

facilitate the elicitation of more complex linguistic expressions with soft set models,

it is necessary to construct new hybrid soft set models that combines soft set theory

and CLEs. By providing the following proposals we successfully reach the third

objective (see Section 1.2):

1. A novel model called HLE soft sets has been introduced, in which assessments

of decision makers could be both linguistic terms or CLEs. A decision making

approach based on CLEs soft sets has been presented.

2. A GDM approach based on HLE soft sets has been introduced. A consensus

model to cooperate with the GDM process is proposed. Comparisons of our

proposed GDM approach and existing approaches based on linguistic value

soft set have been done to show some advantages of the proposed model.

New fuzzy representation models for CLEs need to be constructed to deal with

linguistic uncertainties. These representation models are expected to facilitate the

CW processes when handling with DM problems in which experts provide evalu-

ations on alternatives using CLEs. By constructing the following representation
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model or CLEs and comparing it with some existing models, the fourth objective

(see Section 1.2) has been reached:

1. A new representation model for CLEs called type-2 fuzzy envelope has been in-

troduced. This new representation model follows the fuzzy linguistic approach

and can successfully reflect the uncertainties contained in CLEs.

2. The comparison between type-2 fuzzy envelope and type-1 fuzzy envelope has

been carried out by using an illustration example in DM. Finally it has been

shown that the decision results are consistent however the result is more precise

when type-2 fuzzy envelope is used.

5.2 Future works

Despite several proposals have been made in this research, there are still some

challenges to deal with DM and GDM problems under uncertainties by using hybrid

soft set models. In the near future, we will concentrate on the extension of the

proposals presented:

1. To research in deep the inner relationships among different hybrid soft set

models.

2. By using different hybrid soft set models and corresponds decision making

methodologies, different decision results could be obtained. To explore the

relationships among different decision results by using the relationships among

different models.

3. To carry out the CW processes in GDM under the framework of HLE soft

sets by using type-2 fuzzy TOPSIS method [10] and type-2 fuzzy envelopes for

HFLTSs. Deal with a GDM problem based on a linguistic value soft set, and

then solve the problem by using type-1 fuzzy TOPSIS [9] (with type-1 fuzzy

envelopes for HFLTSs) and type-2 fuzzy TOPSIS (with type-2 fuzzy envelopes

for HFLTSs), respectively. To make a comparison on different decision results

when two decision schemes are applied, and analyze the advantages of the

application of type-2 fuzzy envelope.

4. To research in further detail the construction of representation models for lin-

guistic expressions and apply them to hybrid soft sets based decision making.

IT2 FSs are special cases of general type-2 FSs, it would be interesting to see

how general T2 FSs could be constructed to serve as representation models

for CLEs.
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Additional Publications

Regarding the diffusion of our scientific results, besides the publications included
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• International Journals

– Y Liu, K Qin. Object-parameter approaches to predicting unknown data

in incomplete fuzzy soft sets. International Journal of Applied Mathe-

matics and Computer Science, vol. 27, issue 1, pp. 157-167, 2017.

– Y Liu, J Luo, B Wang, K Qin. A theoretical development on the entropy

of interval-valued intuitionistic fuzzy soft sets based on the distance mea-

sure. International Journal of Computational Intelligence Systems, vol.

10, issue 1, pp. 569, 2017.

– A Labella, Y Liu, R M Rodŕıguez, L Mart́ınez. Analyzing the Perfor-

mance of Classical Consensus Models in Large Scale Group Decision Mak-

ing: A comparative Study. Applied Soft Computing, vol. 67, issue C, pp.

677-690, 2018.

• International Conferences

– Y Liu, R M Rodŕıguez, K Qin, L Mart́ınez. Improved score based decision

making method by using fuzzy soft sets. The 13th International FLINS

Conference on Data Science an knowledge Engineering for Sensing Deci-

sion Support (FLINS 2018) held on Belfast (UK) in August 21-24, 2018.



Appendix A

Resumen escrito en Español

T́ıtulo de la tesis: Toma de decisiones lingǘıstica basada en modelos matemáticos

h́ıbridos.

Este apéndice incluye el t́ıtulo, ı́ndice, introducción, resumen y conclusiones

escritas en español como parte de los requisitos necesarios para obtener el doctorado

según el art́ıculo 23.2 del Reglamento de Estudios de Doctorado de la Universidad

de Jaén.

En primer lugar se muestra el ı́ndice de esta memoria de investigación. A con-

tinuación se introduce brevemente la investigación llevada acabo, indicando la moti-

vación, objetivos planteados y la estructura en caṕıtulos que componen esta tesis. Se

presenta también un resumen de la misma, y finalmente se describen las conclusiones

obtenidas y trabajos futuros.
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A.2 Motivación

Los modelos matemáticos clásicos no son capaces de resolver problemas reales de

toma de decisiones que presentan información vaga e incierta. Existen algunos enfo-

ques matemáticos tales como, la teoŕıa de conjuntos difusos, la teoŕıa soft sets y la

teoŕıa rough sets, que han sido ampliamente utilizados en problemas de toma de de-

cisiones bajo incertidumbre, sin embargo, presentan una limitación ya que no tienen

herramientas de parametrización. Esta limitación indica que individualmente estos

modelos no pueden considerar alternativas con diferentes aspectos en los parámetros.

Molodstov [50] propuso un modelo llamado soft set (conjuntos suaves), que evita

esta limitación satisfactoriamente. La combinación de este modelo con otros ha gen-

erado la aparición de nuevos modelos generalizados para modelar diferentes tipos

de incertidumbre.

Los modelos soft sets h́ıbridos pueden ser clasificados en dos categoŕıas: (i)

modelos h́ıbridos obtenidos mediante la combinación de conjuntos difusos (y modelos

generalizados de conjuntos difusos) con soft sets; y (ii) modelos h́ıbridos obtenidos

de la combinación de rough sets (y modelos generalizados de rough sets) con soft

sets. Los soft sets pertenecen a la primera categoŕıa, mientras rough soft sets y

soft rough sets pertenecen a la segunda categoŕıa. Estos modelos soft sets h́ıbridos

son bastante simples, por tanto, se han propuesto modelos h́ıbridos más complejos

para generalizarlos. Por ejemplo, intuitionistic fuzzy soft sets [36] e interval valued

intuitionistic fuzzy soft sets [28] podŕıan ser vistos como extensiones de fuzzy soft

sets. Jiang et al. [27] y Zhang et al. [85] extendieron el modelo de toma de decisiones

basado en fuzzy soft sets introducido por Feng et al. [14] definiendo dos modelos de

toma de decisiones, uno basado en intucionistic fuzzy soft sets y el otro basado en

interval-valued intuitionistic fuzzy soft sets.

Los dos enfoques más populares de toma de decisiones basados en fuzzy soft

sets son: i) el enfoque basado en choice value [30] y ii) el enfoque basado en score

[61]. Diferentes investigadores han discutido sobre cual de ellos es el más razonable

[14, 30], aunque ambos presentan algunas limitaciones. Por ejemplo, el enfoque

basado en score introducido por Roy y Maje en [61] requiere una gran cantidad de

cálculos cuando se añaden o se eliminan parámetros durante el proceso de toma de

decisiones, ésto causa algunas limitaciones cuando los problemas tienen información

dinámica. Los estudios realizados sobre toma de decisiones y toma de decisiones

en grupo basados en rough soft sets están aún en una fase inicial. No hay métodos

que permitan a los expertos proporcionar sus valoraciones sobre las alternativas

utilizando la combinación de rough sets y soft sets. Los modelos mencionados an-

teriormente requieren que cada experto proporcione una decisión óptima antes de
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aplicar un proceso de toma de decisiones en grupo. Teniendo en cuenta estas lim-

itaciones, vemos necesario realizar un estudio sistemático para mejorar los enfoques

de toma de decisiones basados en fuzzy soft sets y rough soft sets.

Aunque varios algoritmos basados en los modelos soft rough sets y sus exten-

siones difusas han sido propuestos para resolver problemas de toma de decisiones

[81, 82, 83], no se han realizado aún estudios de la relación entre ellos. Para hacer

más flexible la aplicación de estos modelos, soft rough sets, en toma de decisiones y

poder aplicar el más adecuado dependiendo de cada problema, es importante tener

en cuenta estas relaciones.

En algunos problemas de toma de decisiones del mundo real, los expertos pueden

usar información lingǘıstica en lugar de valores crisp para proporcionar sus valo-

raciones sobre las alternativas. Entre los distintos modelos soft sets h́ıbridos, el

modelo linguistic value soft set es el único que podŕıa usarse para modelar la infor-

mación lingǘıstica en el marco de trabajo de soft sets. Sin embargo, si aplicamos este

modelo, los expertos que participan en el problema de toma de decisiones siempre

tienen que proporcionar sus valoraciones mediante términos lingǘısticos simples, lo

que puede ser dif́ıcil en algunas situaciones donde los expertos duden entre varios

términos lingǘısticos y el uso de un único término lingǘıstico no es suficiente para

reflejar su conocimiento de forma adecuada. Por tanto, es conveniente definir nuevos

modelos soft sets h́ıbridos capaces de utilizar no sólo términos lingǘısticos simples

sino también expresiones lingǘısticas más complejas.

Existen diferentes enfoques para modelar la información lingǘıstica, uno de el-

los es el enfoque lingǘıstico difuso [78] que proporciona un método directo para

modelar la incertidumbre mediante variables lingǘısticas. Este enfoque ha sido am-

pliamente utilizado en problemas de toma de decisiones en los que se han obtenido

muy buenos resultados. En el enfoque lingǘıstico difuso las palabras significan cosas

diferentes para diferentes personas, por tanto, un conjunto difuso es utilizado para

capturar la incertidumbre contenida en una palabra. Sin embargo, la mayoŕıa de

los modelos lingǘısticos [39, 40] están limitados, ya que los expertos proporcionan

sus preferencias mediante términos lingǘısticos simples definidos a priori y en algu-

nas situaciones, debido a la falta de información, o presión del tiempo, los expertos

pueden dudar entre varios términos lingǘısticos por lo que el uso de un único término

lingǘıstico no es suficiente para expresar sus opiniones. Para evitar esta limitación,

recientemente se ha introducido un modelo llamado conjunto de términos lingǘısticos

difuso dudoso (CTLDD) [58]. También se definió una gramática libre de contexto

para generar expresiones lingǘısticas comparativas cercanas al modelo cognitivo de

los seres humanos y una función de transformación que transforma las expresiones

lingǘısticas comparativas en CTLDD [58]. El uso de las expresiones lingǘısticas
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comparativas basadas en CTLDD permite a los expertos expresar sus valoraciones

de una forma más flexible y elaborada que los términos lingǘısticos simples. Por

tanto, parece interesante investigar el uso de expresiones lingǘısticas comparativas

y definir nuevos modelos soft sets capaces de utilizar dichas expresiones.

El uso de expresiones lingǘısticas comparativas en estos modelos h́ıbridos im-

plica realizar procesos computacionales, y al igual que sucede con los términos

lingǘısticos simples en los procesos de computación con palabras, las expresiones

lingǘısticas comparativas significan diferentes cosas para diferentes personas. De ah́ı,

que para modelar la incertidumbre contenida en una expresión lingǘıstica compar-

ativa, sea necesario construir un modelo de representación adecuado para CTLDD.

Hasta ahora, los modelos de representación para CTLDD están basados en interva-

los lingüisticos [58] o conjuntos difusos tipo-1 [33], pero ninguno de estos modelos

tiene en cuenta la duda y la incertidumbre contenida en los CTLDD, lo que puede

causar pérdida de información cuando las expresiones lingǘısticas comparativas se

usan en toma de decisiones. Por tanto, es necesario definir nuevos modelos de repre-

sentación para CTLDD que puedan reflejar y modelar la incertidumbre lingǘıstica

de una forma más adecuada.

A.3 Objetivos

Teniendo en cuenta la motivación y consideraciones mencionadas en la sección an-

terior, el propósito de esta investigación se centra en mejorar las metodoloǵıas de

modelos matemáticos h́ıbridos en toma de decisiones, concretamente en toma de

decisiones con información lingǘıstica.

Los objetivos que perseguimos para alcanzar este propósito son los siguientes:

1. Realizar un estudio comparativo de los enfoques de toma de decisiones basados

en fuzzy soft sets y rough soft sets existentes, destacando y analizando sus

limitaciones. Proponer nuevas metodoloǵıas para evitar estas limitaciones, aśı

como explorar nuevos enfoques basados en modelos h́ıbridos que satisfagan

diferentes demandas en aplicaciones reales.

2. Realizar un estudio comparativo de los modelos soft rough sets existentes, aśı

como de sus extensiones difusas, analizando la relación entre los diferentes

modelos y destacando su uso en toma de decisiones. Investigar nuevas formas

de combinar la teoŕıa soft set con la teoŕıa rough set y proponer nuevos modelos

soft rough set. Estudiar la aplicación de los modelos propuestos en toma de

decisiones.

3. Definir un nuevo modelo soft set h́ıbrido capaz de utilizar expresiones lingǘısticas
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comparativas para mejorar la elicitación de información lingǘıstica y construir

nuevos algoŕıtmos basados en el modelo propuesto para resolver problemas

de toma de decisiones en grupo. Una vez definidos estos algoritmos, es nece-

sario examinar su funcionalidad comparándolos con los algoritmos existentes

basados en otros modelos soft sets h́ıbridos.

4. Por último, construir un nuevo modelo difuso para representar expresiones

lingǘısticas comparativas. Este modelo puede utilizarse para reflejar y mod-

elar la incertidumbre lingǘıstica contenida en tales expresiones. Dado que

las expresiones lingǘısticas comparativas pueden transformarse en CTLDD, el

nuevo modelo de representación basado en conjuntos difusos tipo-2 debeŕıa

reflejar y modelar ambos tipos de incertidumbre: difusa y dudosa. Además,

examinaremos la funcionalidad del nuevo modelo de representación para ex-

presiones lingǘısticas comparativas y lo compararemos con otro modelo de

representación basado en conjuntos difusos tipo-1.

A.4 Estructura

Para alcanzar los objetivos planteados y según lo establecido en el art́ıculo 23, punto

3, de la normativa vigente para los Estudios de Doctorado en la Universidad de Jaén,

correspondiente al programa establecido en el RD 99/2011, esta investigación será

presentada como un conjunto de art́ıculos publicados por el estudiante de doctorado.

Dichas publicaciones constituyen el núcleo de la tesis y corresponden a dos

art́ıculos cient́ıficos publicados en revistas internacionales indexadas por la base

de datos JCR (Journal Citation Reports), producida por ISI (Institute for Scientfic

Information), junto con otros dos art́ıculos que se encuentran sometidos bajo re-

visión en dos revistas internationales también indexadas por JCR al finalizar esta

memoria. Por tanto, la memoria se compone de un total de cuatro publicaciones,

dos de ellas publicadas en revistas de reconocido prestigio.

A continuación hacemos una breve descripción de la estructura de esta memoria:

• Caṕıtulo 2: Este caṕıtulo revisa los conceptos teóricos que son utilizados en

nuestras propuestas para alcanzar los objetivos planteados: definición de soft

sets, fuzzy soft sets, rough soft sets y otros modelos soft sets h́ıbridos; el con-

cepto de enfoque lingǘıstico difuso, CTLDD y expresiones lingǘısticas com-

parativas generadas mediante una gramática libre de contexto.

• Caṕıtulo 3: Este caṕıtulo introduce brevemente las propuestas publicadas y

sometidas que forman parte de esta memoria de investigación. Para cada

art́ıculo, se realiza una breve discusión de los resultados obtenidos.
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• Caṕıtulo 4: Constituye el núcleo de la tesis doctoral, incluyendo un compendio

de las publicaciones obtenidas como resultado de la investigación realizada.

Para cada publicación se indican los ı́ndices de calidad donde la propuesta ha

sido publicada.

• Caṕıtulo 5: Expone las conclusiones finales extraidas de esta investigación y

propuestas para trabajos futuros.

A.5 Resumen

Existen diferentes modelos matemáticos h́ıbridos, obtenidos de la combinación de

soft sets con otros modelos, tales como conjuntos difusos y rough sets, llamados soft

sets h́ıbridos. Estos modelos han sido recientemente aplicados a problemas de toma

de decisiones. Sin embargo, presentan algunas limitaciones cuando los problemas

se definen en contextos cualitativos y es necesario usar información lingǘıstica. Por

tanto, esta tesis se centra en mejorar las metodoloǵıas de los modelos existentes,

aśı como proponer nuevos modelos soft sets h́ıbridos capaces de modelar distintos

tipos de incertidumbre. También se definen modelos soft sets h́ıbridos para resolver

problemas de toma de decisiones con información lingǘıstica. Para ello, se presentan

las siguientes propuestas:

1. Se introducen metodoloǵıas para mejorar algunos enfoques de toma de deci-

siones basados en fuzzy soft sets y rough soft sets. Se proponen nuevos modelos

de toma de decisiones basados en estos dos modelos matemáticos h́ıbridos para

hacer frente a algunas limitaciones existentes.

2. Se realiza un estudio sistemático de la relación entre diferentes modelos soft

rough set. Se propone un modelo matemático h́ıbrido llamado soft rough soft

sets el cual es aplicado a toma de decisiones.

3. Se define un modelo matemático h́ıbrido llamado, hesitant linguistic expression

soft set, que combina la teoŕıa soft set con el enfoque lingǘıstico difuso. Este

modelo es capaz de modelar la duda que pueden tener los expertos cuando

expresan sus valoraciones y el uso de un término lingǘıstico no es suficiente

para reflejar su conocimiento. Este modelo se aplica a problemas de toma

de decisones y toma de decisiones en grupo. Además, se introduce un mod-

elo de consenso basado en hesitant linguistic expression soft set para obtener

soluciones consensuadas y aceptadas por todos los participantes.

4. Se construye un nuevo modelo de representación para expresiones lingüisticas

comparativas basado en conjuntos difusos tipo-2 para modelar la incertidum-
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bre contenida en dichas expresiones. Este nuevo modelo facilita los procesos

de computación con palabras en problemas de toma de decisiones lingǘısticos.

Se realiza también un estudio comparativo entre el modelo tipo-2 propuesto y

otro modelo de representación existente basado en tipo-1, en el que se muestra

que el modelo propuesto obtiene resultados más precisos.

A.6 Conclusiones y Trabajos Futuros

Esta sección cierra la memoŕıa de investigación revisando las diferentes conclusiones

obtenidas de las propuestas que se han realizado en la misma y exponiendo ĺıneas

de investigación sobre trabajos futuros que podŕıan realizarse partiendo de los re-

sultados presentados en ella. Finalmente, se indican las publicaciones adicionales

derivadas de la investigación realizada.

A.6.1 Conclusiones

Los problemas de toma de decisiones bajo incertidumbre son comunes en nuestra

vida diaria. La diversidad y complejidad de la incertidumbre hace necesario el

uso de modelos matemáticos que sean capaces de resolver este tipo de problemas.

La generalización de modelos soft sets obtenidos de la combinación de éstos con

conjuntos difusos, rough sets y modelos lingǘısticos, muestran gran potencial para

modelar la incertidumbre que aparece en problemas de toma de decisiones, ya que

los modelos h́ıbridos presentan ventajas de diferentes modelos y por tanto, fortalecen

su capacidad para modelar diversos tipos de incertidumbre.

Los enfoques de toma de decisiones basados en fuzzy soft sets y rough soft sets

existentes en la literatura, presentan algunas limitaciones que necesitan ser evitadas.

Por tanto, el primer objetivo planteado en la sección 1.2 se ha alcanzado mediante

las siguientes propuestas.

1. Hemos realizado un análisis sobre las limitaciones de los enfoques de toma

de decisiones basados en fuzzy soft sets. Uno de los enfoques de toma de

decisiones basados en fuzzy soft sets más populares, llamado enfoque basado

en score ha sido mejorado introduciendo los conceptos de D-Score y D-Score

table. Este nuevo enfoque decrementa el coste temporal cuando añadimos o

eliminamos parámetros durante el proceso de toma de decisiones.

2. Se ha propuesto un enfoque adaptativo de fuzzy soft sets con umbrales o um-

brales difusos al calcular las valoraciones de las alternativas. El enfoque prop-

uesto puede resolver problemas que no pued́ıan ser resueltos con los modelos

previos.
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3. Hemos estudiado las limitaciones de los enfoques de toma de decisiones basados

en rough soft sets y hemos definido dos enfoques de toma de decisiones y otro

de toma de decisiones en grupo basados en rough soft sets. En este último

enfoque, los pesos de los expertos que participan en el problema se obtienen

mediante medidas de similitud entre soft sets.

En la literatura se han propuesto varios modelos de soft rough sets mediante

la construcción de diferentes operadores de aproximación sobre conjuntos clásicos

[15, 63] o conjuntos difusos [15, 49, 83]. Sin embargo, no se ha realizado un estudio

sistemático sobre las relaciones que existen entre ellos. Para alcanzar el segundo

objetivo indicado en la sección 1.2, hemos realizado los siguientes estudios.

1. Hemos analizado y discutido de forma sistemática las relaciones entre varios

modelos de soft rough.

2. Hemos propuesto un nuevo modelo llamado soft rough soft sets utilizando un

soft set para representar el conocimiento y calcular las aproximaciones a otro

soft set. Un ejemplo ilustrativo del nuevo modelo aplicado a toma de decisiones

ha sido mostrado.

A pesar de que existe un modelo llamado linguistic value soft sets que combina la

teoŕıa soft set con información lingǘıstica, este modelo sólo permite que los expertos

expresen sus valoraciones mediante términos lingǘısticos simples, ésto limita la elic-

itación de información lingǘıstica ya que en algunas ocasiones los expertos necesitan

usar expresiones más complejas que términos lingǘısticos simples para expresar su

conocimiento. Para facilitar la elicitación de expresiones lingǘısticas más complejas

mediante el uso de modelos soft sets, es necesario construir nuevos modelos soft set

h́ıbridos que combinen la teoŕıa soft sets con expresiones lingǘısticas comparativas.

Este objetivo (sección 1.2) se ha alcanzado con las siguientes propuestas.

1. Hemos definido un nuevo modelo llamado hesitant linguistic expression soft

sets, que permite que los expertos proporcionen sus valoraciones mediante

términos lingǘısticos simples o expresiones lingǘısticas comparativas. Un en-

foque de toma de decisiones basado en dicho modelo ha sido también prop-

uesto.

2. Teniendo en cuenta el modelo anterior, hemos introducido un enfoque de toma

de decisiones en grupo basado en hesitant linguistic expression soft sets y un

modelo de consenso para obtener soluciones consensuadas. Además se ha real-

izado un estudio comparativo para mostrar las ventajas y mejoras que presenta

nuestra propuesta respecto a los modelos existentes basados en linguistic value

soft sets.



152 A.6. Conclusiones y Trabajos Futuros

Otro de los objetivos que nos planteamos al inicio de esta investigación fue,

definir modelos de representación difusos para expresiones lingǘısticas comparativas

que sean capaces de reflejar y modelar la incertidumbre lingǘıstica que aparecen

en dichas expresiones. Estos modelos deben facilitar los procesos computacionales,

cuando son aplicados a problemas de toma de decisiones en el que los expertos

proporcionan sus valoraciones mediante expresiones lingǘısticas comparativas. Para

ello, se han presentado las siguientes propuestas:

1. Se ha construido un nuevo modelo de representación para expresiones lingǘısticas

comparativas basado en conjuntos tipo-2, type-2 fuzzy envelope. Este modelo

sigue la base del enfoque lingǘıstico difuso y es capaz de reflejar de forma

satisfactoria la incertidumbre contenida en las expresiones lingǘısticas com-

parativas.

2. Se ha realizado una comparación entre el modelo propuesto basado en tipo-2

y el modelo existente en la literatura basado en tipo-1 mediante un ejemplo

ilustrativo aplicado a toma de decisiones. Los resultados obtenidos de este

ejemplo muestran que cuando se aplica el modelo propuesto basado en tipo-2

se obtienen resultados más precisos.

A.6.2 Trabajos futuros

A pesar de las propuestas presentadas en esta investigación, aún existen algunos

retos por alcanzar y que aqúı presentamos como trabajos futuros.

1. Profundizar en el estudio de las relaciones existentes entre los distintos modelos

soft sets h́ıbridos.

2. Estudiar la relación entre modelos soft sets h́ıbridos y analizar los resulta-

dos obtenidos cuando estos modelos son aplicados a problemas de toma de

decisiones.

3. Definir modelos computacionales para realizar procesos de computación con

palabras en problemas de toma de decisiones en grupo dentro del marco de

trabajo de hesitant linguistic expression soft sets utilizando el método TOPSIS

difuso para tipo-2 [10] y el método de representación propuesto para CTLDD

basado también en tipo-2. Buscar un problema de toma de decisiones en grupo

basado en linguistic value soft set y resolverlo mediante el método TOPSIS

difuso tipo-1 [9] (with type-1 fuzzy envelopes for HFLTSs) y el método TOPSIS

difuso tipo-2 (with type-2 fuzzy envelopes for HFLTSs), para posteriormente

realizar un análisis comparativo de los dos métodos mostrando las ventajas de

usar el método basado en tipo-2.
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4. Desarrollar otros modelos de representación para expresiones lingǘıticas com-

parativas y aplicarlos a problemas de toma de decisiones que utilicen soft sets

h́ıbridos. Los conjuntos difusos intucionistas tipo-2 son un caso especial de

conjuntos difusos tipo-2, por tanto, seŕıa interesante estudiar la generalización

de los conjuntos difusos tipo-2, para construir modelos de representación de

expresiones lingǘısticas comparativas.

Publicaciones adicionales

En relación a la difusión y publicación de los resultados presentados, además

de las publicaciones presentadas en esta memoria, destacamos las siguientes aporta-

ciones:

• Revistas Internationales

– Y Liu, K Qin. Object-parameter approaches to predicting unknown data

in incomplete fuzzy soft sets. International Journal of Applied Mathe-

matics and Computer Science, vol. 27, issue 1, pp. 157-167, 2017.

– Y Liu, J Luo, B Wang, K Qin. A theoretical development on the entropy

of interval-valued intuitionistic fuzzy soft sets based on the distance mea-

sure. International Journal of Computational Intelligence Systems, vol.

10, issue 1, pp. 569, 2017.

– A Labella, Y Liu, R M Rodŕıguez, L Mart́ınez. Analyzing the Perfor-

mance of Classical Consensus Models in Large Scale Group Decision Mak-

ing: A comparative Study. Applied Soft Computing, vol. 67, issue C, pp.

677-690, 2018.

• Congresos Internationales

– Y Liu, R M Rodŕıguez, K Qin, L Mart́ınez. Improved score based decision

making method by using fuzzy soft sets. The 13th International FLINS

Conference on Data Science an knowledge Engineering for Sensing Deci-

sion Support (FLINS 2018) held on Belfast (UK) in August 21-24, 2018.
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[59] R. M. Rodŕıguez, L. Mart́ınez, and F. Herrera. A group decision making model

dealing with comparative linguistic expressions based on hesitant fuzzy linguis-

tic term sets. Information Sciences, 241:28–42, 2013.

[60] M. Roubens. Fuzzy sets and decision analysis. Fuzzy Sets and Systems,

90(2):199–206, 1997.

[61] A. R. Roy and P. K. Maji. A fuzzy soft set theoretic approach to decision making

problems. Journal of Computational and Applied Mathematics, 203(2):412–418,

2007.

[62] S. Saint and J. R. Lawson. Rules for Reaching Consensus. A Modern Approach

to Decision Making. Jossey-Bass, 1994.

[63] M. Shabir, M. I. Ali, and T. Shaheen. Another approach to soft rough sets.

Knowledge-Based Systems, 40:72–80, 2013.

[64] V. Stepan and M. Dohnal. Decision making in goverment tenders: A formalized

qualitative model. Acta Universitatis Agriculturae Et Silviculturae Mendelianae

Brunensis, 60(4):397–406, 2013.

[65] B. Z. Sun, W. M. Ma, and X. N. Li. Linguistic value soft set-based approach to

multiple criteria group decision-making. Applied Soft Computing, 58:285–296,

2017.

[66] Y. C. Tang and J. C. Zheng. Linguistic modelling based on semantic similarity

relation among linguistic labels. Fuzzy Sets and Systems, 157(12):1662–1673,

2006.

[67] T. Tanino. Fuzzy preference orderings in group decision making. Fuzzy Sets &

Systems, 12(2):117–131, 1984.

[68] T. Tanino. Fuzzy Preference Relations in Group Decision Making. Springer

Berlin Heidelberg, 1988.

[69] J. H. Wang and J. Y. Hao. A new version of 2-tuple fuzzy linguistic represen-

tation model for computing with words. IEEE Transactions on Fuzzy Systems,

14(3):435–445, 2006.



BIBLIOGRAPHY 163
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