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Chapter 1

Introduction

1.1 Motivation

Classical mathematic models fail to deal with daily life decision making (DM) prob-
lems that contain uncertain information. Although several mathematic models,
such as fuzzy set theory, rough set theory and vague set theory, have been proposed
and extensively applied in DM problems under uncertainty, they suffer from one
common limitation when they are used in an isolated way, that is, lack of parame-
terization tools. This limitation indicates that individually these models are unable
to consider alternatives from different parameters aspects. Molodstov [50] proposed
a model called soft set, that successfully overcomes this limitation. Afterwards, to
enhance the ability of soft sets dealing with different kinds of uncertainties, various
generalization models of soft sets have been proposed by combining soft sets with
other models.

Popular hybrid soft sets can be divided into two main categories: (i) hybrid
models obtained from combination of fuzzy sets (and generalization models of fuzzy
sets) with soft sets; and (ii) hybrid models obtained from combination of rough sets
(and generalization models of rough sets) with soft sets. Fuzzy soft sets belong to the
first category, while rough soft sets and soft rough sets belong to the second category.
These hybrid models of soft sets are typical and simple, therefore, researchers have
proposed more complex hybrid models to generalize the previous ones. For instance,
intuitionistic fuzzy soft sets [36] and interval-valued intuitionistic fuzzy soft sets [28]
could be viewed as extended models of fuzzy soft sets. Jiang et al. [27] and Zhang
et al. [85] extended Feng et al.’s DM approach based on fuzzy soft sets [14] to come
up with an intuitionistic fuzzy soft sets based DM approach and an interval-valued
intuitionistic fuzzy soft set based DM approach, respectively.

The two most popular fuzzy soft set based DM approaches are: i) the fuzzy
choice value based approach [30] and ii) the score based approach [61]. Up to present,

3



4 1.1. Motivation

there are still arguments about which one is more reasonable [14, 30], and both of
these approaches still have some limitations. For instance, the score based approach
proposed by Roy and Maji in [61] requests a large amount of computations when pa-
rameters are added or deleted during the DM process, which causes some drawbacks
to those problems that deal with dynamic information. The research on rough soft
sets based DM and group decision making (GDM) approaches is still in an initial
stage. Besides, there is not methods apply assessments on alternatives provided by
decision makers to make the decision based on the combination of rough sets and
soft sets yet, the previous ones request an optimal decision made by each decision
maker before a GDM process is carried out. Based on the above concern, we think
it is necessary to carry out a systematic research that aims at the improvement of
DM approaches based on fuzzy soft sets and rough soft sets in order to overcome

such limitations.

Although various algorithms based on soft rough set models and their fuzzy
extensions have been proposed to solve DM problems [81, 82, 83], no researches
have been carried out systematically on the inner-relationships among these models
yet. In order to make more flexible the application of various soft rough sets models
in DM and make it more convenient the selection of suitable models in practical DM
circumstances according to properties of different models, it is necessary to carry

out a research on their inner-relationships.

In some real world DM problems, decision makers may use linguistic information
rather than crisp values to provide their assessments over alternatives. Among vari-
ous hybrid soft set models, linguistic value soft set is the only one that could be used
to deal with linguistic information under the framework of soft sets, however if this
model is applied, it requests that decision makers always provide their assessments
by means of a single linguistic term, which might be hard, since decision makers
may hesitate among several linguistic terms and the use of only one linguistic term
would not be enough to reflect their knowledge in a proper way. Therefore, it seems
convenient to define new models of soft sets able to deal with not only with single

linguistic terms, but also with linguistic expressions.

To deal with linguistic information in DM problems, the fuzzy linguistic approach
has been successfully applied [78]. It models the uncertainty by linguistic variables
rather than numerical values. In fuzzy linguistic approach, words mean different
things to different people, therefore a fuzzy set is adopted to capture uncertainty
contained in a word. However, most linguistic models [39, 40] only use single and
simple linguistic terms to express preferences of decision makers, which fails to
reflect decision makers’ real opinion in context with a high level of uncertainty.

To overcome this limitation, recently a model called hesitate fuzzy linguistic term
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set (HFLTS) has been introduced [58]. A context-free grammar was proposed to
generate comparative linguistic expressions (CLEs), that are close to cognition of
human-being. By using a transformation function, CLEs can be easily translated
into HFLTSs [58]. The application of CLEs based on HFLTSs allows experts to
provide more complex, elaborated and flexible assessments than single linguistic
terms. Therefore, it seems worthy to research the use of CLEs to define new soft
sets models able to deal with linguistic expressions.

Within our research in hybridizing soft sets and linguistic expressions, and the
need of computing with such expressions, it was noted that in a similar way to lin-
guistic terms in computing with words (CW), the comparative linguistic expressions
(CLEs) also mean different things to different people. Hence, to deal with the un-
certainty contained in a CLE, suitable representation model for HFLTSs should be
constructed. So far, the representation models for HFLTSs are based on linguistic
intervals [58] or type-1 fuzzy sets [33]. None of these models take into account the
hesitancy and fuzzy uncertainty contained in HFLTSs, which might cause loss of
information when CLEs are applied in DM. Therefore, it is necessary to construct
new representation models for HFLTSs which can reflect and deal with linguistic

uncertainties in a more comprehensive way.

1.2 Objectives

Based on the motivation and considerations raised in the previous section, the pur-
pose of this research is focused on the improvement of application methodologies of
hybrid mathematic models in DM, especially in linguistic DM.

Based on this purpose, we set the following objectives:

1. To make a comparative study on the existing DM approaches based on fuzzy
soft sets and rough soft sets, point out their limitations and analyze the reasons
why they have such limitations. Afterwards, to present new methodologies to
overcome these limitations. It is also important to explore new approaches

based on these hybrid models to meet different demands of applications.

2. To make a comparative study on the existing soft rough set models as well as
their fuzzy extensions, studying the inner-relationships among different models
and point out the potential use of these relationships in DM. To explore new
ways to combing soft set theory and rough set theory and propose new soft
rough set models. To study the application of the new constructed soft rough
set models in DM.

3. To define a new hybrid soft set model able to deal with CLEs to improve the




6 1.3. Structure

elicitation of linguistic information. To construct some novel algorithms based
on the new constructed model to solve DM and GDM problems. Afterwards,
to examine the performance of the proposed algorithm in GDM by comparing

it with existing algorithms based on other hybrid soft sets.

4. To construct a new fuzzy representation model for CLEs, such a model can
be used to reflect and deal with linguistic uncertainties contained in CLEs.
Since CLEs could be transformed into HFLTSs, the new representation model
in form of type-2 fuzzy sets should reflect and deal with both fuzzy uncer-
tainties and hesitancy contained in HFLTSs. Furthermore, to examine the
performance of the new representation model for CLEs in linguistic DM, it

should be compared with other existing representation models.

1.3 Structure

To achieve the objectives set out in the previous section, taking into account the
article 23, point 3, of the current regulations for Doctoral Studies at the University of
Jaén, in accordance with the program established in the RD 99/2011, this research
memory will be presented as a set of articles published by the Phd student.

Two articles have been published in International journals indexed by JCR
database, produced by ISI. And other two articles have been submitted to two In-
ternational journals indexed by JCR. In summary, the report is composed of a total
of four articles which have been published or submitted in prestigious International
journals.

Next, we make a brief description of the structure of this research memory:

e Chapter 2: It revises some theoretical concepts that are used in our proposals
to achieve the objects presented: the notions of soft sets, fuzzy soft sets,
rough soft sets and several other hybrid soft sets models; the concepts of fuzzy
linguistic approach, HFLTSs and comparative linguistic expressions generated

by a context-free grammar.

e Chapter 3: It introduces in short the proposals of the published or on-going
articles that form the research memory. For each article, a brief discussion of

the obtained results is presented.

e Chapter 4: This chapter acts as the core of the doctoral thesis, which contains
the publications obtained as result of the research. For each publication, the

quality indexes where the proposals have been published are indicated.
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e Chapter 5: It points out the final conclusions drawn from this research, and

discusses some future works as the development of the current research.




1.3. Structure




Chapter 2

Basic Concepts and Background

2.1 Decision making under uncertainty

In this section, the concept of decision making (DM) under uncertainty will be
reviewed. Some mathematic models, soft sets and hybrid soft sets, which could be
applied to solve DM problems with uncertain information are revised. Afterwards,
several approaches based on hybrid soft set which are applied to DM problems with

vague and uncertain information are briefly discussed.

2.1.1 Decision making under uncertainty and difficulties

DM problems appear frequently in many daily life fields of human being, such as in
political agencies [19], engineering [20], business [56], governmental [64], social and
economic sciences [71], etc. A DM problem consists of several alternatives and a
decision maker who has to make a choice to obtain the best one(s) as solution of

the problem. Classical DM problems contain the following elements:
e objectives to be reached;
e several alternatives to be chosen for reaching the objectives;
e a decision context to formulate the decision problem;

e a function to determine the utility values of alternatives under the decision

context.

DM problems are classified by means of the decision context as follows: (i)
under certain environment; (ii) under risk environment; (iii) under uncertainty en-
vironment. In the current research, we focus on the DM problems under uncertain

environment, in which it is hard to have probabilistic knowledge about alternatives.

9



10 2.1. Decision making under uncertainty

Increasing complexity of the socio-economic environment makes that real-life
DM problems are full of uncertainty and imprecise information. In such situations,
classical mathematics cannot handle this type of uncertainty, because they require all
mathematical notions to be exact, otherwise, precise reasoning would be impossible.

From the mathematic modeling point of view, the main difficulties for dealing

with DM problems under uncertainty are:

1. Lack of mathematic models to deal with uncertain information.

Fuzzy set theory, fuzzy linguistic approach, rough set theory and soft set
theory have been proved as effective approaches to deal with different types
of uncertainties. The applications of these models are limited since each of
them usually only deals with a single type of uncertainty, however in DM
problems different types of uncertainties might exist at the same time. To face
this situation, it is necessary the construction of new hybrid models taking
the advantages of each specific model and dealing with more complex DM

situations.

2. Lack of methodologies to apply mathematic models to solve DM problems.
Although some hybrid models such as fuzzy rough soft sets and rough fuzzy

soft sets have been proposed by researchers, DM algorithms or DM approaches
based on these models still need to be explored. The existing DM approaches
by using hybrid soft sets are few, and the application scope of each approach is
usually very limited, since it can only be used to deal with specific situations,
therefore new approaches need to be developed to meet the demands of various
DM situations.

2.1.2 Soft sets and hybrid soft sets: mathematic models for dealing

with uncertainty

Soft sets and hybrid soft sets are useful mathematic models for dealing with un-
certainty. In this section, we make a brief review on the notion of soft sets and

introduce a list with some popular hybrid soft sets models.

2.1.2.1 Soft sets

Let U be the universe and E the set of all possible parameters under consideration
with respect to U. (U, E) is called a soft space. Usually, parameters are attributes,

characteristics, or properties of objects in U. A soft set is defined as follows:

Definition 1 [50] A pair (F,A) is called a soft set over U, where A C E and F is
a mapping given by F : A — P(U).
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A soft set over U is a parameterized family of subsets of U. For e € A, F(e)

may be considered as the set of e-approximate elements of the soft set (F, A).

2.1.2.2 Hybrid soft sets.

To enhance the ability of soft sets in dealing with uncertainty, it has been studied
the combination of soft sets with other models. Most of the hybrid soft sets models
come from the combination of soft set theory with fuzzy set theory [77] and rough

set theory [55]. Several popular hybrid soft set models are revised.

1. Fuzzy soft sets.

Maji et al. [37] initiated the study on hybrid structures involving both fuzzy

sets and soft sets and introduced the notion of fuzzy soft sets:

Definition 2 [37] Let (U, E) be a soft space. A pair (F,A) is called a fuzzy
soft set over U, where A C E and F is a mapping given by F : A — F(U).

Fuzzy soft sets are a fuzzy generalization of soft sets. Compared to soft sets,
in fuzzy soft sets, fuzzy sets on the universe U are used as substitutes for the
crisp subsets of U. Therefore, every soft set could be considered as a fuzzy

soft set.

2. Rough soft sets

Considering the approximations of soft sets in a Pawlak approximation space,

Feng et al. [15] introduced the notion of rough soft sets.

Definition 3 [15] Let (U, R) be a Pawlak approzimation space and & = (F, A)
be a soft set over U. The lower and upper rough approzimations of S = (F, A)
with respect to (U, R) are denoted by Apr (&) = (Fg, A) and Aprp(6) =
(FR, A), which are soft sets over U with the set-valued mappings given by
Frle) = Apr,(F(e)),

Fr(e) = Aprp(F(e)),

where e € A. The operators @R and Aprp are called the lower and upper
rough approximation operators on soft sets. If @R(G) = Apryp(8) the soft
set & is said to be definable; otherwise © is called a rough soft set.

3. Soft rough sets

In [15], Feng et al. initiated the notion of soft rough sets (F-soft rough sets).
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2.1. Decision making under uncertainty

Definition 4 [15] Let S = (f, A) be a soft set over U. The pair P = (U, S)
is called a soft approximation space. Based on P, the following two operations
are defined:

apr ,(X) ={u € U;3a € A(u € f(a) C X)} (2.1)

aprp(X) ={u € U;Ja € A(u € f(a), fa) N X # 0)} (2.2)

assigning to every subset X C U two sets apr ,(X) and aprp(X) called the
F-lower and F-upper soft rough approrimations of X in S, respectively. If
apr ,(X) = aprp(X), X is said to be F-soft definable in P; otherwise X is
called a F-soft rough set.

Compared to rough set theory, in a F-soft rough set, a soft set instead of an

equivalence relation is used to granulate the universe of discourse.

. Modified soft rough sets

Shabir et al. [63] noted that if S = (f, A) is not a full soft set, then there
exists x € U such that x € Negp(X) = U — aprp(X) for all X C U. Thus
X Caprp(X) and some basic properties of rough sets do not hold in general.
Based on these observations, Shabir et al. [63] proposed the notion of modified
soft rough sets (MSR sets).

Definition 5 [63] Let (f,A) be a soft set over U and ¢ : U — P(A) be a
map defined as o(x) = {a € A;x € f(a)}. The pair (U,¢) is then called
MSR-approximation space and for any X C U, the lower MSR approzimation
and upper MSR approzimation of X are denoted by X, and Yso respectively,

which are defined as

X, ={r e U;Vy € X“(p(z) # ()} (2.3)
X, ={zcU;3y € X(p(z) = ¢(y)) (2.4)

IrX,= X, then X is said to be MSR definable, otherwise X is said to be a
MSR set.

. Soft rough fuzzy sets

Based on the combination of rough, fuzzy and soft sets, Feng et al.[15], Meng
et al. [49] and Zhan et al. [83] proposed different notions of soft rough approx-
imation operators on fuzzy sets and presented three different soft rough fuzzy

set models. To facilitate the discussion, we denote them as F-soft rough fuzzy
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set, M-soft rough fuzzy set and Z-soft rough fuzzy set respectively. These

models are briefly reviewed as below.

Let S = (f, A) be a full soft set over U and P = (U, S) be a soft approximation
space. For a fuzzy set p € F(U):

Definition 6 [49] The lower F-soft rough approrimation ﬂp(/"[’) and upper
F-soft rough approximation sapp(p) of u are fuzzy sets in U given by:

sap () () = Mpu(y); Ja € A({z,y} € f(a))} (2.5)

sapp(p)(x) = V{u(y); Ja € A{z,y} € f(a))} (2.6)

forallz e U. Ifﬁp(u) =3sapp(p), p is said to be F-soft definable; otherwise
w 1s called a F-soft rough fuzzy set.

Definition 7 [15] The lower M -soft rough approzimation ﬂlp(,u,) and upper
M -soft rough approximation W/P(u) of u are fuzzy sets in U given by:

%/p(ﬂ)(x) = vxef(a) /\yef(a) :u(y) (27)

WIP(M)('%) = /\:L‘Ef(a) \/yef(a) N(y) (2'8)

forallx € U. If@lp(,u) = W/P(u), 1 is said to be M-soft definable; otherwise
u 1s called a M-soft rough fuzzy set.

Definition 8 [83] The Z-lower soft rough approzimation K, and Z-upper soft

rough approzimation fi, of j are fuzzy sets in U given by:

{y)iy e UNp(z) = p(y)} (2.9)
Tp(x) = V{uy);y € UNp(x) =¢o(y)} (2.10)

for all x € U. If B, = fy, kb is said to be Z-soft definable; otherwise u is
called a Z-soft rough fuzzy set.

2.1.3 Uncertain decision making based on hybrid soft sets

We only provide a brief review on DM based on fuzzy soft sets and rough soft sets,
since these two models are simple and very popular and our research presented in
Section 4.1 is closely related to them. The application of these two models have
potential to be extended to more complex models and situations.

Up to present, there still exist arguments and limitations for the existing algo-
rithms based on fuzzy soft sets and rough soft sets, and the application methodolo-

gies are far away to meet different demands of applications:
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1. In terms of fuzzy soft sets based DM methods, there exist two popular ap-
proaches: (i) the score based approach [61], and (ii) the fuzzy choice value
based approach [30].

e In the score based approach, a comparison matrix is constructed and
through computing the row sum and column sum of the comparison ma-
trix the scores could be obtained. The final decision is to choose the

alternative with maximum score.

e In the fuzzy choice value based approach, the sum of all the membership
values of alternatives with respect to all parameters are computed as the
fuzzy choice value, and the decision is made by selecting the alternative

with maximum fuzzy choice value.

There has been a fierce argue on which of these two approaches is more rea-
sonable. In [14], it is proposed an adjustable approach by using level soft sets.
Since choice values of alternatives in the soft sets are applied to make the
decision, their adjustable approach could be viewed as the improvement of the

fuzzy choice values based approach.

2. In terms of rough soft sets based DM approaches, we have only noticed two
algorithms provided by Ma et al. [35]. However, such algorithms can only
solve specific DM problems and could only be viewed as the initial attempt

for application.

2.2 Linguistic preference modeling for decision mak-

ing under uncertainty

In this section, we make a brief review about fuzzy linguistic approach, comput-
ing with words (CW), elicitation of comparative linguistic expressions (CLEs) based
on hesitant fuzzy linguistic term sets (HFLTSs), and several representation models
for HFLTSs.

2.2.1 Fuzzy linguistic approach

Fuzzy linguistic approach has been widely applied to model linguistic preferences
in DM. In fuzzy linguistic approach [78], linguistic information is represented by
linguistic variables. A linguistic variable is described as “a variable whose values
are not numbers but words or sentences in a natural or artificial language” [78], and

it could be formally defined as follows:
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Definition 9 [79] A linguistic variable is characterized by a quintuple (H,T(H),

U,G, M) in which H is the name of the variable; T(H) is the term set of H, i.e.,
the set of names of linguistic values of H, with each value being a fuzzy variable that
is denoted by X and ranging across a universe of discourse U, which is associated
with the base variable u, G is a syntactic rule (which usually takes the form of a
grammar) for the generation of the names of values of H; and M is the semantic

rule for associating its meaning with each H, M(X), which is a fuzzy subset of U.

To deal with linguistic variables, it is necessary to select suitable descriptors for
linguistic terms, and define the appropriate semantics (see Fig. 2.1). The linguis-
tic descriptors of terms could be obtained by using an ordered structure approach
[23, 75], they can also be obtained by using a context-free grammar, in which the lin-
guistic descriptors are sentences generated by a context-free grammar G [5, 6, 79].
Accordingly, the semantics of terms could be accomplished based on an ordered
structure of the linguistic term set, or by using membership functions of primary
linguistic terms and a semantic rule to provide membership functions of non-primary

linguistic terms [58].

nothing very bad bad medium good very good perfect——» descriptors

— semantics

(o] 017 0.33 0.5 0.67 0.83 1

Figure 2.1: Descriptors and semantics of a linguistic term set

The use of linguistic information implies the necessity of operating with linguistic
variables. CW is defined as a methodology for reasoning, computing and decision
making using natural language information [48]. The general scheme for CW is
shown by Fig. 2.2.

Linguisti_c) Translation — Manipulation — Retranslation _I_inguistic
Input anipd 2 Output

Figure 2.2: Computing with words scheme [12, 21]

The application of linguistic information in recommender systems [3, 43, 57],
social choice [18], data mining [26], and many other practical fields would not be

possible without carrying out CW processes. Tools such as probability [31, 32],
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Fuzzy Logic [80], and Fuzzy Linguistic Approach [78] grounds the basis for different

computational models for CW.

2.2.2 Elicitation of comparative linguistic expressions based on HFLTSs

In real world linguistic DM problems, sometimes it is difficult for decision makers
to use single linguistic terms to elicit their assessments on alternatives, since they
may hesitate among several linguistic terms at the same time when they are under
time pressure, lack of confidence or consider other uncertain issues.

In order to model this hesitant situations, Rodriguez et al. introduced the con-
cept of HFLTS [58].

Definition 10 /58] Let S = {so,...,s4} be a linguistic term set, and a HFLTS
Hg, is defined as an ordered finite subset of consecutive linguistic terms of S,

Hg = {si, Sit1,...,8j} such that s, € S, ke {i,...,j}.

Although HFLTSs could be used to deal with linguistic preferences in hesitant
situations, they are not similar to the way of thinking and reasoning in real world
problems. Therefore, in [59] it was proposed the use of a context-free grammar to
generate comparative linguistic expressions (CLEs) close to the natural language

used by human beings in real world.

Definition 11 [59] Let Gy be a context-free grammar and S = {sg,...,sq} be a
linguistic term set. The elements of Gy = (Vn, Vi, I, P) are defined as follows:

Vv = {{primary term), (composite term), (unary relation), (binary relation), (conjunction)}.
Vr = {at most, at least, between, and, sg, . .., Sq}.

IeVy.

P = {I ::= (primary term)|{composite term)

(composite term) ::= (unary relation) (primary term)|(binary relation)(primary

term)(conjunction)(primary term,)

(primary term) ::= so|s1]...|sq
(unary relation) ::= at most|at least
(binary relation) ::= between
(conjunction) ::= and}.

Different CLEs generated by the context-free grammar G can be transformed
into HFLTSs by a transformation function. In this way, CLEs could be semantically
represented by HFLTSs, and operations on CLEs could be realized through carrying
out operations on HFLTSs.
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Definition 12 [58] A transformation function Eg,,, which is able to transform a
CLE, Ul into a HFLTS, Hg, where S is the linguistic term set used by Egq,,, s
defined as:

EGH Al — HS (2.11)

Based on Eg,, CLEs generated by G can be transformed into HFLTSs in
different ways according to their meaning;:
Eqy(si) = {silsi € S},
Eq, (at most s;) = {sj|s; < s; and s; € S},
Eq, (at least s;) = {sj|s; > s; and s; € S},
Eq, (between s; and s;) = {sg|s; < s < s; and s, € S}.

2.2.3 Representation of comparative linguistic expressions

To facilitate the computations with CLEs based on HFLTSs, a representation model

for HFLTSs in form of linguistic interval was proposed.

Definition 13 [58] The envelope of an HFLTS Hg, denoted by env(Hg), is a lin-
guistic interval whose limits are obtained by:

env(Hg) = [Hg-,Hg+|, Hs- < Hg+
where Hg- = min{s;} and Hg+ = maz{s;} for s; € Hg, Vi.

The envelope in form of linguistic intervals loses the fuzzy representation of
linguistic information, therefore Liu et al. [33] proposed another kind of envelope in
form of trapezoidal fuzzy numbers (TFNs), called type-1 fuzzy envelope. A scheme
to obtain fuzzy envelopes of HFLTSs has been provided in [33] by using OWA
operators [16] and the semantics of linguistic terms in a linguistic term set. The

scheme is briefly summarized as follows:

e Obtain elements to aggregate.

Each linguistic term of the HFLTS s, is presented as AF = T (alz,alfw,a’%),

and it is logical to use the set of all points of all membership functions of

linguistic terms as the elements to aggregate, for computing the fuzzy envelope

of HS = {3i73i+17 ce ,Sj}.
RO i i+l a2 il Jj oJ-1 3 _J
T ={a},a%,ag,ayy ,ay " ay ... ap,ap ,ay,ap}
Since a]f{l = aﬁ/[ = aljffl, k=1,2,...,9 — 1, the elements to aggregate could

be deduced to
_ i i+1 J J
T ={a},ay;ay; ... ay,an}
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e Compute the parameters of fuzzy envelopes in form of TFNs.

For any HFLTS, Hg, the fuzzy envelopes for Hg is a TFN, Fy, = T(a,b, ¢, d),
where the parameters a, b, c,d are obtained from aggregation of elements in
T = {a%,a,, aé\}rl, ...,a), aR}. The aggregation operators are OWA opera-

tors reviewed in the next step.

e Compute the OWA operators.

The approach in [16] is adopted to compute the OWA operators, i.e., W'
and W? are chosen as the associated weights to aggregate elements in T' =
{a},dl;, aﬁl, .. ,agw, ag%} according to the CLE:
Definition 14 [16] Let « € [0, 1],

the first type of OW A weights W' = (wi,wi, ... wl) is defined as

wi = o, wi = a(l —a), wi =al-0a)? ..., w | =al-a)" -2,

n—1
w}L =(1- oz)”_l;

the second type of OWA weights W2 = (w?,w3,...,w2) is defined as
wi =a" ! wi = (1-a)a" 2w =(1-a)" 3, ..., wi | =(1-a)a,

n—1
2—-1—aq.

w, =

e Obtain the fuzzy envelope.

Fuzzy envelope Fp, for Hg is obtained as a TFN T'(a,b, ¢, d).

2.3 Group decision making and consensus reaching pro-

cess

In this section, we first review the concepts of group decision making and con-
sensus reaching process, then we discuss the limitations of group decision making

approaches based on hybrid soft set models.

2.3.1 Group decision making

When more than one decision maker takes part in and takes responsibility for the
decision result in a DM problem, it is called a group decision making (GDM) prob-
lem. More decision makers may make the decision result more reliable, at the same
time, it also may increase the difficulties to make the decision considering factors
such as the time consumption. A GDM problem is formally characterized by the

following elements [29]:

e A common problem to be solved.
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o A set of alternatives or a set of possible solutions denoted by X to the problem.

X =A{z1,...,zp} (n > 2) (2.12)

e A set of decision makers, denoted by E, who express their preferences on

alternatives and try to obtain a common solution to the problem.

E={e1,....,em} (m>2) (2.13)

Each decision maker provides his/her opinion over alternatives by using a pref-
erence structure. Some popular structures in GDM problems under uncertainty
are: utility vectors [7], fuzzy preference relation [51, 54, 68], and preference ordering
[67]. Different information domains to provide preferences are allowed in GDM prob-
lems. Some frequently utilized in GDM under uncertainty are: numerical domain
[7, 51, 84], interval-valued domain [17, 73], and linguistic domain [11, 22, 25, 38, 41].

There are two kinds of approaches for solving a GDM problem: a direct ap-
proach or an indirect approach [24]. In the direct approach, a solution could be
directly obtained from the individual preferences of decision makers, it is not nec-
essary to obtain a social opinion in front. In the indirect approach, a social opinion
or a collective preference need to be computed first, and afterwards the collective
preference is utilized to obtain the final solution.

The classical selection process to obtain the solution of a GDM problem consists

of two phases [60], as shown in Fig. 2.3.

e Aggregation phase: in this phase, the preferences provided by decision makers

are combined using aggregation operators to obtain a collective preference.

e Exploitation phase: in this phase, one or a subset of alternatives will be se-

lected by using a selection criterion as the solution for the problem.

Experts
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Figure 2.3: Selection process for the solution of a GDM problem
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2.3.2 Consensus reaching process in group decision making

When the solution of a GDM problem is directed obtained by the selection process,
a desired agreement level among decision makers is difficult to be guaranteed, which
may lead to a solution that is not accepted by decision makers who feel that their
individual opinions have not been taken into consideration [8]. Since a high level of
acceptance of the whole group is critical in real-life GDM problems, it is necessary
to consider a phase called “consensus” for GDM problems. A consensus reaching
process (CRP) is a dynamic and iterative process consisting of several rounds of
discussion, in which decision makers modify their initial opinions to make themselves
closer to the majority of the group and to ensure a desired group agreement before
making the decision [8, 62].

CRP is usually coordinated by a moderator, who takes responsibility for super-
vising and guiding the discussion amongst decision makers [8, 62]. A general CRP

scheme (see Fig. 2.4) consists of four main phases:

Moderator

Experts

P | =
roblem 3 B l

-V |Preferences

Alternatives m | Gather Preferences |

Consensus
M JIrement

Consensus

Achieved
Consensus Control
A
Advice Selection process

Consensus Progress

Figure 2.4: A general CRP scheme

1. Gathering preferences

The preferences of decision makers are collected in this phase.

2. Consensus measurement

The moderator makes use of individual preferences of decision makers to es-
timate a group agreement level by consensus measures. Based on the type of
information fusion procedures, the existing consensus measures could be clas-
sified into two categories [52]: 1) consensus measures based on distances from
individual to collective preference; 2) consensus measures based on distances

between preferences of different pairs of experts.
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3.

2.3.3

Consensus control

The consensus degree obtained previously is compared with a consensus thresh-
old p € [0, 1], which indicates the minimum value of acceptable agreement. If
the consensus degree exceeds the consensus threshold, p, means that the de-
sired consensus has been achieved, and therefore, the group moves into the
selection process; otherwise, another discussion round should be carried out.
A value maxrounds € N, which indicates the maximum number of allowed

rounds will be set a prior in order to prevent a never ending process.

Consensus progress

If the current consensus degree is not enough, a procedure should be adopted
to increase the level of agreement throughout the discussion rounds. The

procedure can also be classified into two categories [53]:

e Traditionally, such a procedure incorporates a feedback generation pro-
cess, in which the moderator identifies the farthest assessments from con-
sensus in the current round, and then some advise are generated to modify
decision maker’s assessments to get closer to the rest of the group and

increase the consensus degree [42, 62].

e Some other consensus models employ a procedure without a feedback
generation process, in which assessments of decision makers are updated
automatically to increase the consensus degree [4, 72, 84]. In this model,
decision makers only need to provide initial preference information, since

it is no necessary for them to be involved in the following rounds.

Hybrid soft sets based group decision making and their lim-
itations

Several GDM approaches by using hybrid soft sets have been proposed by re-

searchers. Based on the revisions of linguistic preference modeling, GDM, and CRP,

group

decision making approaches based on hybrid soft set models present several

limitations that could be listed as follows:

1.

A priori optimal group decisions.

Current GDM algorithms based on soft rough sets request that each decision
maker provides their optimal choices before making the group decision. That
is, each decision maker has to make his/her own decision before the GDM
process carries out. This request is very strict, usually can not be carried
out in real life decision making, thus the applications for the existing GDM

algorithms are limited.
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2. Lack of models and approaches to deal with linguistic information under the

framework of hybrid soft sets.

It has been mentioned before that the use of linguistic information is very
common in GDM problems. Although hybrid soft sets have been applied
in GDM, they can not be applied when decision makers provide linguistic
information. As far as we know, there is only one hybrid soft set model called

linguistic value soft sets [65] that is able to deal with linguistic preferences.

3. No consensus reaching process have been considered.

As it was mentioned in the above section, a CRP is very important for ensuring
a decision accepted by the whole group. However, no consensus models have

been defined either applied to GDM problems by using hybrid soft set models.




Chapter 3

Research Results

This chapter presents a summary of the main proposals considered in this research
memory. Research findings and research results will be briefly discussed for each
proposal. It is structured in four proposals which are related with the objectives

described in the introduction chapter:

1. Improving DM approaches based on fuzzy soft sets and rough soft sets.
2. A comparative study of some soft rough sets.
3. Hesitant linguistic expression soft sets: Application to group decision making.

4. Type-2 fuzzy envelope for HFLT'Ss and its application to multi-criteria decision

making.

3.1 Improving decision making approaches based on fuzzy

soft sets and rough soft sets

In order to achieve the first objective mentioned in Section 1.2, in this proposal, we
analyze the limitations of existing approaches based on fuzzy soft sets and rough
soft sets. Afterwards, we provide some methods to improve them, and we propose

some new algorithms to enrich the methodologies.

3.1.1 Improving decision making approaches based on fuzzy soft
sets

There has been an argument on DM approaches based on fuzzy soft sets about
which one “the score based method” or “the fuzzy choice value based method” is
more reasonable. In this proposal, we point out that it is hard to determine which

one is more reasonable without setting a certain circumstance, since their decision

23
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criteria are different. We state that “the score based method” is used to select
the objects that cooperate with more attributes in quantity, whereas “the fuzzy
choice value based method” is used to select the objects that cooperate with more
attributes in quality. Both approaches have some limitations, and there should be
proposed new methods to overcome such limitations.

The main limitation for fuzzy choice value based method is that the direct addi-
tion of all membership degrees with respect to attributes is not always reasonable.
We summarize the methodologies overcoming this limitation to avoid the unreason-

able direct addition of membership values:

(i) We can weight the parameters according to advices provided by relevant ex-
perts, and the fuzzy choice value could be submitted by using the aggregated
result obtained by OWA operators [74]. The approaches for synthesizing or
redefining fuzzy choice value is not unique, the use of OWA operators is only

an illustration.

(ii) We can use the adjustable approach proposed in [14] to avoid direct addition.
In their approach, through using a threshold value, fuzzy soft sets will be trans-
formed into soft sets, then DM problems based on fuzzy soft sets will become
a problem based on soft sets. Therefore, choice value instead of fuzzy choice
value will be adopted to evaluate alternatives. If this approach is applied,
we state that the most important task is to select a suitable threshold value

according to practical circumstances.

The score based method has two main limitations: (i) when parameters need to
be updated during the DM process, each entry in the comparison matrix have to be
recomputed, which result in a large amount of computation. (ii) there exists DM
problems which can not be successfully dealt with by using the score based method
[14]. Thus, we provide some new methods which could be used to overcome these

limitations:

1. To improve the score based method, we introduce a new concept so-called D-
Score and a mathematic tool D-score table. It is proved that the results of a
DM problem are the same by using the score based method and the proposed
approach with D-Score table. However, the amount of computations obviously
decreases when the parameters are added/deleted in the DM problem. There-
fore, the proposed approach is able to overcome the limitation (i) of the score
based method because it does not repeat computation when the information
is updated. Consequently, the new approach based on the D-score table could

be considered as an improvement.
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2. A novel adjustable DM approach based on fuzzy soft set is introduced by
using thresholds when comparing two membership degrees to obtain different
kinds of scores for alternatives. Benefitting from Feng’s idea of introducing
thresholds [14], a comparison threshold will be taken into consideration when
comparing the membership degrees of two objects with respect to a common
parameter. In this way, if the exceed degree of one membership degree over
another is not less than the comparison threshold, we say that the object
relatively possesses that parameter. With the introduction of threshold values,
the scores of alternatives will be different from the scores by using the score
based approach, and different optimal decision will be obtained by setting
different comparison thresholds, which makes this approach adjustable. This
new adjustable approach could be used to solve problems which cannot be

solved by using the score based approach.

3.1.2 Improving decision making approaches based on rough soft
sets

After studying the existing DM approaches based on rough soft sets, we have found

two main limitations that should be overcome:

(i) The application scopes of existing DM approaches based on rough soft sets are

very limited, difficult to meet various demands of DM.
(ii) So far, there is not any application of rough soft set in GDM.

Taking into account these two limitations, we introduce new approaches:

1. Two new DM approaches based on rough soft set are introduced. One selects
the optimal choice whose upper approximations cover all alternatives while
the lower approximations cover a specific number of alternatives. Another
approach determines the best choice by selecting attributes whose upper ap-
proximations cover the most number of alternatives. Several examples are
provided to illustrate the feasibility of both approaches. Different selection
mechanisms are proposed to enrich the methodologies for applying rough soft
sets in DM.

2. A GDM approach based on rough soft set which successfully solve problems
when the initial evaluation information provided by experts are their assess-
ments on alternatives from different parameters aspects. It has been analyzed
that most of existing GDM approaches based on soft rough sets have a strong

requirement, because each decision maker has to make optimal choices before
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a GDM process. Our proposed GDM approach based on rough soft set suc-
cessfully gets rid of this strong requirement, since the group decision results
could be obtained based on the assessments provided by decision makers over
alternatives. It is noticed that our approach is the first attempt in applying
rough soft set in GDM.

The article associated to this proposal is the following one:
Y Liu, K Qin, L Martinez. Improving decision making approaches based on
fuzzy soft sets and rough soft sets. Applied Soft Computing, 2018, 65: 320-332.

3.2 A comparative study of some soft rough sets

In this section, hybrid soft sets models constructed by combining soft sets and rough
sets, as well as fuzzy extension models of rough sets, are collectively refer to as soft
rough sets. To achieve the second objective of this research, this section is devoted

to two main directions:
1) The discussion on relationships among various existing soft rough sets;

2) The introduction of a novel soft rough set model and a decision making approach

based on such a model.

3.2.1 The relationships among various soft rough sets

The combination of soft set, fuzzy set and rough set is one of the most important
issues in the development of soft set theory, since it can enhance the ability of soft
sets dealing with multiple types of uncertainty. We notice that the relationships
among different soft rough sets have not been systematically studied. In this pro-
posal, we study the relationships among various soft rough sets, and our research

result could be briefly summarized as follows:

1. The relationship between F-soft rough approximations (see page 12, Def. 4)
and MSR approximations (see page 13, Def. 5):
X, Caprp(X), aprp(X) C X, X, C %P(X), if some specific conditions
hold, respectively.

2. The relationship between F-soft rough sets (see page 12, Def. 4) and Pawlak’s
rough sets [55]:
F-soft rough sets in (U, S) could be identified with Pawlak’s rough sets in
(U, Rg), when the underlying soft set is a partition soft set.
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3. The relationship between MSR approximations (see page 13, Def. 5) and
Pawlak’s rough approximations [55]:
MSR approximation operator is a kind of Pawlak rough approximation oper-

ator.

4. The relationship between Z-lower, Z-upper soft rough approximation opera-
tors (see page 14, Def. 8) and Dubois and Prade’s lower and upper rough
fuzzy approximation operators [13]:

Z-lower and Z-upper soft rough approximation operators are equivalent to

Dubois and Prade’s lower and upper rough fuzzy approximation operators.

5. The relationship between the (classical) rough fuzzy sets [13] and M-soft rough
fuzzy sets (see page 14, Def. 7):
The (classical) rough fuzzy sets in Pawlak approximation space (U, R) and M-
soft rough fuzzy sets in soft approximation space (U, S) are equivalent when

the underlying soft set S is a partition soft set.

6. The relationship among Z-soft rough approximation operators (see page 14,
Def. 8) and M-soft rough approximation operators (see page 14, Def. 7) and

F-soft rough approximation operators (see page 13, Def. 6) on fuzzy set u:

sapp,(p) € sapy,(p) € g, C 1 C fiy C 5app(1)C 5app(1).

7. The relationship between soft fuzzy rough approximation [49] and Dubois and
Prade’s fuzzy rough approximation [13]:
The soft fuzzy rough approximation is a kind of Dubois and Prade’s fuzzy

rough approximation [13].

8. The relationship between F-soft rough set (see page 12, Def. 4) and soft rough
soft set (proposed by us):

Soft rough soft set is an extension of F-soft rough set.

3.2.2 A novel soft rough set and decision making

By extending the notion of F-soft rough set [15], we define a new soft rough set

model, called soft rough soft set, and then study its application in decision making.

1. By using a soft set as the elementary knowledge to compute the approximations
of another soft set, we originally define a new hybrid soft set model called soft
rough soft set. Compared to F-soft rough sets, soft rough soft sets introduce
parameter tools to the universe description and a soft set (instead of a subset
of the universe) is approximated. Compared to rough soft set [15], a soft set

instead of an equivalence relation has been adopted in soft rough soft sets to
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compute the approximations of soft set. The parameter tool is necessary not
only for the knowledge representation, but also for the universe description.

In soft rough soft sets, parameterized tools have been used in both aspects.

2. A multi-group decision making approach based on soft rough soft sets has been
provided to illustrate the application of the proposed model. This approach
is designed to deal with problems in which two groups of experts take part in

the decision. The decision principle could be briefly described as follows:

Assessments of each expert in group A are performed as a soft set, the group
assessments of A is a soft set obtained by using the intersection operation of
soft sets. The best alternatives selected by another specialists of the group
B also form a soft set. B is supposed to be more reliable than A. Through
computing the lower and upper soft rough approximations of the soft set re-
lated to B in the soft approximation space, consisted of the soft set related to
A, and the alternative which occupies most number of benefit properties and
may be important for both groups, will be chosen. The proposed approach

takes full advantage of information provided by two independent groups.

The article associated to the second objective of this research is the following one:
Y Liu, L. Martinez, K Qin. A Comparative Study of Some Soft Rough Sets.
Symmetry, 2017, 9(11): 252.

3.3 Hesitant linguistic expression soft sets: Application

to group decision making.

Although several hybrid soft set models have been constructed by combing soft
sets with other mathematic models for dealing with uncertainty, as far as we know,
there is only one model called linguistic value soft set that combines soft set the-
ory with linguistic information which allows decision makers to provide assessments
with single linguistic terms. However, linguistic terms may be too strict in hesitant
situations and decision makers might hesitate among several terms. In such situ-
ations, they may prefer to use linguistic expressions rather than linguistic terms.
The use of CLEs based on HFLTSs could be suitable to describe hesitant linguistic
information. Nevertheless, linguistic value soft sets fail to deal with CLEs or any
other complex linguistic expression, therefore, more flexible and practical models
need to be constructed in order to deal with CLEs under the framework of soft sets.

In this proposal, first a novel hybrid soft set model called hesitant linguistic
expression soft set (HLE soft set) is defined, which is able to deal with CLEs.

Second, a decision making approach based on HLE soft set is introduced and an
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illustrative example is shown. Third, a novel GDM model to reach consensus is
proposed. The performance of the new GDM approach is examined by comparing
it with an existing GDM approach [65], through handling a GDM problem by using
these two approaches, respectively. In this way, we achieve the third objective

mentioned in Section 1.2.

3.3.1 Hesitant linguistic expression soft set

Soft set theory provides a framework for considering assessments from different pa-
rameters aspects. In this proposal, to improve the ability and flexibility of linguistic
value soft set ecilitating linguistic expressions more complex than single linguistic
terms, we do further research on the combination of soft set theory and HFLTSs to
introduce the notion of hesitant linguistic expression soft set (HLE soft set), which
makes possible to evaluate alternatives from different parameters aspects by using
CLEs.

Let U be the universe set and E be related parameters. Let S = {sq, s1,...,54}
be a linguistic term set and P(U) be the power set of all CLEs built from S for
the universe U. A pair (F E) is called a HLE soft set over U, where F is a
mapping from a parameter set E to the power set of all CLEs built from S for U,
ie., . E — P(U).

According to the context-free grammar, CLEs contains linguistic terms, which
means that a HLE soft set will degenerate to a linguistic value soft set when all CLEs
degenerate to single linguistic terms. However, it improves the linguistic value soft
set by allowing assessments on alternatives with respect to parameters presented in
form of both linguistic terms and CLEs.

In order to carry out computations on HLE soft sets and solve DM problems
dealing with HLE soft sets, it is necessary to define suitable syntax and semantics

for the linguistic terms in the linguistic term set S. In this proposal:

1. The semantic of linguistic terms in S is defined by means of triangular mem-
bership functions. CLEs in HLE soft sets are semantically represented by the
fuzzy envelope of HFLT'Ss.

2. The syntax of linguistic terms in S describes the satisfactory degree of al-
ternatives with respect to parameters. To consider extreme situations when
alternatives absolutely satisfy parameters or not satisfy parameters at all, we
adopt two single terms, “none” and “absolute” with semantics 7°(0,0,0,0) and

T(1,1,1,1), as the smallest and the largest linguistic terms in S.

3. To carry out the CW process with CLEs in HLE soft sets, fuzzy envelopes for
HFLTSs in form of trapezoidal fuzzy numbers (TFNs) will be used. However,
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the methodology for computing type-1 fuzzy envelopes [33] is adjusted when

the linguistic terms “none” and “absolute” are considered.

As it is mentioned above, CLEs could be transformed into HFLTSs by using
a transformation function (see Def. 11), the fuzzy envelope for the HFLTSs (in
form of TFNs) could be computed by means of the adjustment of the approach in
[33]. On the basis of a principle that “the larger the fuzzy envelope of a HFLTS is,
the larger the corresponds CLE should be”, we use a ranking approach for CLEs
based on a ranking approach for TFNs [1]. Based on this ranking approach for
CLEs, operations on HLE soft sets are studied, including the complement, relative
complement, extended intersection, restricted intersection, restricted union, and

extended intersection of HLE soft sets.

3.3.2 Decision making based on HLE soft sets

A DM approach based on HLE soft set is proposed to deal with multi-criteria DM
problems. To solve a DM problem by using the proposed method/approach, first
of all, the assessments on all alternatives provided by decision makers should be
CLEs, and all assessments form a HLE soft set. To carry out the computation on a
HLE soft set, all CLEs in the HLE soft sets need to be transformed into HFLTSs.
Afterwards, the type-1 fuzzy envelopes of all HFLTSs are computed. The following
step is to compute the magnitudes of all fuzzy envelopes. Finally, the scores of
alternatives are computed based on the magnitudes values, and the alternative with
the maximum score is selected.

This approach extends the DM approach based on fuzzy soft set proposed in [2].
The novelty of our approach is that we use the magnitude [1] of type-1 fuzzy envelope
of the HFLTSs transformed from CLEs to compute the score of each alternative.
The advantage of this approach is the use of all linguistic information provided by
decision makers from different parameters aspects to make the final decision.

An example is provided to illustrate the feasibility of the proposed DM algorithm.
As far as we know, there are few algorithms that could be used to solve linguistic
DM problems under the background of soft sets, the proposed approach promote

the application of soft set theory with linguistic information.

3.3.3 Group decision making based on HLE soft sets

A GDM approach based on HLE soft set is proposed to deal with multi-criteria
GDM problems. To facilitate the computation during the GDM process, a new
operator called CLE-OWA operator is defined to aggregate CLEs. A CLE-OWA

operator could be viewed as a special ordinary OWA operator [28] in which the
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weights are linguistic terms while the aggregation objects are CLEs. By using CLE-
OWA operator, we obtain a collective HLE soft set which reflects the opinion of the
group.

The parameterization tool of soft set theory makes HLE soft sets more compre-
hensive by using linguistic information with regards to different parameters, it is
more difficult to deal with the CRP because there will be a larger amount of data.

To deal with this issue, a consensus model (see Fig. 3.1) based on HLE soft set is

Moderator
Experts

Problem -4 S
Alternatives| . . 4V | CLEs N
> m Obtain CLE soft sets
Parameters <
|

Compute fuzzy
envelopes of CLEs

proposed.

Compute consensus

Consensus Control

Advice [ Advice generation Selection process

Figure 3.1: A consensus model based on HLE soft set

This new GDM approach based on HLE soft sets can be briefly introduced as

follows:

1. Collect all assessments upon alternatives with respect to parameters, and the
assessments provided by each decision maker form a HLE soft set. In this way,

several HLE soft sets can be obtained.

2. A CRP is carried out to ensure that the decision result is accepted by the

majority of decision makers.

3. A collected HLE soft set (group opinion) is computed by using the CLE-OWA
operator to aggregate CLEs.

4. Based on the collected HLE soft set, the GDM problem becomes a DM prob-
lem. The DM approach mentioned in Section 3.4.2 is applied, and the alter-

native(s) with maximum score is selected.

Considering that there is only one GDM method proposed by Sun et al. [65]

which deals with linguistic assessments of decision makers under the framework of
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soft set theory based on linguistic value soft set, we provide a simple GDM problem
to make a comparison between the two approaches and show some advantages of
our proposal. After carrying out different experiments with these two approaches,

we can point out the following advantages:

1. When parameters considered by all decision makers are the same, the decision
can not be made by using Sun et al.’s approach. However, the same problem

can be solved by using our GDM approach.

2. Compared with Sun et al.’s approach, a CRP has been considered in our GDM
approach, which makes the final decision closer to the opinion of the majority,

and ensures a more reasonable decision result.

3. Sun et al.’s approach is constructed based on linguistic value soft sets, whereas
our GDM approach is constructed based on HLE soft sets. It depends on
different hybrid soft set models they adopt, Sun et al.’s approach can only
deal with decision makers’ assessments in form of linguistic terms, whereas
our GDM approach can deal with not only linguistic terms but also with
CLEs.

Based on the above analysis, we conclude that our GDM proposal goes beyond
Sun et al.’s, since the former can be used to solve GDM problems that can not be
handled by the latter.

The article related to this approach is:

Y Liu, R M. Rodriguez, J C R. Alcantud, K Qin and L Martinez. Hesitant
based HLE soft sets: Application to group decision making, Computers & Industrial

Engineering, submitted.

3.4 Type-2 fuzzy envelope for HFLTSs and its applica-

tion to multi-criteria decision making

Decision makers may prefer to provide assessments on alternatives by using linguis-
tic terms rather than crisp values. A lot of factors, such as lack of confidence, time
pressure, may cause decision makers hesitate among several linguistic terms at the
same time when they are requested to give their evaluations. To deal with hesitant
situations, different elaborated models [34, 66, 69] have been proposed to provide
more flexible and richer expressions than single linguistic terms. However, none of
these models are close to the way of thinking and reasoning of human being or they

do not formalize the generation of such linguistic expressions. As is mentioned in
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Section 3.3, the concept of CLEs based on HFLTSs could be a suitable choice to fa-
cilitate the elicitation of linguistic information and model hesitant situations. CLEs
are generated formally by using a context-free grammar, and are easily transformed
and semantically represented by means of HFLTSs, which allows experts to elicit
several linguistic values for a linguistic variable. Therefore, CLEs are convenient
because they are similar to the expressions used by decision makers in the daily life.

The use of linguistic information implies CW processes [40, 44, 76]. Existing
representations for HFLTSs, called envelopes, are proposed in form of linguistic
intervals or type-1 fuzzy sets. However, it should be noticed that CLEs mean differ-
ent things to different people because there exists uncertainties contained in CLEs.
None of the two kinds of envelopes for HFLTSs [33, 58] can reflect or describe the
uncertainty contained in CLEs, which motivates us to make further research on the
construction of a new fuzzy envelope for HFLTSs based on type-2 fuzzy sets. It will

be tested in comparison with other previous representations.

3.4.1 An approach to construct a type-2 fuzzy envelope for HFLTS

With this proposal, we achieve the fourth objective mentioned in Section 1.2 which
consists of defining a new fuzzy representation model for CLEs that can reflect the
linguistic uncertainty contained in CLEs. This approach is divided into three-steps
(see Fig. 3.2).

General process to obtain the type-2 fuzzy envelope

HFLTS Type-1 fuzzy | | Estimate the | | Type-2 fuzzy
envelope uncertainty envelope

Figure 3.2: A three-steps process to construct the type-2 fuzzy envelope for HFLTS

1. Compute type-1 fuzzy envelope.

In the first step, the type-1 fuzzy envelope is obtained by using the method
proposed in [33].

2. Compute the uncertainty contained in HFLTSs.

Recently, a measure called comprehensive entropy for HFLTSs has been in-
troduced [70] to evaluate both fuzzy uncertainty and hesitancy of HFLTSs.
Compared to other measures to evaluate uncertainties of HFLTSs, the com-
prehensive entropy takes full use of uncertain information and therefore it is

good enough to capture the uncertainties contained in CLEs. In this proposal,
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comprehensive entropy will be used in the second step of the general process

of type-2 fuzzy envelope.

The fuzzy uncertainty of linguistic terms have been studied by using fuzzy
entropy measure in [70]. The larger fuzzy entropy of a linguistic term is, the
more fuzzy the linguistic term is. In this research, we introduce an example
to show that the hesitancy among linguistic terms more fuzzy will lead to
more uncertainty compared with hesitancy among linguistic terms less fuzzy.
To perform different treatments for hesitations contained in different HFLTSs
by determining the importance degrees of hesitancy according to the specific
characteristics of HFLT'Ss, we use a function (Hg) to control the importance
of hesitancy, and compute the comprehensive entropy E.(Hg) for HFLTSs by

using the following equation:

Ey(Hs) + B(Hg)En(Hs)
1+ B(Hs)Ep(Hs)
where Ef(Hg) and Ej,(Hg) are the fuzzy and hesitant entropy of Hg, respec-

tively. The function S(Hg) represents the importance degree of the hesitancy
when evaluating the overall uncertainty contained in Hg. The larger 5(Hg),
the greater the value of overall uncertainty E.(Hg), because more hesitancy
will be taken into account when the overall uncertainty contained in Hg is

computed.

Several principles to determine ((Hg) have been provided considering two
main factors: the number of linguistic terms and the positions of linguistic

terms contained in the HF LTS, Hg. These principles ensures that:

(i) when all linguistic terms are contained in Hg, the importance level of
hesitancy reaches the highest;
(ii) when only one single term is contained in Hg, the importance level of
hesitancy reaches the lowest;
(iii) the importance of hesitancy increases when the level of hesitancy con-
tained in Hg increases;

(iv) the changing quantity of importance of hesitancy is positively corre-
lated to the fuzzy degree of the linguistic term added/deleted of a given
HFLTSs;

(v) when both the fuzzy uncertainty and the hesitancy are equal for two

different HFLT'Ss, the importance of hesitancy should be the same.

According to the context-free grammar revised in Def. 9, there are three kinds

of CLEs: “at least s;”, “at most s;” and “between s; and s;”, where s; and
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s;j are linguistic terms in the linguistic term set S. For these three different
cases, we provide different equations to compute S(Hg), the equations are
listed below:

1 1
B(Eq, (at least s;)) = icosgi + i’i € [0, g]. (3.2)
B, (at most ) = 2 sin(Ti—7) + £ i € [0.q] (33)
Gy (at most s;)) = S sin gZ 5)+ 50 ,q). )
1 = 1 = 7 .
B(Eq, (between s; and Sj))zicosgz + 55271(;] — 5), i,7€10,g]. (3.4)

These three equations are proved to satisfy the principles set a prior. How-
ever, it should be noticed that the way for computing B(Hg) is not unique,
the equations proposed are a possible choice, but any others that satisfy the

principles could be used.

3. Construct a type-2 fuzzy envelope for HFLTSs.

A new representation model for HFLTSs, called type-2 fuzzy envelope will be
constructed by using type-2 fuzzy sets [46, 47]. To simplify the computation in
the initial exploration of type-2 fuzzy envelope, interval type-2 fuzzy sets (I1T2
FSs) [45] are applied in our proposal, which means that a secondary grade of
1 will be put at all points of FOU(A). An IT2 FS can be uniquely determined
by its F'OU , if the LMF and UMF are determined, the FFOU could be uniquely

determined, as well as the I'T2 FS.

Therefore, we construct the type-2 fuzzy envelope FHS of Hg. To do so, we
use a type-1 fuzzy envelope Fp, as the upper membership function, and the
lower membership function of F/ g is presented as
B, (x) = maz{0, Fyy(z) — E.(Hs)}, Ve € X
S
The uncertainty contained in Hg can be approximately reflected by the width

of FOU, and the type-2 fuzzy envelope can be presented as an IT2 FS FHS =
1/FOU (Fy,) with

FOU(Fyg) = {(z,u) : © € X,u € [mazx{0, Fyy(z) — E.(Hs)}, Frg(x)]}.
(3.5)

Footprints of type-2 fuzzy envelope for three types of CLEs are shown by Fig.
3.3.
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FOU(FE(;,, (at least si)) FOU(FE(;“ (at most sk)) FOU(FE(;H (between s; and sJ))

Figure 3.3: Footprints of type-2 fuzzy envelopes for CLEs

In summary, in order to construct suitable representation models for CLEs based
on HFLTSs: first, we compute the comprehensive entropy for HFLTSs. The com-
prehensive entropy synthesizes the fuzzy uncertainty and hesitancy for HFLTSs.
Afterwards, the comprehensive entropy for HFLTSs is used to measure the uncer-
tainties contained in CLEs when we construct the type-2 fuzzy envelopes for HFLTSs
(that are obtained from CLEs). The approach to construct type-2 fuzzy envelope
for HFLTSs in form of IT2 FSs uses the type-1 fuzzy envelope as the lower ap-
proximation membership function of the footprint and the comprehensive entropy
as the width of the footprint. Finally, the type-2 fuzzy envelopes for HFLTSs are
obtained as the type-2 fuzzy representations for CLEs, which successfully reflects

the uncertainties contained in CLEs.

3.4.2 Comparisons between type-1 and type-2 fuzzy envelopes in

decision making.

The second part of the fourth objective mentioned in Section 1.2 was to examine
the performance of the new representation model with existing ones. To do so, a
comparison on the application of type-1 and type-2 fuzzy envelope of HFLTSs has
been carried out by considering a multi-criteria DM problem. The problem has been
handled by using type-1 fuzzy TOPSIS [9] and type-2 fuzzy TOPSIS [10] methods
with type-1 and type-2 fuzzy envelopes, respectively. It is shown by experiments
that the decision result by using type-2 fuzzy envelope is consistent with the decision
result by using type-1 fuzzy envelope. However, in situations in which two alterna-
tives cannot be distinguished by using type-1 fuzzy envelope, the use of type-2 fuzzy
envelope provides a more precise result.

The reason why the use of type-2 fuzzy envelope provides more precise decision
result has been analyzed: compared with type-1 fuzzy envelope, the construction of
type-2 fuzzy envelope takes into account both the fuzzy uncertainty and hesitancy
contained in the linguistic expressions. The comparison between the use of type-1
TOPSIS method with type-1 fuzzy envelopes for HFLTSs, and the use of type-2 fuzzy
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TOPSIS with type-2 fuzzy envelopes successfully reduces the loss of information
caused by computations on CLEs during the DM process, therefore it achieves more
accurate decision result.

The article related to this proposal is the following one:

Y Liu, R M. Rodriguez, H Hagras, H Liu, K Qin, and L. Martinez. Type-2
fuzzy envelope of hesitant fuzzy linguistic term set: a new representation model of

comparative linguistic expressions, IEEE Transactions on Fuzzy Systems, submitted.
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1. Introduction

Classical mathematical tools, which require all notions to be
exact, usually fail to handle the uncertainty, imprecision and vague-
ness in a wide variety of practical fields. Although theories such as
fuzzy set theory [1], rough set theory [2], intuitionistic fuzzy set
theory [3] and vague set theory [4] have been proved useful math-
ematical approaches in modeling these uncertainties, all of them
have a common limitation—the inadequacy of the parameteriza-
tion tool. In 1999, soft set theory was put forward by Molodstsov
[5] as a new mathematic tool for dealing with uncertainty, which is
free from the above mentioned limitation. Afterwards, the gener-
alized models of soft sets (hybrid soft sets) come forth rapidly and
there has been an increasing interest in the practical applications of
hybrid soft set theories, especially with regard to their applications
in decision making [6-17].

The popular hybrid soft set models contain two main categories:
(1) The combination of soft set theory with fuzzy set theory and the
generalized models of fuzzy set theory [18-24]; (2) The combina-
tion of soft set theory with rough set theory and the generalized
models of rough set theory [25-28]. As two representative hybrid
soft set models in these two different categories, fuzzy soft sets [ 18]

* Corresponding author.
E-mail addresses: yayaliu@my.swjtu.edu.cn (Y. Liu),
qinkeyun@home.swjtu.edu.cn (K. Qin), martin@ujaen.es (L. Martinez).

https://doi.org/10.1016/j.as0c.2018.01.012
1568-4946/© 2018 Elsevier B.V. All rights reserved.

and rough soft sets [26] are interconnected [29]. All decision mak-
ing methods based on fuzzy soft sets or rough soft sets have the
potential to be extended to deal with more complex hybrid soft set
models situations. For instance, Jiang et al. [30] and Zhang et al. [31]
extended Feng et al.’s decision making approach based on fuzzy
soft sets in [32] to come up with an intuitionistic fuzzy soft sets
based decision making approach and an interval-valued intuition-
istic fuzzy soft set based decision making approach, respectively.
In terms of fuzzy soft set based decision making methods, Roy
and Maji [33] provided a novel method (the score based method)
for decision making based on fuzzy soft sets, which builds upon
concepts such as the comparison table and the scores of objects.
However, no researchers have paid attention to the improvement
of the score based method in order to overcome its own limitations
and make it fit for more practical situations until now, although
its reasonability has already been verified [32]. With the develop-
ment of information technology in modern society, the practical
information updates rapidly as time goes by, adding new data and
removing old data. In this paper, we will improve the score based
method by introducing a new mathematic tool called D-Score table
and then successfully make it more convenient to obtain the deci-
sion result when parameters should be added/deleted in decision
making problems, this improvement will be useful for practical
problems solving which contains updating information. Further-
more, we propose a new approach to fuzzy soft set based decision
making by introducing comparison thresholds when comparing
two membership values to obtain different kinds of scores for
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objects. After choosing different comparison thresholds, we will
construct different level D-Score tables and then obtain different
optimal decision sets, which makes the new approach adjustable.
In this way, the new approach can be successfully used to deal with
some problems which cannot be solved by the initial score based
method.

In terms of rough soft sets based decision making approaches,
the researches are so far few. Recently, Ma et al. [34] introduced
some initial algorithms for decision making based on rough soft
sets and an algorithm for group decision making based on MSR-
set [35]. However, the algorithms proposed by Ma et al. [34] are
far from enough to meet various practical demands. Furthermore,
the group decision making method based on rough soft sets has
not been studied yet. In the present work, with the construction of
rough soft sets and a fuzzy soft set, we determine the weights of
experts by using the similarity measure of soft sets and then provide
anew approach based on rough soft sets to solve the group decision
making problem. As an important hybrid soft set model generated
with rough set theory, rough soft sets has huge potential to be used
in dealing with practical problems that contain uncertainty, and it
is a promising topic to find out more decision making approaches
based on rough soft sets to meet the different demand of decision.

Although some researchers have systematically discussed the
decision making approaches based on fuzzy soft sets and rough
soft sets recently [34,36], they concentrated on proposals review
or revision, rather than improving existing approaches or provid-
ing new approaches to meet various application demands. There
still exist arguments on the fuzzy soft sets based decision making
approaches [32,37], and it can be said that the research of rough
soft sets based decision making approaches is still in an initial
stage, that is the reason why it necessary to carry out a research
focuses on the improvement of decision making approaches based
on fuzzy soft sets and rough soft sets. In the current work, the limi-
tations of some popular existing proposals will be systematically
discussed and afterwards several solutions will be provided. All
the improved proposals or new approaches provided in the cur-
rent research have the potential to be extended to more complex
hybrid models situations.

The present paper is organized as follows: Some basic notions
on soft sets, fuzzy soft sets and rough soft sets are reviewed in
Section 2. In Section 3, we recall an existing argument of fuzzy
soft sets based decision making approaches, provide our opinion
on this argument, afterwards present an improvement of the score
based method. On the basis of this improved score based method,
a new adjustable decision making approach based on fuzzy soft
sets is proposed. In Section 4, we discuss the limitation of existing
rough soft set based decision making methods and the necessary to
enrich the approaches, afterwards two algorithms are provided to
conquer these limitations and to meet various practical demands.
It is worth noticing that we originally apply rough soft set as a tool
to deal with group decision making problems, which successfully
solve the problems according to assessments on alternatives pro-
vided by decision makers, rather than according to specific decision
results made by separate decision makers which have been adopted
in some other existing approaches. Finally, conclusions are given in
Section 5.

2. Preliminaries

In this section we briefly recall some concepts that will be useful
in subsequent discussions.

Let U be the initial universe of objects and E be the set of
attributes related to objects in U. Both U and E are assumed to be
nonempty finite sets. Let P(U) be the power set of Uand ACE.

Definition 1. [5]: A pair (F, A) is called a soft set over U, where F
is a mapping given by F: A— P(U).

For any attribute e € A, F(e) € U may be considered as the set of
e-approximate elements of the soft set (F, A). In other words, the
soft set is not a kind of set in the ordinary sense, but a attributeized
family of subsets of U. We denote by (U, E) the set of all soft sets
over U.

For two soft sets (F, A) and (G, B) over a common universe U, we
say that (F, A) is a soft subset of (G, B) if

(1) AcB;
(2) Ve € A, Fle) < G(e).

This relationship is denoted by (F, A) € (G, B). (G, B) is said to be
a soft super set of (F, A), if (F, A) is a soft subset of (G, B).

Definition 2. [38]: A mapping S: (U, E) x (U, E)— [0, 1] is said to
be a similarity measure if the following axioms hold for arbitrary
(F,A),(G,B) € (UE):

(1) 0=<S((FA), (G B)=<T;

(2) S((F, A), (F, A)=1;

(3) S((F. A), (G, B))=5((G, B), (F, A));

(4) If (F, A)< (G, B)< (H, C), then S((F, A), (H, ©)) = S((F, A), (G, B)),
S((F, A), (H, ©))=S((G, B), (H, ).

The theory of fuzzy sets, first introduced by Zadeh [1] in 1965,
provides an appropriate framework for representing and process-
ing vague concepts by allowing partial memberships. A fuzzy set F
in the universe U is defined as F={(x, ig(x))/x € U, ug(x) € [0, 1]}.
g is called the membership function of F and pg(x) indicates the
membership degree of x to F. The family of all fuzzy sets on U is
denoted by F(U).

In 2001, Maji et al. [ 18] initiated the study on hybrid structures
involving both fuzzy sets and soft sets. They introduced the notion
of fuzzy soft sets, which can be seen as a fuzzy generalization of
crisp soft sets.

Definition 3. [18]: A pair (F, A) is called a fuzzy soft set over U,
where ACE and F is a mapping given by F: A— F(U).

For any attribute e € A, F(e) is a fuzzy subset of U and it is called
fuzzy value set of attribute e. If for any attribute e € A, F(e) is a crisp
subset of U, then the fuzzy soft set (F, A) degenerated to the standard
soft set. Let us denote /tpe)(x) the membership degree that object
x holds attribute e where x € U and e € A. Then F(e) can be written
as F(e)={ <x, ipe)(x)>|x € U

For two fuzzy soft sets (F, A) and (G, B) over a common universe
U, we say that (F, A) is a fuzzy soft subset of (G, B) if

(1) AcB;
(2) Ve € A, F(e) is a fuzzy subset of G(e), that is jpe)(X) < [ g(e)(X) for
allx e U.

This relationship is denoted by (F, A) (G, B). (F,A) and (G, B) are
said to be fuzzy soft equal if and only if (F,A) € (G, B) and (F, A) 2 (G,
B), We write (F, A)=(G, B).

A fuzzy soft set (F, A) over U is said to be null fuzzy soft set, if for
Ve € A, we have Fle)=¢; A fuzzy soft set (F, A) over U is said to be
absolute fuzzy soft set, if for Ve € A, we have F(e)=U.

The rough set theory proposed by Pawlak [2] provides a sys-
tematic approach for dealing with vague concepts caused by
indiscernibility in situation with insufficient and incomplete infor-
mation.

Definition 4. [2]: Let R be an equivalence relation on the universe
U. (U, R) is called a Pawlak approximation space. For any Xc U,




4. Publications

43

322 Y. Liu et al. / Applied Soft Computing 65 (2018) 320-332

the lower approximation @R(X) and the upper Aprp(X) of X are
defined as:

Apr(X)={x e U:[x]g =X},

Aprp(X) = {x € U : [x]gNX # 7).

A subset XC U is called definable if MR(X) = Aprg(X); other-
wise, X is said to be a rough set.

Considering the lower and upper approximations of a soft set
in a Pawlak approximation space, Feng et al. [26] introduced the
concept of rough soft sets.

Definition 5. [26]: Let (U, R) be a Pawlak approximation space
and & = (F, A) be a soft set over U. The lower and upper rough
approximations of & = (F, A) with respect to (U, R) are denoted by
MR(G) = (Fg,A) and Aprp(&) = (Fg, A), which are soft sets over U
with the set-valued mappings given by

Fy(e) = Apr,(F(e)).

Fr(e) = Aprg(F(e)), where e € A. The operators Apr,, and Aprg are
called the lower and upper rough approximation operators on soft
sets. If @R(G) = Aprp(6) the soft set & is said to be definable;
otherwise & is called a rough soft set.

3. Improving decision making approaches based on fuzzy
soft sets

In this section, first we will state our opinion on an existing argu-
ment upon two popular decision making approaches based on fuzzy
soft sets. Afterwards, we summarize the limitations of these two
approaches and furthermore provide solutions. Especially, some
improvement approaches are proposed to overcome the limitations
of “the score based method” (Roy-Maji method) [33].

3.1. An argument on fuzzy soft sets based decision making

Which fuzzy soft sets based decision making method is more
reasonable: “the score based method” or “the fuzzy choice value
based method”? There has been a strong argument on this ques-
tion. As follows we will present our opinion based on a brief list
of these arguments and summarize the main limitations of both
approaches.

By introducing the concept of comparison table and a measure
called the score of object, Roy and Maji [33] introduced an original
decision making method as below (see Algorithm 1).

Algorithm 1.

[Step 1.] Input the fuzzy soft sets (F, A), (G, B) and (H, C).

[Step 2.] Input the attribute set P as observed by the observer.

[Step 3.] Compute the corresponding resultant fuzzy soft set (S, P) from the
fuzzy soft sets (F, A), (G, B), (H, C) and place it in tabular form.

[Step 4.] Construct the comparison table of the fuzzy soft set (S, P) and
compute r; and t; for o;, Vi.

[Step 5.] Compute the score s; =r; — t; of 0;, Vi.

[Step 6.] The decision is oy if s, = max;s;.

[Step 7.] If k has more than one value then any one of o, may be chosen.

The comparison table is a square table in which both rows and
columns are labelled by the objects o4, 03, ..., 0y, and the entry
¢;j indicates the number of attributes for which the membership
value of o; exceeds or equals to the membership value of o;. Clearly,
0 < <m and ¢;;=m(Vi, j), where m is the number of attributes.

The row-sum r; of object o; is computed by

I = Zcij (1)
=1

Table 1
Tabular representation of fuzzy soft set (S, P).

e e e3 ey es es e; Choice value(c;)
[ 03 0.1 0.4 0.4 0.1 0.1 0.5 =19
02 03 0.3 0.5 0.1 0.3 0.1 0.5 =21
03 0.4 0.3 0.5 0.1 0.3 0.1 0.6 c3=23
04 0.7 0.4 0.2 0.1 0.2 0.1 0.3 =20
05 0.2 0.5 0.2 03 0.5 0.5 0.4 c5=2.6
06 03 0.5 0.2 0.2 0.4 0.3 0.3 =22
Table 2
Comparison table of the fuzzy soft set (S, P).
01 02 03 04 05 06
0 7 4 2 4 4 4
02 6 7 5 5 3 3
03 6 7 7 5 3 3
04 4 4 4 7 2 3
05 3 4 4 6 7 6
[ 4 5 4 6 3 7
Table 3
Score table of the fuzzy soft set (S, P).
Row-sum(r;) Column-sum(t;) Score(s;)
[ 25 30 -5
02 29 31 -2
03 31 26 5
04 24 33 -9
05 30 22 8
06 29 26 3

The column-sum ¢; of object o; is computed by

n
5= @)
i=1
Finally, the score s; of object o; is defined as
Ssi=ri—t (3)

When dealing with decision making problems by Algorithm 1,
the objects with the maximum score computed from the compari-
son table will be regarded as the optimal decision, so this method
is called “the score based method” in this paper. Here is an example
to illustrate it:

Example 1. [33]:LetU={o04,02,...,06} be the universe of objects.
The tabular representation of the fuzzy soft set (S, P) (with choice
values) is given by Table 1. The comparison table of (S, P) is shown
by Table 2. Then we obtain Table 3, namely the score table of (S, P),
by computing the row-sum r;, column-sum t; and the score s; for
each object o0;. From Table 3, it is clear that the optimal decision is
05 since it has the maximum score s5 =8.

In [37], Kong et al. argued that “the score based method” was
incorrect since the decision result obtained by using “the score
based method” is not always the object with the maximum choice
value. Besides, they revised Algorithm 1 from Step 4 by redesigning
¢ij and r; as follows.

=y Ui —fw) )
k=1

m
ri= Zcij (5)
=1

where f;, is the membership value of object o; for the kth attribute,
m is the number of attributes. The decision set obtained by Kong
et al.’s revised algorithm is oy if r, = max;r;.
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In [32], Feng et al. deduced Kong's ¢;; as follows

Gj =

fik*ijk:Ci*Cj (6)
k=1

m
k=1
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Table 4
Tabular representation of the fuzzy soft set (Fy, E;) with choice values and scores.
e ey es3 es Choice value(c;) Score(s;)
[ 0.92 0.88 0.08 0.12 c1=20 51=0
02 0.82 0.60 0.18 0.40 =20 52=0
03 0.24 0.46 0.83 0.47 c3=2.0 s3=0
04 0.12 0.40 0.96 0.52 =20 54=0

where ¢; is the sum total of all membership values of object o; with
respect to different attributes, which is called the fuzzy choice value
of object o;.

The object with the maximum fuzzy choice value, instead of the
object with the maximum score, will be selected as the optimal
decision by Kong’s redesigned algorithm [32]. Hence, Kong et al.’s
algorithm [37] can be called “the fuzzy choice value based method”.
However, Feng et al. [32] argued that the direct addition of all the
membership values with respect to different attributes in a fuzzy
soft set is not always reasonable, it no longer represents the num-
ber of (good) attributes possessed by an object in decision making.
Furthermore, they provided an example without setting a real-life
circumstance to argue that the score based method is more suitable
than the fuzzy choice value based method.

Actually, it is hard to determine whether “the score based
method” or “the fuzzy choice value based method” is more rea-
sonable without setting a certain circumstance, since their decision
criteria are different. “the score based method” is to used to select
the objects which cooperate with more attributes in quantity,
whereas “the fuzzy choice value based method” is used to select
the objects which cooperate with more attributes in quality. Both
approaches have some limitations, and there should be proposed
new methods to overcome these limitations.

1. For fuzzy choice value based method, the main limitation is that
the direct addition of all membership values with respect to
attributes is not always reasonable. To overcome this limitation:
e Method 1: Firstly, if the direct addition of all membership val-

ues is not reasonable in some cases, we can consider other

synthesized measures to construct the fuzzy choice value
by the membership values with respect to every attribute.

For instance, weight the attributes with the help of relevant

experts and then use the OWA operator to compute the fuzzy

choice value of each object.

Method 2: When it is hard to determine the weights for dif-

ferent attributes in some specific cases, Feng et al.’s adjustable

approach in [32], i.e. translating a fuzzy soft set into a soft set
by using threshold values is another choice to make the deci-
sion result more reasonable. By selecting certain thresholds
and using corresponding decision rules, a fuzzy soft set will be
translated into a crisp soft set, then choice value of objects in

a soft set, instead of fuzzy choice value of objects in a fuzzy

soft set, will be used to measure objects. If this approach is

taken, selecting the most suitable threshold values according
to practical circumstances becomes the most important task.

. For the score based method, two main limitations of Algorithm

1 can be listed as below. To overcome these limitations, we will

provide an improved algorithm and some new algorithms in

Sections 3.2 and 3.3, respectively.

e Limitation 1: During the process of decision making, some-
times new attributes need be added if the existing attributes
are not enough to embody the character of objects. On the con-
trary, some attribute need to be deleted if these attributes are
proven to be ineffective to the decision result. According to
the calculation mechanism for scores of objects in Algorithm
1, a new comparison table has to be conducted when a set of
attributes need to be added/deleted, which indicates a large
amount of recalculations should be involved in order to obtain
a new solution set.

N

e Limitation 2 [32]: There exist some fuzzy soft set based deci-
sion problems in which Algorithm 1 cannot be successfully
used to reach an optimal decision.

Example 2. [32]: Let (F, E1) be a fuzzy soft set and Table 4 be
its tabular representation. From Table 4, it is clear that all these
objects have the same score (i.e., sy =5, =53 =54=0) and the same
fuzzy choice value (i.e., c; =c3 =c3 =c4 =2.0). By using both the score
based method and the fuzzy choice value based method we could
hardly arrive at the final optimal decision, since any one of them
could be selected as the optimal candidate.

3.2. An improved method of “the score based method”

Based on the limitations analysis of “the score based method”
in Section 3.1, in this subsection, by introducing a tool called D-
Score table, we will provide an equivalence approach of Algorithm
1 which successfully overcomes Limitation 1 of “the score based
method”.

Definition 6. LetU={01,0,,...,0,} bethe universeandA={eq, ez,
...,em} be the attribute set. The D-Score of object o; on e is denoted
by S(0;)(e;) and defined by

S(o;)(er) = R(o;)(e;) — T(o;)(er) (7)

where R(0;)(e;) = 1{0j € Ulftr(e,)(0:) = Hre) (0}, T(0i)(er) = I{oj €
Uliteee)(0f) = (e (0}
The D-Score of object o; is denoted by S; and defined as

Si=_S(oi)ep. ®)
I=1

The D-Score table is a table in which rows are labelled by the
attributes eq, ey, . . ., e and columns are labelled by the objects o1,
03, ..., on. The entry corresponding to attribute e; and object o; is
denoted by S(o;)(e)).

An algorithm based on the D-Score table of a fuzzy soft set is
given (see Algorithm 2).

Algorithm 2.

[Step 1.] Input a fuzzy soft set (F, A).

[Step 2.] Present the D-Score table for (F, A) and compute the D-Score S; of o;, Vi.
[Step 3.] The optimal decision is to select o; if S; =max;S;.

[Step 4.] If j has more than one value, then any o; can be chosen as the decision result.
Theorem 1. Let(F,A)be afuzzy softseton U. Forany o; € U, calculate
its score s; by Algorithm 1 and its D-Score S; by Algorithm 2, then we
have s; =S;.

Proof. Since ZJLCU =3, R(0;)(e;)  and Z]’.’zlcﬁ =
S T(o)e). we obtain  si=ri—t;= ]'.':lc,j - ZJLCJ!‘ =
S Ro)er) = Yo T(o;)er) = - (R(oi)(ey) — T(o;)(er) =

S Soi)e) = S;.

Example 3. Consider the fuzzy soft set (S, P) in Example 1, the

D-Score table of (S, P) is presented as Table 5. For any o; € {01, 03,
..., 06}, its score s; in Table 3 is equal to its D-Score S; in Table 5.

By Theorem 1, we know that for any object o; € U, its D-Score S;
obtained by Algorithm 2 is always the same as its score s; obtained
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Table 5 Table 8
The D-Score table of (S, P) with D-Scores. Comparison table of the fuzzy soft set (H, PUP').
ey e es ey es eg e; D-Score (S;) 01 02 03 04 05 06
01 -1 -5 1 5 -5 -2 2 S1=-5 [ 10 4 3 5 5 6
02 -1 -2 4 -3 0 -2 2 02 9 10 7 6 4 6
03 3 -2 4 -3 0 -2 5 03 9 9 10 6 4 5
04 5 1 -3 -3 -3 -2 -4 04 6 6 6 10 3 5
05 -5 4 -3 3 5 5 -1 05 5 6 6 8 10 8
[ -1 4 -3 1 3 3 -4 S6=3 06 6 5 5 7 4 10
Table 6 Table 9
The tabular representation of (G, P'). Time consumption in the first stage.
€ e, e m 50 100 150 200 250 300 350 400 450
01 0.3 0.3 0.4 All(s) 0.020 0.040 0.060 0.081 0.100 0.120 0.140 0.160 0.180
03 0.4 0.7 0.5 A2(s) 0.020 0.040 0.060 0.081 0.101 0.121 0.143 0.164 0.184
Zi gg g; 3675 ! In Tables 9 and 10, Algorithms 1 and 2 are denoted by A1 and A2, respectively.
05 06 01 08 The time consumption is measured in seconds.
06 0.3 0.5 0.2

Table 7
D-Score table of (H, PUP').
Si e e, e, s S+
01 -5 —4 0 -3 -7 -12
03 -2 0 5 -1 4 2
03 5 0 0 1 1 6
04 -9 3 -3 3 3 -6
05 8 5 -5 5 5 13
06 3 -4 3 -5 -6 -3

by Algorithm 1, which indicates that the optimal decision sets
obtained by Algorithms 1 and 2 are always the same, and thus Algo-
rithms 1 and 2 are equivalent. The “score” and “D-Score” of an object
will not be distinguished in the following discussion since they are
always equal.

Suppose that (F, Ey) is an original fuzzy soft set and a new
attribute set E; = (e}, ), ..., e} should be added to E;. If we use
Algorithm 1, to obtain the scores of objects, we have to compute
the new comparison table for the new fuzzy soft set (H, E; UE3).
If we use Algorithm 2, after adding attributes, we only need to
calculate the D-Score table of (G, E;) to obtain the D-Score table
for (H, E; UE;). In this way, we say although Algorithms 1 and
2 are equivalent, Algorithm 2 has the advantage that reduce the
time consumption by avoid redundant computations of Algorithm
1 when attributes are added/deleted in a decision making problem.
Adding attributes and deleting attributes are similar cases, so we
only discuss the cases when attributes should be added.

Here is an example to illustrate the convenience of Algorithm 2
in avoiding redundant computations:

Example 4. Let (S, P) be the fuzzy soft set on U given by Table 1
in Example 1. Suppose that some new attributes P’ = {e}, €}, e}}
should be added to P, let (G, P') be the corresponding fuzzy soft set
which is shown by Table 6. If we use Algorithm 2, then we only need
calculate the D-Score table for (G, P). For an object o;, its D-Score
in (H, PUP') is the sum of its D-Score in (S, P) and its D-Score in (G,
P’), ie., S; +S;. The D-Score table of (H, PUP') is shown by Table 7.
In contrast, if we use Algorithm 1, we need recalculate all issues in
the new comparison table of (H, PUP’), which is shown by Table 8.

Here is an example carried on data of moderate size to illustrate
the advantage of Algorithm 2 in reducing time consumption:

Example 5. Suppose that there are n objects that are related with
m attributes in the fuzzy soft set which we will apply to make the
decision. By writing codes in C++, an experiment is performed on a
PC Intel Core i-5 with 4 GB RAM and Windows 7 as operating sys-

Table 10

Time consumption in the second stage.

m 60 110 160 210 260 310 360 410 460
Al(s) 0.024 0.044 0.064 0.084 0.104 0.124 0.145 0.164 0.184

A2(s) 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

tem. This experiment is divide into two stages. In the first stage, the
time consumption will be tested when the number of objects (n)
keeps constant as 200 while the number of parameters “m” changes
among 50, 100, 150, 200, 250, 300, 350, 400, 450, as is shown in
Table 9. In the second stage, 10 new parameters and corresponds
new datawill be added to the initial data set, and the time consump-
tion are shown in Table 10 for obtaining the final decision results on
the basis of the median decision results obtained in stage 1. From
Table 9 we can easily observe that based on the same scale of initial
fuzzy soft sets, the time consumption for achieving decision results
by using Algorithms 1 and 2 are very similar. However, Table 10
show that in the second stage when 10 new parameters needed to
be considered, the second-stage time consumption increases with
the number of the whole parameter sets increases if Algorithm 1
is applied, whereas the time consumption stay unchanged if Algo-
rithm 2 is adopted. This example serves as a strong evidence for
that algorithm 2 effectively decreases the time consumption when
parameters are requested to be added to a decision making problem
during the decision process.

Lemma 1. Let Xy, X3, X3, ..., Xp and y1, y2, ..., Yo be two num-
ber sequences, if x; <x; < y; <yj (for Vi,j € {1, 2, 3, ..., n}), the two
sequences are called the same ordered and this relationship is denoted
by q(x1, X2, X3, . ., Xn)=q(¥1, Y2, - - -, Yn)-

Theorem 2. Let (F, A) and (F, A) be two fuzzy soft sets on the
universe U. Suppose that o; is an object in the universe U. In the
fuzzy soft set (F, A), denote the D-Score of o; on e; by S(o;)(e;) and
calculate the D-Score of o; by S; = Z;ils(o,-)(el). In the fuzzy soft
set (F, A), denote the D-Score of o; on e; by S'(0;)(e;) and calculate
the D-Score of 0; by S; = >"/"S'(0;)(e)). If q(S(01)(ey). S(02)(e)), - - .
S(on)(er))=q(S'(01)(er), S'(02)(er). ..., S'(on)(ey)) for all e, € A, then we
have S; = S;.

When dealing with a decision making problem by Algorithms 1
or 2, if the membership value of one object is larger than another
object with respect to one attribute, then it is supposed that the
former object relatively possesses that attribute. Under this sup-
position, how much the membership value of one object is larger
than another has not been taken into consideration. That is, no mat-
ter the membership value of one object is larger than another by a
little or by a lot, we all conclude the same when we computing D-
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Table 11
Tabular representation of a fuzzy soft set (F, A) with D-Scores.
er e e [ D-Score(S;)
[ 0.8 hyy 0.1 0.1 S1=-6
02 0.5 0.7 0.5 0.3 S2=0
03 0.3 0.6 0.8 0.9 S3=2
04 0.2 0.9 has 0.8 Sy=4

Scores of objects. With respect to an attribute, as long as the order
of the membership values of objects stay unchanged, the D-Scores
of objects with respect to this attribute are determined. Hence, as
long as the order of the membership values of objects with respect
to every attribute stay unchanged, then the D-Scores of objects are
determined, and thus the optimal decision set will stay unchanged.

Example 6. Let(F,A)be afuzzy softsetand Table 11 be the tabular
representation of it. When the value of hy; varies between [0, 0.6),
the value of hy3 varies between (0.8, 1], the order of membership
values of objects with respect to every attribute stay unchanged,
hence the D-Scores of objects are determined, i.e., S;=—6, S, =0,
S3=2,54=4. By Algorithm 2, we obtain that the optimal candidate
is 04.

3.3. An adjustable decision making approach based on fuzzy soft
sets

Benefitting from Feng's idea of introducing thresholds in [32], a
comparison threshold will be taken into consideration when com-
paring the membership values of two objects with respect to a
common attribute. In this way, a new approach will be provided
on this basis of algorithm 2 (see Section 3.2). Only if the exceed
degree of one membership value over another is not less than the
comparison threshold, we say that the object relatively possesses
that attribute. People can obtain different optimal decision set by
setting different comparison threshold, which make this approach
adjustable. This new adjustable approach can also be regarded as
an improvement of the score based method in [33] since it follows
the initial idea of “scores” of objects and successfully overcomes
Limitation 2 of Algorithm 1.

3.3.1. t-Level D-Score table of fuzzy soft sets.

By introducing a measure called “t-level D-Score” of object and
the new tool called t-level D-Score table, we present an adjustable
approach to solve fuzzy soft set based decision making problems
(see Algorithm 3).

Definition 7. Let U={04, 03, ..., 05} be the universe, E be the
attribute set, ACE and A={eq, ey, ..., en}. Suppose that (F, A) is
a fuzzy soft set over U. For t € [0, 1], the t-level D-Score of object o;
on ¢y is denoted by S(o;)(e;), and defined by

S(o;)(er), = R(o;)(ey), — T(o:)(er);, 9

where  R(0;)(ef); = loj € U\{0} : iF(e)(0i) — HEe(0j) = t]  and
T(o;)(e) = 10j € UN(0} : iure))(05) — Hep(0i) = tI.
The t-level D-Score of object o; is denoted by Sf and defined by

Sf=_Ssoen.- (10)
=1

The t-level D-Score table is a square table in which rows are
labelled by the attribute names ey, e, . . ., em, columns are labelled
by the object names o1, 03, .. ., 0p, and the entry corresponding to
attribute e; and object o; is S(0;)(e;),. The t-level D-Score table can
be regarded as an extension of the D-Score table for a fuzzy soft set,
and t € [0, 1] can be viewed as a comparison threshold between
membership values of two objects with regard to each attribute.

For real-life application of fuzzy soft set based decision making, the
threshold t can be chosen by decision makers according to their
requirement.

3.3.2. Level D-Score table with respect to a comparison threshold
fuzzy set

In the definition of t-level D-Score table, the level comparison
threshold assigned to each attribute is always a constant value t €
[0, 1]. However, it may happen that the decision makers would like
to impose different comparison thresholds on different attributes
in some special decision making problems. To deal with such situ-
ations, we can use a function instead of a constant number as the
comparison threshold.

Now we introduce a measure called the level D-Score with
respect to X, and the new tool called the level D-Score table with
respect to a fuzzy set A.

Definition 8. Let U={oq, 03, ..., 05} be the universe, E be the
attribute set, ACE and A={eq, €2, ..., em}. Let A:A— [0, 1] be a
fuzzy set on A which is called a comparison threshold fuzzy set.
The level D-Score of object o; on e; with respect to A is denoted by
S(o;)(ey), and defined by

S(o;)(er);. = R(o;)(er);, — T(o;)(er)y, (11)

where R(0;)(ep), = 10j € U\{0;} © [r(e)(0;) — Ir(e))(05) = Aley)l and
T(0i)(e1)y, = 10j € U\{0i} © ir(e))(0f) — IF(e))(0i) = Aer)l. The level D-
Score of object o; with respect to A is denoted by SI."A and defined
by

St=") S(oe;. (12)
1=1

The level D-Score table with respect to the fuzzy set A is a square
table in which rows are labelled by the attributes ey, es, ..., em,
columns are labelled by the objects o4, 0y, ..., op, and the entry
corresponding to attribute e; and object o; is S(0;)(e;);.

The D-Score table with respect to a comparison threshold fuzzy
set generalize the t-level D-Score table by substituting a fuzzy set
A:A—>0, 1] for a constant t € [0, 1]. Let f denote the constant
fuzzy set on A given by f(e) = t for e € A, then we immediately have
S(o;)(er); = S(0;)(e;);. that is, the level D-Score table with respect to
the constant fuzzy set  coincides with the t-level D-Score table.

Example 7 (The mid-level-comparison threshold of a fuzzy soft set).
Let the universe U={o01, 02, ..., 0n}, E be the attribute set, A E and
A={eq, ey, ..., en}. Based on the fuzzy soft set (F, A), we can define
afuzzy set A : A — [0, 1] by

M) = e (Vo; U (e (01) = Aoy e U LF(e)(01)),

for all e € A. The fuzzy set Al is called the mid-level-
comparison threshold of fuzzy soft set (F, A). In addition, the level
D-Score table with respect to the mid-level-comparison thresh-
old fuzzy set Ag’id is called the mid-level D-Score table of fuzzy
soft set (F, A). In what follows the mid-level-comparison rule will
mean using the mid-level-comparison threshold and considering
the mid-level D-Score table of a fuzzy soft set in decision making
process.

For a concrete example of mid-level-comparison threshold
fuzzy set and mid-level D-Score table, let us reconsider the fuzzy
soft set (Fy, E1) with its tabular representation given by Table 4. It is
clear that the mid-level-comparison threshold of (Fy, Eq) is a fuzzy
set

A = {(e1, 0.20), (e2, 0.12), (e3, 0.22), (e4, 0.10)).

Example 8 (The min-level-comparison threshold of a fuzzy soft set).
Let the universe U={o01, 02, ..., 0n}, E be the attribute set, A E and
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Table 12 Table 13

The 0.15-level D-Score table of (Fy, E1) with 0.15-level D-Scores. The mid-level D-Score table of (F;, E;) with mid-level D-Scores.

e ey e ey Sf’ 15 e ey e eq Sl”"d
01 2 3 -2 -3 s015 -0 0 2 3 -2 -3 smid — 0
02 2 0 -2 1 915 =1 02 2 1 -2 0 5'2’“" =1
03 -2 -1 2 1 sO15—0 03 -2 -2 2 1 Sg’”" =-1
04 -2 -2 2 1 s015— 1 0 -2 -2 2 2 smid — 0
Algorithm 3.

A={ey, ey, ..., em}. Based on the fuzzy soft set (F, A), we can define
a fuzzy set A" : A — [0, 1] by

A(er) = Atog,0; Uy F(e))(04) — HF(e))(0f)1s

for all e; € A. The fuzzy set )JF“"’ is called the min-level-
comparison threshold of the fuzzy soft set. In addition, the level
D-Score table with respect to the min-level-comparison thresh-
old fuzzy set A}Pi“ is called the min-level D-Score table of fuzzy
soft set (F, A). In what follows the min-level-comparison rule will
mean using the min-level-comparison threshold and considering
the min-level D-Score table of a fuzzy soft set in decision making
process.

For a concrete example of min-level-comparison threshold
fuzzy set and min-level D-Score table, let us reconsider the fuzzy
soft set (Fy, E1) with its tabular representation given by Table 4. It is
clear that the min-level-comparison threshold of (Fy, Eq) is a fuzzy
set

Agt(er) = |1ty (e;)(01) — 1Fy(ey)(02) = 0.10,

Apt(e2) = I14F (e,)(03) = 14F, (e;)(04)I = 0.06,

Aft(es) = I1tF (e5)(01) = 1F (e5)(02) = 0.10,

Ay (€a) = I14F (e4)(03) = 14F, (ey)(04)] = 0.05,

)\p}i" = {(e1, 0.10), (e2, 0.06), (e3, 0.10), (e4, 0.05)}.

Example 9 (The max-level-comparison threshold of a fuzzy soft set).
Let the universe U={o01, 03, ..., 0n}, E be the attribute set, A E and
A={eq, ey, ..., en}. Based on the fuzzy soft set (F, A), we can define
afuzzy set AP : A — [0, 1] by

AP (er) = Vio;,0; e Uy (Ir(e)(01) — Kre))(0)),

for all e; € A. The fuzzy set AP®* is called the max-level-
comparison threshold of the fuzzy soft set. In addition, the level
D-Score table with respect to the max-level-comparison thresh-
old fuzzy set A is called the max-level D-Score table of fuzzy
soft set (F, A). In what follows the max-level-comparison rule will
mean using the max-level-comparison threshold and considering
the max-level D-Score table of a fuzzy soft set in fuzzy soft set based
decision making.

For a concrete example of max-level-comparison threshold
fuzzy set and max-level D-Score table, let us reconsider the fuzzy
soft set (Fy, E1) with its tabular representation given by Table 4. It is
clear that the max-level-comparison threshold of (Fy, E1) is a fuzzy
set

Ap(e1) = 14F (e1)(01) = 1Ly (e )(0a) = 0.80,

Ap(€2) = 14F (e;)(01) = Fy (e)(04) = 0.48,

AR(e3) = [LF (e5)(04) — 1y (e5)(01) = 0.88,

AR(e4) = [F (e4)(04) = My (eg)(01) = 0.40,

)JF’]“"‘ = {(e1, 0.80), (e2, 0.48), (e3, 0.88), (e4, 0.40)).

In the fuzzy soft set (F, A), the level D-Score of object o; with
respect to AMd, AN and A3 are denoted by S, SMiN and SMax,
respectively. Now we present the level D-Scores based decision
making approach as below (see Algorithm 3).

[Step 1.] Input a fuzzy soft set (F, A).

[Step 2.] Input a comparison threshold fuzzy set . : A— [0, 1] (or give a
comparison threshold value t € [0, 1]; or choose the mid-level-comparison
decision rule; or choose the min-level-comparison decision rule; or choose
the max-level-comparison decision rule) for decision making.

[Step 3.] Present the level D-Score table with respect to fuzzy set A of (F, A) and
compute the level D-Score of o; with respect to A, i.e. Sf Vi (or present the
t-level D-Score table of (F, A) and compute the t-level D-Score S} of 0;, ¥i; or
present the mid-level D-Score table of (F, A) and compute the mid-level
D-Score S,’"“‘ of o;, Vi; or present the min-level D-Score table of (F, A) and
compute the min-level D-Score S™" of 0;, Vi; or present the max-level
D-Score table of (F, A) and compute the max-level D-Score 5™ of o;, Vi).

[Step 4.] The optimal decision, which is denoted by D((F, A), 1), is to select o; if
sj~ = max,Sf (or denoted by D((F, A), t) and select o; if%’ = max;S; or
denoted by D((F, A), 1) and select o; ifSJ’”"’ = max;S"; or denoted by
D((F, A), Ap™) and select o; iij‘“”' = max;S™"; or denoted by D((F, A), A7)
and select o; ifS’“”" = max;S"™).

[Step 5.] If j has more than one value then any one of o; may be chosen.

In the last step of Algorithm 3, one may go back to the second
step and change the comparison threshold that he/she once used
so as to adjust the final optimal decision, especially when there are
too many “optimal choices” to be chosen.

When comparing membership values of objects with respect
to different attributes to evaluate the level D-Scores of objects,
by introducing the comparison thresholds, Algorithm 3 takes into
account both the quality and the quantity of attributes each object
occupies. In this way, some decision making problems which can-
not be dealt with by using Algorithm 1 can be solved by using
Algorithm 3. In other words, Algorithm 3 overcomes Limitation 2
of Algorithm 1. Here is an example to illustrate.

Example 10. It is clear the 0.15-level D-Score table of (F, E;) in
Example 2 is given by Table 12. From Table 12, the 0.15-level D-
Scores of objects are: $915 =0, $915 =1, $915 =0, S35 = —1. 1t
indicates that when using a comparison threshold value t=0.15,
we can obtain that o, is the optimal candidate by Algorithm 3.

The mid-level D-Score table of (Fy, E; ) is given by Table 13. From
Table 13, we obtain ST = 0,Sd = 1,57 = 1,57 = 0. It follows
that if the mid-level-comparison decision rule is chosen, we also
obtain o, as the optimal candidate by Algorithm 3.

Theorem 3. Assuming that an actual decision making context is
reduced to a fuzzy soft set (F, A) on the universe U. Let D((F, A), A)
be the optimal decision set got by Algorithm 3, where X is a compar-
ison threshold fuzzy set of (F, A). If A(e;) > AF®*(e;) for Ve € A, then
we have D((F, A), A)=U.

3.3.3. Weighted D-Score based decision making

Now we introduce the concepts of weighted D-Scores, weighted
t-level D-Scores and weighted level D-Scores with respect to a fuzzy
set, and pay attention to their applications in decision making prob-
lems based on weighted fuzzy soft set.

Definition9. [32]LetEbe a set of attributes and A C E. A weighted
fuzzy soft set is a triple T = {F, A, w} where (F, A) is a fuzzy soft
set over U, and w : A — [0, 1] is a weight function specifying the
weight w; = w(e;) for each attribute ¢; € A.

Definition 10. Let U={oq, 0y, ..
attribute set, ACE and A={eq, ey, ..

., on} be the universe, E be the
. em}. Let T={F,A,w} be a
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weighted fuzzy soft set where (F, A) is a fuzzy soft setover Uand w :
A — [0, 1]is aweight function specifying the weight w; = w(e;) for
each attribute e; € A. The weighted D-Score of 0; € U is defined by

S :ZW( x S(o;)(ep), (13
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Table 14
Tabular representation of weighted fuzzy soft set (F;, Ey, w).
e;,w; =0.8 eywy =0.4 e3,w3 = 0.5 eqws =0.3
[ 0.92 0.88 0.08 0.12
02 0.82 0.60 0.18 0.40
03 0.24 0.46 0.83 0.47
04 0.12 0.40 0.96 0.52

I=1
where S(0;)(e;) is the D-Score of object o; on e calculated by Eq. (7).

Definition 11. Let U={o04, 03, ..., 05} be the universe, E be the
attribute set, ACE and A={eq, €3, ..., em}. Let T={F,A,w} be a
weighted fuzzy soft set where (F, A) is a fuzzy soft setover Uand w :
A — [0, 1]isaweight function specifying the weight w; = w(e;) for
each attribute e; € A. For t € [0, 1], the weighted t-level D-Score of
0; € Uis defined by

$=" S(oien (14)
=1

where S(0;)(e;); = w; x S(0;)(e;); and S(o;)(e;); is the t-level D-Score
of object o; on ¢ calculated by Eq. (9).

Definition 12. Let U={o04, 03, ..., 05} be the universe, E be the
attribute set, ACE and A={eq, €, ..., em}. Let T={F,A,w} be a
weighted fuzzy soft set where (F, A) is a fuzzy soft set over Uand w :
A — [0, 1]is aweight function specifying the weight w; = w(e;) for
each attribute e; € A. Let A : A— [0, 1] be a fuzzy set on A which is
called acomparison threshold fuzzy set. The weighted level D-Score
of 0; € U with respect to A is defined by

St =" Sones (15)
=1

where 5(0;)(e;), = w; x S(0;)(e;);, and S(0;)(e;);, is the level D-Score
of object o; on e; with respect to fuzzy set A calculated by Eq. (11).

For every o; € U, its level D-Score with respect to A which is
calculated by Eq. (12) (t-level D-Score calculated by Eq.(10)) can be
regarded as its weighted level D-Score with respect to A (weighted
t-level D-Score) in which every attribute be of equal importance.

The weighted level D-Score table with respect to the fuzzy set
A (weighted t-level D-Score table) is a square table in which rows
are labelled by the attributes ey, e, ..., em, columns are labelled
by the objects o1, 03, ..., 05 of the universe, and the entry cor-
responding to attribute e; and object o; is S(0;)(e;); (S(0;)(er);)-
The weighted level D-Score table with respect to the mid-level-
comparison threshold fuzzy set )L’F"id, the min-level-comparison
threshold fuzzy set A}“i“ and the max-level-comparison threshold
fuzzy set A are called the weighted-mid-level, weighted-min-
level and weighted-max-level D-Score table of the weighted fuzzy
soft set (F, A, w), respectively. In addition, the weighted level D-
Score of object 0; € U with respect to AM¢, A" and A in the
weighted fuzzy soft set (F, A, w) are denoted by weighted-mid-level
D-Score (§"), weighted-min-level D-Score (S™") and weighted-
max-level D-Score (5{““"), respectively.

Let O denote the constant fuzzy set on A given by 0(e;) =
0 for Ve, € A. Then we immediately have 50 = 37" 5(0;)(e)); =
ST wi x S(0;)(e)y = S, wi x S(0;)(e;), which is the weighted D-
Score of object 0; € U.

Algorithm 4 improves Algorithm 3 to deal with the decision
making problems in which weights of attributes are different based
on weighted fuzzy soft set and the corresponding weighted level
D-Scores of objects with respect to a fuzzy set A (weighted t-level
D-Scores). In Algorithm 4, we take the weights of attributes into
consideration and compute the weighted level D-Scores instead of
level D-Scores. Since )»;""”, )»‘;“" and A are actually special com-

Table 15
The weighted-mid-level D-Score table of (Fy, Ey, w) with weighted-mid-level D-
Scores.

e, wi =08 ewy=04 e3w3=05 eqws=03 §id
o 16 12 -1 -09 Smid = 0.9
0, 16 04 -1 0 Smid = 1.0
03 -16 -08 1 03 Smid — 1.1
04 -16 -08 1 06 Smid — _0.8

parison threshold fuzzy sets for (F, A), we will not sketch them out
and highlight them in Algorithm 4.

Algorithm 4.

[Step 1.] Input a weighted fuzzy soft set (F, A, w).

[Step 2.] Input a comparison threshold fuzzy set 1 :A— [0, 1] (or give a
comparison threshold value t € [0, 1]) for the weighted fuzzy soft set
(F, A, w).

[Step 3.] Present the weighted D-Score table with respect to fuzzy set A for the
weighted fuzzy soft set (F, A, w) and compute 517‘ (8}), which is the weighted
level D-Score with respect to A (weighted t-level D-Score) of 0;, Vi.

[Step 4.] The optimal decision is to select o; ifS]) = max;S}(or SJl = max;S}).

[Step 5.] If j has more than one value then any one of o; may be chosen.

Similarly to Algorithm 3, if too many “optimal choices” are
obtained by Algorithm 4, one can also go back to the second step and
change the comparison threshold previously used so as to adjust the
final optimal decision. The notion of weighted level D-Score provide

a framework for solving decision making problems by score based

method in which all the attributes may not be of equal importance.

Example 11. Suppose that there are four candidates who apply
for a position in a work place, the set of candidates U={oq, 03,
03, 04} is characterized by a attribute set E; = {eq, e, e3, e4} which
is ‘eq =technical information’ (w; =0.8), ‘e =experience’ (w, =0.4),
‘e3 =training’ (w3 =0.5), ‘e4 =appearance’ (w4 =0.3), respectively.
Thus the decision maker has a weight functionw : E; — [0, 1] and
the fuzzy soft set (Fy, E1) in Example 2 is changed into a weighted
fuzzy soft set (Fy, Ey, w) with its tabular representation as shown
in Table 14.

As an adjustable approach, the decision maker can select differ-
ent comparison thresholds when dealing with the problem. If we
use the mid-level threshold in this case, we obtain the weighted-
mid-level D-Score table of (F;, E1, w) as Table 15, then the optimal
decision is 0, by Algorithm 4.

4. Improving decision making approaches based on rough
soft sets

This section first discusses the limitations of existing decision
making approaches based on rough soft sets, some new approaches
will be then provided to overcome such limitations.

4.1. Limitations of decision making methods based on rough soft
sets

There are two main limitations of the rough soft sets based deci-
sion making approaches:

e Limitation 1: The existing few decision making algorithms are far
from enough to meet the various demands of applications.
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Table 16 Table 17 ~

The tabular representation of Apr (&). The tabular representation of Aprg(&).

01 02 03 04 05 (3 07 0g 01 02 03 04 05 06 07 0g
ey 0 0 0 0 0 0 0 0 e 1 1 1 1 0 0 0 0
ey 1 1 0 0 0 0 0 0 [ 1 1 0 0 1 1 0 0
e 0 0 1 1 0 0 0 0 e 0 0 1 1 1 1 0 0
ey 0 0 1 1 1 1 0 0 eq 0 0 1 1 1 1 0 0
es 0 0 0 0 0 0 0 0 es 0 0 1 1 1 1 1 1
Algorithm 5.

Decision making approaches based on rough soft sets has not
obtained enough attention by the researchers so far. Let us recon-
sider the two material selection algorithms based on rough soft
sets proposed by Ma et al. in [34], one of the algorithms is used to
catch the closest one in all of the materials, the other one is used
to reach the most representative materials. The scope of appli-
cation of these algorithms is limited. The research on rough soft
sets in decision making calls for improvement by proposing more
approaches to meet various practical demands.

e Limitation 2: The research on application of rough soft set in
group decision making has not appeared yet.

The combination of rough set theory and soft set theory shows
great potential in solving group decision making problems. How-
ever, when a group decision making problem is solved by using
[26] and MSR-sets [35], every expert have to present his/her
best choice alternatives. In other words, every expert has already
made their own decision before carrying out the group decision
making process. This strict requirement is hardly fulfilled in some
real-life situations since expert may prefer provide only their
assessment of alternatives/candidates in different aspects when
they are short of knowledge, time or just lack of confidence. All of
the researchers only concentrate on the application of soft rough
set in group decision making so far, no attempt has been done
in solving such problems by using rough soft set. So the problem
arises that how can we make full use of the information in form
of assessments on candidates with respect to different aspects
provided by the decision makers during the decision process and
deal with the group decision making problem by using rough soft
set?

In the following parts, we will come up with two new deci-
sion making algorithms based on rough soft set which enriches
the scopes of applications and conquers Limitation 1 to a cer-
tain extend. Afterwards, a group decision making algorithm based
on rough soft set which successfully solve group decision mak-
ing problems when the initial evaluation information provided
by experts are their assessments on alternatives from different
aspects, which overcomes Limitation 2 and fills the blank that this
respect field is studied.

4.2. Decision making methods based on rough soft sets

In this part, some new methods will be provided by deciding a
most perspective attribute or a target attribute set using the rough
approximation operators on a given soft set & = (F, A).

Let U={01, 0, ...,0n} be the universe of objects and E be a set of
related attributes. Let & = (F, A) be a soft set over Uand A={eq, e3,
..., em} CE. Let (U, R) be a Pawlak approximation space where R be
an equivalence relation on U. For X C U, let |X| denote the number of
objects in X, let [X|gr denote the number of classes in U contained in
X, where the classification is determined by an equivalent relation
R. Then a decision making algorithm based on rough soft sets can
be presented as Algorithm 5.

[Step 1.] Input Pawlak approximation space (U, R) and a soft set & = (F, A) on U.

[Step 2.] Compute the lower and upper rough soft approximation operators
Apr (&) and Aprp(&) on S, respectively.

[Step 3.] Select a threshold A, which satisfies the condition
2 elo, IEpler LFJ,(E‘ZR) -Fglem)Ig 1. i

[Step fl.] For each attribute e; € A, calculate Fg(e;). If there is an attribute e; € A,
s.t. Fr(e;) = U, turn to Step 5; if else, turn to Step 6.

[Step 5.] Calculate

1Fg(e)

g = MaX e fy(e)-U) 0 £

If % > X, then {e;} is the expected decision set; if else, turn to Step 6.

[Step 6.] For all two attributes e;, ¢; < A, calculate Fr(e;) U Fr(e;). If there are
attributes e;, j € A, s.t. Fr(e;) U Fr(e;) = U, turn to Step 7; If else, turn to Step
8.

[Step 7.] Calculate

Fale)in
U

IEglei)Fg(ele _ o Eglei)Fg(e))in
T g = Mg e e Aifp(eUg(e)=U) Uk

Fyle)JF, N . L .
If w > A, then {ey, e/} is the expected decision set; if else, turn to
Step 8.

[Step 8.] If there are g (g <m) attributes e;| s 2;2, e e;q € A can be found
satisfying I_-'R(e"] U F‘R(el’z Ju.. .I-'R(e;q) = U, then calculate
|Fgei, ) U Frlei, ) U .. .Fg(eig)r

IUlr
B o ) gl Mg, -l Vi
*max(el’ & e eATR(e] WFR(E W FR(e )=U) T T0Ig .
v " Balen gl o Eyleiy)
- Byle JUF e, U Fgle IR .
where e;,, e;,, ..., €, €A 1f% > ), then {e;,, e, ..., €} is

an expected decision set (it is worth nRoticing that the expected decision set
may be not unique);

if else, we will check q+1 attributes, g +2 attributes, ... ., g +(m — q) attributes,
until we find the expected decision set.

The primary motivation for designing Algorithm 5 is to select
the parameters whose upper approximation cover all the objects
when their lower approximation cover a specified number of object
classesin U.This selection mechanism can be used in many practical
situations. Here is an example to illustrate:

Example 12. Suppose that a company decides to set up a working
group for the expansion of business. To choose suitable members
for the working group, they make a survey of the candidates on
some professional skills (referred to as o1, 03, 03, 04, 05, 0g, 07 and
og). Suppose that there are five candidates A= {eq, e, e3, e4, €5} and
each candidate have one or more skills: F(e1)={o01, 04}, F(ez)={o01,
02, 06}, F(e3)={03, 04, 05}, F(e4)={03, 04, 05, 06} and F(es)= {03, 05,
og}. In this case, (01, 02) € R, (03, 04) € R, (05, 05) € R, (07, 03) € R
(R represents the equivalent relationship amongst skills). Now the
skills are divide into four classes/types in U.

o Ifacandidateis good at one skill, he/she can be expected to handle
its equivalent skills quicker (in a relative short time).

e If a candidate already handles all the skills in one class before the
selection, he/she can be regarded as an expert in this type of skill.

The tabular representations of soft sets @R(G) and Aprg(&) are
obtained as Tables 16 and 17, respectively.

Since Lrte1)Egle2)--Egles)k )ufk‘gf;‘”ﬂ‘(es)m = 3, in this case we can set A = } ¢
[0, 31

The calculation process is given as below:
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1. For any attribute e; € A, it is obvious that F(e;) # U. Then we skip
to two attributes situation;

2. For two attributes: Fg(e1)U Fr(es) = U, Fr(ey)UFg(es)=U, it
is easy to obtain ‘&t ‘)5‘2‘(85)‘“ =0, ‘ER(EZ‘)IUJ‘%(%)'R = 1. Since

max{0, 1} < 1, we skip to three attributes situation;
3. For three attributes:
Fr(e1) U Fr(es) U Fr(ez) = U, IEg(e1)UER(es)UER(€2)lR _ 1101.02)Ir

1UR 1Ulr

1
i

Frler) U Fr(es) U Fr(es) = U, IEg(e1 )Ufﬁif‘i)ufk(%)\k _ \(Dmﬁz)m _
1
7

Fr(er) U Fr(es) UFr(ea) = U, Letn Le Lerer
1{03,04,05,06}Ir _ 1

1UIr
Fr(ez) U Fr(es) U Fr(es) = U,
1{01.02,03,04}lr _ 1
1Ulr -2
Fr(e2) U Fr(es) UFr(eq) = U,
1{01,02,03,04,05,06}Ir _ 3
1UIR 4
IEg(e2) Fg(es)UFg(ea)lR _

|FR(e2)UFg(es)UFp(es)ir _
1UIr -

|[Fr(ez)UFg(es)UFg(eq)lr _
1Ulr -

Here, Uk
so we obtain that {e;, e4, es} is the decision set.

—_

. If there is a skill which is not handled by anyone in the deci-
sion set, several of its equivalent skills must be handled by some
memberships in the decision set. Thus, members in the decision
set can be expected to handle all of the professional skills quicker
(in a relative short time).

. For at least two classes of skills, there are experts in the decision
set. More classes of experts make the whole work more efficient.

3. Along with ensuring conditions 1-2, the members in the decision

set will be the least, which contributes to save labor cost.

4. Along with ensuring conditions 1-3, with the same numbers of

members, the number of skill classes with experts will be the

most in the decision result set. Different types of experts make
different types of work more efficient.

N

As following, another rough soft set based algorithm is proposed
by selecting only one attribute whose upper approximation cover
the most objects in the universe set.

Algorithm 6.

[Step 1.] Input Pawlak approximation space (U, R) and a soft set & = (F, A) on U.
[Step 2.] Compute the upper rough soft approximation operator on &, i.e. Apr(&).
[Step 3.] The optimal decision result is to select e; if \Fk(ej)\ =Vicq.2,...m |Fr(e)).
[Step 4.] If j has more than one value then any one of e; may be chosen.

Example 13. Let us reconsider the decision making problem in
Example 12. From Table 16, we can easily obtain that |Fg(es)| =
Vie{1,2,...5) |Fr(e;)], so e4 is the optimal decision by Algorithm 6. It is
worth noticing that, by Algorithm 6, the optimal decision result is
the candidate who has potential to handle most professional skills
quicker (in a relative short time).

Remark 1. By Algorithms 5 and 6, we provide two different
attempts of using rough soft sets to solve decision making prob-
lems. Different selection mechanisms make the methods have
different scopes of application.

4.3. A group decision making method based on rough soft sets

Feng [39] and Zhan et al. [40] put forth approaches for group
decision making problems based on soft rough sets [26] and MSR-
sets [35], respectively. Benefitting from their ideas, now we will
introduce an group decision making approach based on rough soft
sets.

Assume that we have an expert group G={Ty, T, ..., Tp} consist-
ing of p specialists to evaluate all the candidates A= {ej, e, ..., em}.
For each candidate, every specialist will be asked to provide an eval-
uationon him/heras aspecttoall skillsinU= {04, 03, ...,0,} and will
be requested to give judgement if a candidate is good at these skill
or not. In this way, the judgements on all candidates with respect to
all skills provided by every expert form a soft set. It is assumed that
there exist some equivalent relationships between different skills.
With these equivalent relationships, we can compute the rough
approximations of the soft sets, the upper rough approximation of
the soft set represents the low-confidence assessments provided by
this expert while the lower approximation of the soft set represents
the high-confidence assessments. The main character of our group
decision making is that decision makers only need to provide their
initial assessments of candidates (attributes) with respect to dif-
ferent aspects (objects), according to their knowledge/cognition of
the problem, it is not necessary to provide their optimal alternatives
before the group decision making process.

The evaluation result of each expert Tq (q € {1, 2, ..., p}) can
be described as an evaluation soft set Tq = (Fr,, A) over U, where
Fr, :A— P(U). Using rough approximations on soft set T, we
can obtain two corresponding soft sets AﬁrR(Sq) = (F}qR, A) and
Apr(Tq) = (@R,A) over U, where Fr,, : A— P(U) and Fﬂk A
P(U).

We give a weighting vector W =(y, 12, ..., p) such that
m+m+...+np=1,wherenq(q=1,2,...,p)represents the weight
of expert T (q=1, 2, ..., p) and can be calculated by:

_ S(Aprg(Tq), Apry(Tg))
> b S(APTR(Te), Apr(S1))

Nq (16)

where S(Ai)rR(Tq), @R(‘Iq)) is the similarity between soft sets
Apr(%q) = (Fr,p, A) and Apr(Tq) = (ﬁk’ A). (There are a lot of for-
mulas can be used to calculate the similarity between two softs
sets.)

The weight vector W' = (11, 12, . . ., jp) indicates different impor-
tance degree of different experts. It is noticed that people can use a
lot of ways to determine the weights of experts. If there are enough
additional information in evaluating the experts, the weights of
experts can even been directly specified. Here we originally apply
the similarity measures between soft sets to determine the weights
of experts in a group decision making problem when the weights
are not specified in advance. As is shown above, the opinion of
each expert is represented by a soft set. We believe that the more
similar the upper approximation and the lower approximation of
one’s opinion (the soft set) are, the more stable and reliable his/her
opinion is, and thus the larger his/her weight should be.

Then the evaluation result of the whole expert group G could be
formulated in terms of fuzzy sets:

1
o tA=[0.1] e pole) = ()Y < IFrg (el

qe(1,2,...,

where i=1, 2, ..., n. Similarly, we can obtain two other fuzzy
sets /iy and [ty in U, which are respectively given by

pr i A= [0, 1] e e = (DY o,y la * Frg (@0

7 A—=[0,1], e py(e)= (%)ZQE(LZ,--»J)”Q x [Frg(ei)l
wherei=1,2,...,n.

Then, we can construct a fuzzy soft sets to gather together the
above fuzzy evaluation results. Let C={L, M, H} be a set of attributes,
where L, M and H represent three kinds of confidence, respec-
tively. Then we can define a fuzzy soft set § = (G, C) over U, where
G:C— FU)is given by G(L) = ug, G(M) = g and G(H) = pig.
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Now we give a weighting vector W = (w;, wy, wy) such that
wi +wy +wy = 1, we define

ve) = (W) x G(L)(ex) + (wn) x G(M)(ex) + (Wh) x G(H)(ex)  (17)

which is called the weighted evaluation value of the candidate e, €
A. Finally we can select the attribute e; such that v(e;) = max(v(ey))
(k=1,2,...,m.)as the most preferred candidate. Now we present
the decision making method based on rough soft sets by Algorithm
7.

Algorithm 7.

[Step 1.] Input Pawlak approximation space (U, R) and soft sets T, = (Fr, , A),
T =(Fr,,A),....Tp = (F,P,A) onU.

[Step 2.] For Vq € {1, 2, ..., p}, compute the lower and upper rough
approximations on soft set ¥, i.e., Aprg(Tq) = (F, 5, A) and
%(‘Iq) = (FQR'A)’ respectively.

[Step 3.] Compute the weighting vector W' =(n1, 12, ..., np) by Eq.(16).

[Step 4.] Compute the corresponding fuzzy sets py, jt and g

[Step 5.] Construct a fuzzy soft set § = (G, C) using pz, ply anall,rr.

[Step 6.] The optimal decision is to select e; if v(ej) = Vic(1.2... _,,,)v(iek)A

Example 14. Suppose that we have an expert group G={Ty, T, T3,
T4} consisting of 4 specialists and our goal is to choose an optimal
candidate from a candidates set A={eq, e, ..., es}. For each can-
didate, every specialist will be asked to provide an evaluation as
respect to all the professional skills in U={o4, 03, ..., 0n} and will
be requested to give judgement if the candidate is good at these
skill or not. In this case, the professional skills in U are divided into
three classes/types: (01, 02) € R, (03, 04) € R and (os, 06, 07) € R
(R represent the type of some skills are equivalent). The evalua-
tion result of all the candidates provided by expert T (q=1,2, ...,
4) can be described as a soft set T4 = (Fr,, A) over U. Using rough
approximations on soft sets, the tabular representations of soft sets
APrR(Sq) = (Fryp, ANq=12...... 4) and Apr (Tq) = (Fr, . A)(4=1,2,
..., 4)over U are obtained as (Table 18).

Finally, we can calculate the fuzzy soft set § = (G, C). Assume

that the weighting vector for confidence W=(0.25, 0.5, 0.25) and to
calculate the similarity between two soft sets (F, A) and (G, B) we

CANBL D FONGE@) . )
use S((F, A), (G, B)) = {7g; - W[M ]. It is easy to obtain

that
S(AprR(%1), Apre(T1)) = 0.5625, S(Aprr(%2), Apr,(%2)) = 0.625,
S(Aprr(%3), Apre(¥3)) = 0.32, S(Aprg(T4), Apr (%4)) = 0.375.
Then, we can obtain W' =(0.299, 0.332,0.170,0.199) by Eq. (16),
the weighted evaluation value can be calculated by Eq. (17). Tab-
ular representation of the fuzzy soft set § = (G, C) with evaluation
values is given by Table 19. Hence e; should be the most preferred
candidate.

5. Conclusions

Fuzzy set theory, rough set theory and soft set theory are three
relatively independent and closely related mathematical tools for
dealing with uncertainty [42]. Based on the combination of these
theories, various hybrid models, including fuzzy soft set theory and
rough soft set theory, have been obtained to handle the vagueness
in practical problems. In this paper, we focus on the application of
fuzzy soft set theory and rough soft set theory in decision making.
A classical fuzzy soft based decision making approach is improved
to deal with decision making problems that contain updating infor-
mation so that attributes need to be added/deleted in the fuzzy soft
sets. We also present a new adjustable fuzzy soft sets based decision
making approach by introducing comparison thresholds and corre-
sponding level D-Score tables of fuzzy soft sets. This new approach
has the potential to be extended to the intuitionistic fuzzy soft
sets, interval-valued fuzzy soft sets situations, etc. Based on rough

Table 18
The tabular representations for soft sets in Example 14.
01 0, 03 04 05 06 07

Table for soft set Aprg(T;)

ey 0 0 1 1 0 0 0
e 1 1 0 0 1 1 1
e3 0 0 1 1 1 1 1
eq 0 0 1 1 0 0 0
es 0 0 1 1 0 0 0
Table for soft set Ty

ey 0 0 0 1 0 0 0
e 1 1 0 0 1 1 1
e3 0 0 1 0 1 1 0
ey 0 0 1 1 0 0 0
es 0 0 1 1 0 0 0
Table for soft set A] rR(Tl )

ey 0 0 0 0 0 0 0
e 1 1 0 0 1 1 1
e3 0 0 0 0 0 0 0
ey4 0 0 1 1 0 0 0
es 0 0 1 1 0 0 0
Table for soft set Apry(T>)

ey 1 1 1 1 0 0 0
e 1 1 0 0 1 1 1
e3 0 0 1 1 1 1 1
€4 0 0 1 1 1 1 1
es 0 0 1 1 1 1 1
Table for soft set T,

ey 1 1 1 1 0 0 0
e 1 1 0 0 1 1 0
e3 0 0 1 1 1 1 0
[ 0 0 1 1 1 1 0
es 0 0 1 1 1 1 1
Table for soft set MR(TZ)

e 1 1 1 1 0 0 0
e 1 1 0 0 0 0 0
e3 0 0 1 1 0 0 0
eq 0 0 1 1 0 0 0
es 0 0 1 1 1 1 1
Table for soft set AE)rR(T;)

ey 1 1 1 1 0 0 0
e 1 1 0 0 1 1 1
e3 1 1 1 1 0 0 0
[ 1 1 1 1 1 1 1
es 0 0 1 1 1 1 1
Table for soft set T3

ey 1 1 1 1 0 0 0
ez 0 1 0 0 1 1 0
e3 1 0 1 1 0 0 0
eq 1 0 1 0 1 1 0
es 0 0 1 1 0 0 1
Table for soft set Aer(‘Is)

ey 1 1 1 1 0 0 0
e 0 0 0 0 0 0 0
e3 0 0 1 1 0 0 0
ey 0 0 0 0 0 0 0
es 0 0 1 1 0 0 0
Table for soft set Apr(T4)

ey 1 1 1 1 0 0 0
e 1 1 0 0 1 1 1
e3 0 0 1 1 1 1 1
ey 0 0 0 0 1 1 1
es 1 1 1 1 1 1 1
Table for soft set T4

ey 1 0 1 1 0 0 0
e 1 0 0 0 1 1 1
e3 0 0 1 1 1 0 0
ey4 0 0 0 0 1 1 0
es 0 1 1 1 1 0 1
Table for soft set Aer("I4)

ey 0 0 1 1 0 0 0
e 0 0 0 0 1 1 1
e3 0 0 1 1 0 0 0
[ 0 0 0 0 0 0 0
es 0 0 1 1 0 0 0
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Table 19
The tabular representation of § = (G, C).
e [} es [ es
L 0.486 0.714 0.690 0.578 0.643
M 0.415 0.590 0.476 0.429 0.538
H 0.344 0.394 0.200 0.180 0.428
v(e;) 0.415 0.572 0.461 0.404 0.537

soft sets, some new algorithms are also provided to solve decision
making and group decision making problems, different algorithms
have different scopes of application. These original rough soft sets
based approaches have the potential to be extended to the gen-
eration models of rough soft sets situations. In further research,
the generation models of rough soft set theory and their corre-
sponding application in decision making is an interesting issue to
be addressed. The time complexity analysis of all the algorithms in
the current work can be found in Appendix A.
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Appendix A. Complexity analysis of Algorithms 1-7

The complexity analysis of the algorithms in the current work
are listed as follows:

e Algorithm 1: For calculating each entry of the comparison table
from the fuzzy soft set, the complexity of running |A| comparisons
is O(|A|), there are |U|? entries in the comparison table, hence the
complexity of computing the comparison table is O(|A]|U|?). The
complexity of computing each score of each object by using the
comparison score is O(2|U|)=0(|U|), afterwards the complexity
of selecting the max value is also O(|U|). Thus, the complexity of
Algorithm 1 is O(|A[|U]?) + O(|U]) + O(|U]) = O(|A||U|?).

Algorithm 2: For calculating each entry of the D-Score table from
the initial fuzzy soft set, the complexity of running |A| compar-
isons is O(|U|), there are |U||A| entries in the comparison table,
hence the complexity of computing the D-Score table is O(|A||U|2).
The complexity of computing each D-Score of each object by using
the D-Score table is O(]A|), afterwards the complexity of selecting
the max value is also O(|U|). Thus, the complexity of Algorithm 2
is O(|A||UI?)+O(|A])+O(|U]) = O(|Al|UI?).

Algorithm 3: Compared to Algorithm 2, in Algorithm 3 we only
introduce a threshold value when doing the comparisons to
obtain the corresponding D-score Table, so the time complexity
of Algorithm 3 is the same as Algorithm 2, that is, O(|A||U|2).
Algorithm 4: The time complexity of Algorithm 4 is the same as
Algorithm 3, that is, O(|A||UJ?).

Algorithm 5: For all e; € A, the time complexity of computing
FR(ej) and Fg(e;) from F(e;) is O(JU|). There are |A| parameters,
therefore the complexity of computing the rough soft set from
a given soft set & = (F,A) is O(|U||A|). The second step is to
select a threshold A manually, in which to compute the upper
bound the time complexity is O(|U]). The time complexity of the

worst case to find the decision result is O(c‘lm + c‘ZAI +.. ‘A‘) =
0(241). It is easy to obtain the time complexity ofAlgonthm 5is
O(|Ul|A|+2'41).

Itis determined by the time complexity of Algorithm 5 that this
algorithm is only suitable for decision making problems in which
the number of attributes is relative small, which is a limitation of
both Algorithm 5 in the current work and the Algorithm 9 in [34].

In the future it is worth paying attention to the further improve-
ment of these algorithms to make them more feasible for large
scale of data sets.

Algorithm 6: For all e; € A, the time complexity of computing
FR(ej) from F(e;) is O(|U|). There are |A| parameters, therefore the
complexity of computing the upper approximation of a given soft
set & = (F, A) is O(|U||A]). The complexity of selecting the max
value of FR(ej), ej € Ais O(|A]). It is easy to obtain the complexity
of Algorithm 6 is O(|U[|A| +|A|)= O(|U||A[).

Algorithm 7: For all ¢; € A, the time complexity of computing
FTq (e;) and FTqR(e]) from Fr,(e;) is O(|U|). There are |A| param-
eters therefore the complexity of computing a rough soft set
from a given soft set Tq = (Fr,, A) is O(|U||A|). The complexity
of obtaining all rough soft sets from all soft sets provided by
experts G={Ty, Ty, ..., Tp} is O(|U]|A[|G]). And the time complex-
ity of computing each row of the fuzzy soft set from all rough
soft sets is O(|U||G||A|), three rows is O(3|U||A||G|)=O(|U||A||G|),
afterwards for computing v(e;), e; € A from the fuzzy soft set is
O(3|A|)=0(|A]). The complexity of the last step to catch the largest
value is obvious O(|A|). The complexity of Step 3 has been ignored
since it depends on the way for computing the similarity mea-
sures of soft sets. When the weights of experts are predefined,
Step 3 should be skipped. Thus, the time complexity of Algorithm
7 is O(|UIIAIIGI) + O(|UIIAIIGI) + O(IA]) + O(|A]) = O(|UIIAIIGI).
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Abstract: Through the combination of different types of sets such as fuzzy sets, soft sets and rough
sets, abundant hybrid models have been presented in order to take advantage of each other and
handle uncertainties. A comparative study of relationships and interconnections of some existing
hybrid models has been carried out. Some foundational properties of modified soft rough sets
(MSR sets) are analyzed. It is pointed out that MSR approximation operators are some kinds of
Pawlak approximation operators, whereas approximation operators of Z-soft rough fuzzy sets are
equivalent to approximation operators of rough fuzzy sets. The relationships among F-soft rough
fuzzy sets, M-soft rough fuzzy sets and Z-soft rough fuzzy sets are surveyed. A new model called
soft rough soft sets has been provided as the generalization of F-soft rough sets, and its application in
group decision-making has been studied. Various soft rough sets models show great potential as a
tool to solve decision-making problems, and a depth study of the connections among these models
contributes to the flexible application of soft rough sets based decision-making approaches.

Keywords: rough set; soft set; soft rough set; soft rough fuzzy set

1. Introduction

Various types of uncertainties exist in real life situations, which calls for useful mathematic
tools to meet various information process demands. Usually complicated problems take place
with uncertainties, and most of these complex situations can not be handled by adopting classical
mathematic methods, considering the fact that with classical mathematic tools all notions are
requested to be strict. Up to now, abundant mathematic tools such as fuzzy set theory [1] and
rough set theory [2,3] have already been developed and proved to be useful in handling several
kinds of the problems that contain uncertainties, and all of these theories share a common inherent
difficulty, which is mainly the inadequacy of the parametrization tool [4,5]. However, it is noticed that,
without proper parametrization tools, sometimes a practical problem can not be described in a way as
much as information collected from different aspects could be taken into account. To handle this issue
and to enrich mathematical methodologies for coping with uncertainties, soft set theory was initially
proposed by Molodtsov [4] in 1999, which considers every specific object from different attributes’
aspects, in this way, this new model goes beyond all other existing mathematical tools to avoid the
above-mentioned difficulties. After soft set theory comes out, in the past few years, there appears a
continuous growth of interest in studying theoretical aspects of soft set theory, as well as the practical
applications of soft sets.

Abundant mathematical models have already been designed in order to model and process vague
concepts, among which it is noteworthy that fuzzy set theory and rough set theory have already drawn
worldwide attention from researchers. The development of these two theories makes contributions
to handle lots of complicated problems in engineering, economics, social science, et al. The main
character of fuzzy set theory is that it describes a vague concept by using a membership function,
and the allowance of partial memberships contributes to providing an appropriate framework to

Symmetry 2017, 9, 252; doi:10.3390/sym9110252 www.mdpi.com/journal /symmetry
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represent and process vague concepts. The character of rough set theory relies on handling vagueness
and granularity in information systems by indirectly describing a vague concept through two exact
concepts called its lower and upper approximations. In Pawlak’s rough set model, the equivalence
relation is a vital concept, by replacing the equivalence relation with a fuzzy similarity relation,
fuzzy rough sets and rough fuzzy sets have been proposed [6].

The combinations of soft sets, rough sets and fuzzy sets have been extensively studied to
benefit each other and to take the best advantage of them. Research on generalization models of
soft sets is promising since usually the generalized models are not short of parameter tools, that is,
all of the generalized soft set models usually keep the most important feature of soft set theory in
considering issues from various aspects. The history of research on extending soft sets applying
fuzzy set theory goes beyond fifteen years already since Maji et al. introduced fuzzy soft sets in [7].
Therefore far, the soft sets have been extended to intuitionistic fuzzy soft sets [8], interval-valued
intuitionistic fuzzy soft sets [5,9], vague soft sets [10], soft interval sets [11] and many other hybrid
soft sets models. The history of research on the generalization of soft sets by using rough set theory
is relatively short. To introduce parametrization tools to rough set theory, Feng et al. [12,13] initially
put forward the concept of soft rough sets and soft rough fuzzy sets, in which a soft set looks for the
lower and upper approximations of a subset of the universe. Afterwards, Meng et al. [14] proposed
soft fuzzy rough set, in which model the fuzzy soft set has been adopted into granulate the universe.
Benefitting from similarity measures induced by soft sets and soft fuzzy sets, Qin et al. [15] provided
several soft fuzzy rough set models through introducing confidence threshold values. Recently,
Shabir et al. [16] noticed that Feng et al.’s soft rough sets [12] suffer from some unexpected properties
such as the upper approximation of a non-empty set might be empty and a subset set X might not be
contained in its upper approximation. To resolve this problem, Shabir et al. [16] modified their soft
rough sets and introduced the modified soft rough set (MSR set), which has already been extended to
fuzzy soft sets [17], and Z-soft rough fuzzy sets was proposed, and its application in decision-making
problems was analyzed.

The exploitation of soft sets and hybrid soft sets models in decision-making shows a great
development in the recent years [18-22]. The utilization of soft rough sets models in decision-making
shows a promising prospect. Different decision-making approaches have been put forth based on MSR
set [20], Z-soft rough fuzzy sets [17], Z-soft fuzzy rough set [21], and other soft rough sets models [23,24].
If the researchers could have a thorough knowledge of the connections among various soft rough sets,
we believe that decision-making approaches under framework of soft rough sets could be applied in
a more flexible and reliable way. However, the relationships among these hybrid sets have not been
systematically studied so far. Furthermore, we notice that a soft set S can be looked upon an information
system Is. Based on this information system, we can establish Pawlak rough approximations and
rough fuzzy approximations. What is the relationship between soft rough approximations (soft rough
fuzzy approximations) in S and Pawlak rough approximations (rough fuzzy approximations) in Is?
Additionally, soft set and formal context are mathematically equivalent. The relationships among soft
rough approximation operators and derivation operators used in formal concept analysis (FCA) are
also interesting issues to be addressed. In this paper, we will concentrate on the discussion of these
problems. The paper is structured as follows: Section 2 revises several basic concepts of soft sets, fuzzy
sets and rough set. Section 3 studies relationships among several soft rough sets. The properties of
MSR approximation operators and different connections between MSR approximation operators and
F-soft rough approximation operators are analyzed. It is shown that MSR approximation operators
and a kind of Pawlak approximation operators are equivalent, while Z-soft rough fuzzy approximation
operators and a kind of rough fuzzy approximation operators are equivalent. The relationships
among F-soft rough fuzzy sets, M-soft rough fuzzy sets and Z-soft rough fuzzy sets have also been
investigated. Section 4 discusses the relationship between F-soft rough sets and modal-style operators
in formal concept analysis. Section 5 proposes a new generalization of F-soft rough set, which is called
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a soft rough soft set, and a simple application of soft rough soft sets in group decision-making has been
studied. Eventually, Section 6 concludes the paper by presenting some remarks and future works.

2. Preliminaries

Here, several concepts of fuzzy sets, soft sets and rough sets are briefly reviewed. Please refer
to [1,2,4,7] for details.

An advantageous framework has been offered by fuzzy set theory [1] to handle vague concepts
through the allowance for partial memberships. Let U be the universe set. Define a fuzzy set y on U
by its membership function y : U — [0,1]. y(x) indicates the degree to which x belongs to the fuzzy
set y for all x € U. In what follows, we denote the family of all subsets of U by P(U) and the family of
all fuzzy sets on U by F(U). The operations of fuzzy sets can be found in [1].

Molodtsov [4] introduced the concept of soft set. Let U be the universe set and E the set consisted
of all parameters that is related to U. Hence, a soft set is defined as below:

Definition 1. A pair (F, A) is called a soft set over U, where A C E and F is a mapping given by F : A —
P(U) [4].

The soft set is characterized by a parameter set and a function defined on the parameter set.
For every parameter ¢ € A, F(e) is said to be the e-approximate elements and, correspondingly, the
soft set can be viewed as a parameterized family of subsets of U.

A softset (F, A) is called a full soft set if U,c 4 F(e) = U [12]; N(U,A) = (N, A) is called a relative
null soft set (with respect to the parameter set A), if N(e) = @ foralle € A4; W(U,B) = (W, B) is called
a relative whole soft set (with respect to the parameter set B) if W(e) = U for all e € B [25]. Maji et al.
in [7] introduced the concept of fuzzy soft set.

Definition 2. Let (U, E) be a soft space. A pair (F, A) is called a fuzzy soft set over U, where A C E and F is
a mapping defined as F : A — F(U) [7].

The fuzzy soft set is also characterized by a parameter set and a function on the parameter set,
whereas a fuzzy set on U takes place of a crisp subset of U corresponds to each parameter. It follows
that, to a certain degree, a soft set can also be viewed as a special kind of fuzzy soft set.

Pawlak introduced rough set theory in [2], the application of which is based on a structure called
information system.

Definition 3. An information system is a pair [ = (U, A) of non-empty finite sets U and A, where U is a set
of objects and A is a set of attributes; each attribute a € A is a function a : U — Vy , where V, is the set of all
values (called domain) of attribute a [3].

Soft sets and information systems are closely related [13,26,27]. S = (F, A) is assumed to be a soft
set over U and Is = (U, A) an information system induced by S. For any attribute a € A, a function
a:U — V, = {0,1} is defined by a(x) = 1 if x € F(a); or else a(x) = 0. In this way, every soft
set could be viewed as an information system. In what follows, I5 is called the information system
induced by soft set S.

By contrast, suppose the information system, I = (U, A). It uses a parameter set as

B={(a,v5);a € ANvs € V,},

and it follows that through setting F(a,v,) = {x € U;a(x) = v,} foreacha € A and v, € V,, a soft set
(F, B) can be defined, which is the soft set induced by I.
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Let U be the universe of discourse and R be an equivalence relation on U. (U, R) is called Pawlak
approximation space. For each X C U, the upper approximation R(X) and lower approximation R(X)
of X with respect to (U, R) are defined as [2]:

R(X)={xe U;x]gNX # 2}, @™

R(X) = {x € Us[x]z € X}. e

X is so-called definable in (U, R) if R(X) = R(X), or else X is a rough set. Thus, in rough set
theory, a rough concept is characterized by a couple of exact concepts, namely, its lower approximation
and upper approximation. Posg(X) = R(X) and Negr(X) = U — R(X) are the R-positive region
and R-negative region of X, respectively. Furthermore, Bndg(X) = R(X) — R(X) is called the
R-boundary region.

Up to now, various types of extension models of the Pawlak rough set have been proposed to
enrich the theory and to meet different application demands [28,29]. In [12], by the combination of soft
set, rough set and fuzzy set theory, soft rough sets and soft rough fuzzy sets were introduced. To make
them easy to be distinguished from other models mentioned in the current work and also to facilitate
the discussion, these two notions are called F-soft rough sets and F-soft rough fuzzy sets.

Definition 4. Let S = (f, A) be a soft set over U. P = (U,S) is called a soft approximation space.
Two operations can be defined based on P as follows [12]:

apr,(X) ={u € U;3a € A(u € f(a) C X)}, (3)

aprp(X) = {u € U;3a € A(u € f(a), f(a) N X £ D)} @

Forall X C U, apr, (X) and ap7p(X) are respectively called the F-lower and F-upper soft rough approximations
of Xin S. X is F-soft definable in P if apr ,(X) = aprp(X), or else X is a F-soft rough set.

It is noted that we can present apr P(X ) and @p7p(X) in a more concise manner [13]:
apr,(X) = U{f(a);a € AA £(a) C X)), ©)

aprp(X) = U{f(a);a € AN f(a)NX # D} 6)

In this definition, the soft set S is regarded as the elementary knowledge on the universe. F-lower
and F-upper soft rough approximation operators are not dual to each other, thatis, apr,(X¢) =
(aprp(X))© usually does not hold, where the complement of set X is computed by X¢ = U — X. If the
condition Uy 4 f(2) = U holds in a soft set S = (f, A) over U, this soft set is a full soft set [12]. In this
case, {f(a);a € A} comes into being a cover of the universe U. It is pointed out that apr_, apr, and
covering rough approximations [30] are closely related but fundamentally different [13]. Additionally,
if {f(a);a € A} forms a partition of U, we will call S = (f, A) a partition soft set [13,31].

It is pointed out by Shabir et al. [16] that 3 x € U s.t. x € Negp(X) = U —aprp(X) forall X C U,
if S = (f, A) is not a full soft set. In other words, x ¢ @p7,(X) for all X C U. Thus, X C ap7,(X) and
some basic properties of rough set do not hold in general. Based on these observations, modified soft
rough sets (MSR sets) was defined as follows.

Definition 5. Let (f,A) be a soft set over U and ¢ : U — P(A) be a map defined as
¢(x) ={a € A;x € f(a)}. Then, (U, ¢) is called MSR-approximation space and for any X C U, its lower
MSR approximation X, and upper MSR approximation X are defined as [16]:

X, ={x e W;vy € X(o(x) # 9(y))}, @)
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Xp ={x € U;3y € X(p(x) = ¢(y))- ®)
X is MSR definable if the condition X, = X holds, or else X is a MISR set.

Mathematically speaking, (U, ¢) can be looked upon a soft set over A. In [32], (U, ¢) was
considered as a pseudo soft set that is induced by (f, A), afterwards a decision-making method related
to pseudo soft set was provided.

3. Relationships among Several Soft Rough Sets

3.1. Relationships between F-Soft Rough Approximations and MSR Approximations

The notion of MSR set is the modification of a F-soft rough set, and some inherent connections
between these two models should exist, which have not drawn enough attention from scholars
yet. In this subsection, a theoretical analysis of F-soft rough sets and MSR sets will be provided,
and some connections between F-soft rough approximations and MSR approximations will be
pointed out.

It is noted that Ref. [16] apr,(X) € X, for any X C U and the containment may be proper.
Furthermore, in general, ng C aprp(X) oraprp(X) C YfP does not hold. Now, we provide an example:

Example 1. Let A = {a,b,c,d} be a parameter set and U = {x1, X2, X3, X4, X5, X } the universe. Suppose that
S = (f, A) is a soft set over U, in which F(a) = {x1,x¢}, F(b) = {x3}, F(c) = @, F(d) = {x1,x2,x5}.

(1) By the definition, apr,(U) = Uzeaf(a) = {x1,x2,x3,x5,x6}. It follows that x4 ¢ aprp(U) and
hence x4 ¢ apr,(X) for any X C U.

(2) Let X = {x3,x4,x5}. By direct computation, we know that apr,(X) = {x1,x2,x3,x5},
Xp = {x2,x3,%4,x5}. Thus, aprp(X) C X, or X, C aprp(X) does not hold.

However, only a shallow impression can be obtained noticing the above-mentioned conclusions
in [16], and no details have been provided discussing the properties of and connections among
aprp(X), Xg, apr,(X) and X,,. The questions still remain: is there any possibility Xy Caprp(X) or
aprp(X) C X, that holds? Which features will be requested if these conditions need to be established?
Now, we will pay attention to these questions and provide answers.

A general assumption for Theorems 1-3 and Corollaries 1 and 2 is presented as below:

Let S = (f, A) be a soft set over U and P = (U, S) a soft approximation space.

Theorem 1. S is a full soft set iff X, C aprp(X) for any X C U.

Proof. (=). Itis assumed that S is a full soft setand X C U. Forallx € Xy, Iy € X s.t. ¢(x) = ¢(y).
Byy € U=Usaf(a),3ac Ast.ye f(a). Then,y € XN f(a) and XN f(a) # D. Byy € f(a) we
obtain a € ¢(y) = ¢(x) and hence x € f(a). Consequently, x € aprp(X). Thus, X, C aprp(X).

(<=). Suppose that, for all X C U, the condition X, C ap7p(X) holds. It can be observed that
x € (+F, Caprp({x}) = ULf(@); f(a) N {x} £ @} = U{f(a);x € f(a)}, for any x in U.

Thus, 3a € As.t. x € f(a). Sis a full soft set by the arbitrary of x. [J

Theorem 2. aprp(X) C X, forany X C U iff forany a,b € A, f(a) N f(b) = @ whenever f(a) # f(b).

Proof. («<). Assume that for any a,b € A, f(a) N f(b) = @ whenever f(a) # f(b). Let X C U.
For any x € aprp(X), attribute s € A exists s.t. x € f(a) and f(a) N X # @. Thus, we know that there
existsy € Us.t.y € f(a) N X. Forany b € A, if f(a) # f(b), then f(a) N f(b) = @ and hence x ¢ f(b)
by x € f(a). Thus, ¢(x) = {b € A; f(b) = f(a)}. Similarly, we have ¢(y) = {b € A; f(b) = f(a)} and
hence ¢(x) = ¢(y). By y € X, we know that x € X, and consequently ap7,(X) C X,.
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(=). Assume that aprp(X) C X, forany X C U. Forany a,b € A, if f(a) N f(b) #®,Ix € U
s.t. x € f(a) N f(b). By x € f(a), we conclude that

fla) SU{f(c);x € f(e)} = U{f(c)i {x} N flc) # O} = aprp({x})
C{xt,={veLoly) =o(x)}

Meanwhile, if ¢(y) = ¢(x), then 2 € ¢(x) = ¢(y) and hence y € f(a). Therefore,

f@a) ={y € U;¢(y) = ¢(x)}. Similarly, by x € f(b), we have f(b) = {y € U;¢(y) = ¢(x)} and
hence f(a) = f(b). O

Theorems 1 and 2 shows that 3 containment relationships between X, and apr,(X) if some
specific conditions hold. Based on these two theorems, we can have a clear idea about under which
conditions the containment relationships can be held. Furthermore, by Theorems 1 and 2, we obtain

Corollary 1. Let f(e) # @ for each e € A. S is a partition soft set iff aprp(X) = X, for any X C U.
Corollary 2. S is a full soft set iff X C aprp(X) for any X C U.

Proof. It is assumed that S is a full soft set. For all X C U, it is obvious that X C Yq, C HTWP(X)
by Theorem 1. On the contrary, assume that X C ap7(X) for any X C U. For each x € U,

x € {x} Caprp({x}) = U{f(a); f(a) N {x} # O} = U{f(a);x € f(a)}.
Thus, 3a € As.t. x € f(a). Consequently, S is a full soft set as required. O
Theorem 3. X, C apr(X) forany X C U iffforany x € U, Ja € Ast. f(a) ={y € U;p(y) = ¢(x)}.

Proof. (=). Suppose that X, C apr,(X) forall X C U. Forany x € U, let X = {ye Uo(y) = o(x)}.
It follows that

Xo={uel;3y e X(p(u) =)} ={ueWolu)=9x)}=X

By x € Xand X,, C apr(X), then x € apr(X) and hence 3a € Asit. x € f(a) and f(a) C X.

On the other hand, for any y € X, we have ¢(y) = ¢(x), therefore a € ¢(x) = ¢(y). Then,
y € f(a) and hence X C f(a). Thus, f(a) = X ={y € U; p(y) = ¢(x)}.

(«=). Assume that X C U and x € X,,. Foreach y € U, if p(x) = ¢(y), we havey € X by x € X,,.
It follows that {y € U; ¢(y) = ¢(x)} € Xand 3a € A such that f(a) = {y € U;9(y) = ¢(x)}.
Thus, x € f(a) and f(a) C X. It follows that x € apr,(X) and consequently X, C apr ,(X). O

By Theorem 3, we obtain a clear mind about the necessary conditions for X, » © apr P(X )
to be held, which has not been discussed in other literature yet. The connections between
F-soft rough approximations and MSR approximations have been discussed in detail through the
theorems presented above.

Keeping in mind that all of the theoretical research should serve practical applications. It is
noted that F-soft rough sets and MSR sets group decision-making approaches have been put forward
in [20,31], respectively. Based on the analysis about the connections of F-soft rough approximations
and MSR approximations, the relationships between decision schemes by using these two different
hybrid models could be further discussed in the future, and the decision results obtained by the two
decision schemes may have some inherent relationship.
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3.2. The Relationships between MSR Approximations and Pawlak’s Rough Approximations

After the notion of MSR sets was put forward, it was applied to different circumstances to cope
with practical problems. However, since there is systematic research on its relationship with Pawlak’s
rough sets up to now, the rationality of MSR sets may be questioned by scholars from a theoretical
point of view.

Let S = (f,A) be a soft set. S induces an information system Is = (U, A). According to
Pawlak [2], A determines an indiscernibility relation Rg on U given by

Rs={(x,y) eUx U;Vae Ala(x) =a(y))}. 9)

Clearly, (U, Rg) is a Pawlak approximation space. The equivalence class determined by the equivalence
relation Rg that contains x is denoted by [x|g,. What is the relationship between Pawlak’s rough
approximations in (U, Rs) and F-soft rough approximations (MSR approximations) induced by soft
set S? This section offers the discussion of this problem.

Theorem 4. Let S = (f, A) be a partition soft set over U and P = (U, S) a soft approximation space. Define an
equivalence relation R on U by

R={(xy) eUxU;3a € A({x,y} C f(a)}. (10)
Then, for all X € U, apr,(X) = R(X) and aprp(X) = R(X) [13,31].

Theorem 5. Let S = (f, A) be a partition soft set over U and Is = (U, A) the information system induced by
soft set S = (f, A). Then, Rs = R, where R is determined by Equation (10).

Proof. Let x,y € U and (x,y) € R. By the definition, 34 € A st. {x,y} C f(a). It follows
that a(x) = 1 = a(y). Forany b € A — {a}, if f(b) = f(a), then {x,y} C f(a) = f(b) and
hence b(x) = 1 = b(y); if f(b) # f(a), then f(b)N f(a) = @ and hence x ¢ f(b), y ¢ f(b).
Then, b(x) = 0 = b(y). Thus, ¢(x) = c(y) for each ¢ € A. Consequently, (x,y) € Rs.

Conversely, let x,y € Uand (x,y) € Rg. By x € U = Ugeaf(a), Ja € As.t. x € f(a). It follows
that a(y) = a(x) = 1 and hence y € f(a). Consequently, {x,y} C f(a) and thus (x,y) € R. O

By Theorems 4 and 5, in cases when a partition soft set is used as the underlying soft set, F-soft
rough sets in (U, S) could be identified with Pawlak’s rough sets in (U, Rs). For MSR sets, we have
the following results.

Theorem 6. Let S = (F, A) be a soft set over U and I = (U, A) be the information system induced by soft
set S = (F, A).

(1) Foranyx € U, [x]z, = {y € U p(x) = p(1)}.
(2) Forany X C U, X, = Rs(X).
(3) Forany X C U, X, = Rs(X).

Proof. (1) Letx,y € Uand y € [x]g,. Then, a(x) = a(y) for eacha € A. Forany b € ¢(x), we have
x € f(b) and hence b(x) = 1. We can observe that b(y) = b(x) = 1and y € f(b). Thus, b € ¢(y) and
hence ¢(x) C ¢(y). Similarly, we have ¢(y) C ¢(x) and consequently ¢(x) = ¢(y).

On the contrary, suppose that ¢(x) = ¢(y). Forany a € A, if a(x) = 1, then x € f(a) and hence
a€ ¢(x)=¢(y). Thus,y € f(a) and a(y) = 1;if a(x) = 0, then x ¢ f(a) and hence a ¢ ¢(x) = ¢(y).
Thus, y ¢ f(a) and a(y) = 0. Then, a(x) = a(y) for any a € A and hence y € [x]g,.

(2)Let X C Uand x € X,,. Forany y € [x]g,;, we have ¢(x) = ¢(y) by (1). By x € X,,, we have
¢(x) # ¢(z) whenever z € X°. Thus, y € X by ¢(x) = ¢(y). Then, [x]g; € X and hence x € Rg(X).
We conclude that X, C Rs(X).
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On the contrary, assume that x € Rs(X). It follows that [x]g; € X. For any y € X¢, we have
y ¢ X and hence y ¢ [x]r,. Thus, ¢(x) # ¢(y) by (1). Consequently, x € X, and hence Rs(X) C X,,.

(3) Let X C Uand x € X, It follows that 3y € X st. ¢(x) = ¢(y). Thus, y € [x]g,.
Consequently, [x]g, N X # @ and hence x € Rg(X).

Conversely, suppose that x € Rg(X). Thus, [x]g; N X # @. It follows that there exists y € X s.t.
Y € [x]g,. Consequently, ¢(x) = ¢(y) and hence x € X,,. O

Theorem 6 shows that MSR approximation operator is a kind of Pawlak rough approximation
operator. The two mathematic models that correspond with these approximation operators have been
interconnected by this theorem, which could be regarded as a theoretical proof for the rationality of
MSR sets. Benefitting from the notion of MSR set, Zhan et al. provided the definition of Z-soft rough
fuzzy set in a recent work [17] .

Definition 6. Let (f, A) be a soft set over U and (U, ¢) the MSR approximation space. For any fuzzy set
u € F(U), the Z-lower and Z-upper soft rough approximations of y are denoted by K, and i, respectively,
which are fuzzy sets on U given by [17]:

#,(0) = Mu(y)iy e Ung(x) = 9(y)}, (11)

Hp(x) =V{u(y)iy e Unox) =9y} (12)
for each x € U, and the operators y_ and T are the Z-lower and Z-upper soft rough approximation operators
on a fuzzy set, respectively. Specifically, if B, = Tgr 1 is a Z-soft definable; or else y is a Z-soft rough fuzzy set.

By Theorem 6 (1), the following corollary could easily be achieved:

Corollary 3. Let S = (F, A) be a soft set over U and Is = (U, A) the information system induced by soft set
S = (F,A). Then,
@ p,(x) =p@)y € [x]rs},and

2) pg(x) =V{u(y)y € [x]rs}
forany y € F(U), x € U.

By Corollary 3, Z-lower and Z-upper soft rough approximation operators are equivalent to
Dubois and Prade’s lower and upper rough fuzzy approximation operators in [6]. Benefitting from
this corollary, the researchers may refer to both of the theories” aspects and the applications of rough
fuzzy sets to better study the development of Z-soft rough sets. Furthermore, the utilization of
rough set theory in decision system has been extensively studied during the past few decades.
Through discussing the connections between F-soft rough set and and Pawlak rough set, as well
as the connections between MSR approximation operators and Pawlak rough approximation operators,
the exploitation of various soft rough sets models in decision-making may be studied in a more logic
and systematic way in the future.

3.3. The Relationships among Several Soft Rough Fuzzy Sets

A soft rough fuzzy set can be viewed as an extension model of a soft rough set, where the
approximations of a fuzzy set in a soft approximation space are characterized. There are several
distinct soft rough fuzzy set models in the literature. In the current part, the connections between soft
rough fuzzy set and rough fuzzy set will be discussed, as well as the relationships among several soft
rough fuzzy sets.

Soft rough approximation operators on fuzzy sets were initially proposed by Feng et al. in [12].
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Definition 7. Let S = (f, A) be a full soft set over U and P = (U, S) a soft approximation space. The lower
and upper soft rough approximations of a fuzzy set, y € F(U), with respect to P are noted as sap, () and
sapp (), respectively, which are defined by [12]:

sap,(1)(x) = Mp(y);3a € A({x,y} C f(a))}, (13)

sapp(p)(x) = V{u(y);3Ja € A({x,y} C f(a))}, (14)

forall x € U. The operators sap p and sap, are the F-lower and F-upper soft rough approximation operators on

fuzzy sets. If sap () = sapp(y), p is said to be F-soft definable, or else y is called a F-soft rough fuzzy set.

Note that sap , and 5app are dual to each other, i.e., sapp(u°) = (%P(y))c for every u € F(U).
It has already been figured out that rough fuzzy sets in Pawlak approximation space (U, R) can be
identified with F-soft rough fuzzy sets in soft approximation space (U, S) when the underlying soft set
S is a partition soft set [13].

Meng et al. [14] noted that 5ap,, is a generalization of @pr, i.e., sapp(X) = aprp(X) if X € P(U).
On the contrary, sap , is a not a generalization of apr ,. Considering this issue, Meng et al. presented
another soft rough fuzzy set model in [14].

Definition 8. Let S = (f, A) be a full soft set over U and P = (U, S) a soft approximation space. The lower
soft rough approximation %,P( w) and upper soft rough approximation W/P( W) of the fuzzy set u € F(U) are
fuzzy sets in U defined as [14]:

ﬂ;;(]i)(x) = vxef(a) /\yEf(a) V(y)r (15)

5app (1) (x) = Axesia) Ve fa) HY) (16)

forall x € U. y is called soft definable if the condition %;(y) = W/P(y) holds; or else y is a soft rough fuzzy
set. For avoiding confusion with other soft rough fuzzy set models, it will be called M-soft rough fuzzy set in the
following parts.

It is proved that [14] %/P and WIP are dual to each other, and %;3 is a generalization of apr %

ie., %/P(X) = apr,(X) forany X C U.

Theorem 7. Let S = (f, A) be a partition soft set over U, P = (U, S) a soft approximation space, and (U, R)
a Pawlak approximation space, where R is given by Equation (10). For each y € F(U), %/P(H) = R(p) and

sapp (i) = R(p).
Proof. Assume that ;1 € F(U) and x € U. For eachy € [x]g, 3a € As.t. {x,y} C f(a). Suppose that
b € Aand x € f(b). We note that (f, A) is a partition soft set. By x € f(a) N f(b), it follows that
f(a)N f(b) # @ and hence f(a) = f(b). Hence,

sap, (1) (%) = Viesia) Neefia) 1(2) = Asesia(2) < p(y)-

Consequently, sap), (1) (x) < AM{p(y);y € [x]r} = R(#)(x).
Conversely, suppose that x € f(a). For each y € f(a), since {x,y} C f(a), we gety € [x]x.

#(y) = Mu(z)z € [x]r} = R(p)(x),

hence Ay f(a)#(y) = R(p)(x). Consequently,

sap (1) (%) = Vaes(a) Asesia) 1(Z) = R()(2),
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and W};( #) = R(y) can be proved similarly. O

By this theorem, the (classical) rough fuzzy sets in Pawlak approximation space (U, R) and M-soft
rough fuzzy sets in soft approximation space (U, S) are equivalent when the underlying soft set S
is a partition soft set. It is shown by Corollary 3 that Z-soft rough fuzzy sets could be regarded as a
kind of rough fuzzy set, which indicates that there also exist some fantastic relationships between
these two distinct models. The following theorem demonstrates the correlation between Z-soft rough
approximation operators and M-soft rough approximation operators.

Theorem 8. Let S = (f, A) be a full soft set over U, P = (U, S) a soft approximation space and y € F(U):
) sapp(p) S 1y

Proof. (1) Let x € U, a € A x € f(a). Foranyy € U, if y € [x]g, then ¢(x) = ¢(y).
It follows that a€ ¢(x) =¢(y) and hence y € f(a). Then, [x][g C f(a) and hence
Nyef@t(y) < Muly)sy € [xIr} = Eq)(x)A Consequently, we conclude that

sap,, (1) (%) = Vaesia) Myesa) 1) < 1, (%)

and hence ﬂ;(y) - By
(2 Let x € U a € Aand x € f(a). By (1), we have [x]Jg C f(a) and hence
#o(x) = V{n(y)iy € [x]r} < Vyeron(y)- It follows that

ﬁq;(x) < /\xef(n) vyef(a) V(y) = W/P(}‘)(X)

and hence 77, C W},(ﬂ)‘ O
It is noted that F-soft rough approximation operators apr (i), @prp(u) can be expressed
equivalently as [15]:
sap, (1) (x) = Mp(y);3a € A({x, v} C f(a))} = Avefa) Nyesia) K1),
sapp(p)(x) = Viu(y);3a € Al{x, v} © f(2)} = Vaes(a) Vyesa #Y)-

Therefore, we have the following corollary:

Corollary 4. Let S = (f, A) be a full soft set over U and P = (U, S) a soft approximation space. For any
we FU),

’

Pp(n) C 5app(p).

sap, () € sap, (1) C pt, S p C i, C 57

Meng et al. [14] presented a kind of soft fuzzy approximation space, where a fuzzy soft set is
regarded as the elementary knowledge on the universe and used to granulate the universe.

Definition 9. Let F = (f, A) be a fuzzy soft set over U. The pair SF = (U, F) is called a soft fuzzy
approximation space. For a fuzzy set y € F(U), the lower and upper soft fuzzy rough approximations of p with
respect to SF are denoted by Apr  (u) and Aprgp (), respectively, which are given by [14]:

Apr g (1) (%) = Aaea((L = f(a) (%)) V (Ayeu((1 = f(@) () V 1(¥))), a7)

Aprep(p)(x) = Vaea(f (@) (x) A (Vyeu(f (@) (v) Auy))), (18)
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forall x € U. The operators Apr oF and Aprgp are called the lower and upper soft fuzzy rough approximation
operators on fuzzy sets.

It is proved that [14] AprSF and Aprgy are extensions of sap . and sapgr,

respectively, i.e. if 7 = (f, A) is a soft set, then Apr_ (i) = sap, (u) and Aprgp(p) = sapgp(p) for
any i € F(U).

Theorem 9. Suppose that F = (f, A) is a fuzzy soft set over U and SF = (U, F). Let Ry be the fuzzy
relation on U given by Rx(x,y) = Vaea(f(a)(x) A f(a)(y)). For each p € F(U),

1) Apre () = Re(n),
(2)  Aprep(p) = Rr(u).

By this theorem, the soft fuzzy rough approximation presented in Definition 9 is a kind of Dubois
and Prade’s fuzzy rough approximation in [6]. We note that Rz (x,y) describes a kind of similarity
between x and y, and Rz is symmetric but Rz (x, x) # 1 in general.

The utilization of Z-soft rough fuzzy set in decision-making has already been studied in [17].
Through discussing the connections among different soft rough fuzzy set models, we can further
explore the applications of the other two kinds of soft rough fuzzy sets models in decision-making,
enrich the decision mechanisms and pay attention to the selection of the most suitable mechanism
according to environments. The soft fuzzy rough approximation operators on fuzzy sets proposed by
Meng et al. [14] have the potential to be utilized to handle decision-making problems, discussion on the
connections between which and fuzzy rough approximation operators confirm the rationality of this
model from the theoretical perspective and lays the foundation for subsequent practical applications.

4. F-Soft Rough Sets and Modal-Style Operators in FCA

FCA [22,33,34] provides a methodology for knowledge description and summarization. In this
section, several absorbing connections between F-soft rough sets and modal-style operators in FCA
will be discussed. Formal concept analysis is carried out based on a formal context specifying which
objects posses what properties or attributes. A formal concept is formulated as a pair of two sets, one is
consists of objects and another consists of properties or attributes, and these two sets are connected
by two set-theoretic operators. A complete lattice called concept lattice is constituted by the set of all
formal concepts, which reflects the correlation of generalization and specialization for formal concepts.

Definition 10. A formal context (G, M, I) consists of two sets G and M and a relation I between G and M.
The elements of G are called the objects and the elements of M are called the attributes of the context. (g, m) € I
indicate that the object g has the attribute m, or the attribute m is possessed by the object g [33].

Let (G, M, I) be a formal context. For A C G, B C M, Duntsch and Gediga [6] defined a pair of
modal-style operators A, 57 as follows:

A® ={me M;3ge A((g,m) € D)}, (19)
AV ={me M;Vge G((gm)el—geA)}, (20)
B ={ge G;ImeB((gm) e}, (1)
BV ={g€G;VYme M((gm) el —meB)}. (22)

Recently, the granular computing based concept lattice theory has received much attention [35].

Rough set theory, soft set theory and concept lattices have similar basis data description.
Mathematically speaking, the notions of soft set and formal context are equivalent. Furthermore, both a
formal context and a soft set can be considered as a two-valued information system.
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Theorem 10. Let S = (F, A) be a soft set over U. A formal context Cs = (U, A, Ig) is induced by S, where Ig
is provided as

Is={(x,a) e Ux A;x € F(a)}.
Conversely, let C = (U, A, I) be a formal context. A set-valued mapping Fc : A — P(U) is defined by
Fe(a) = {x € U;(x,a) € I}
foralla € A, and Sc = (Fc, A) is a soft set. Moreover, we have Scg, = S and Cs. = C.

Proof. Only the proof for Sc; = S and Cs. = C will be provided here. Suppose that S = (F, A) is a
soft set over U and a € A. For any x € U, from the definition, we obtain that

x € Feg(a) & (x,a) € Is & x € F(a).

That is, Fc (a) = F(a) for alla € A. Thus, Fc, = F, whence Sc, = S.
Next, assume that C = (U, A, I) is a formal context, x € U and a € A. Then, by definition,

(x,a) € Is. & x € Fc(a) & (x,a) € L.
Therefore, we conclude that C s. =Cas required. O

Theorem 11 shows the relationship among operators A, 57 and soft rough approximation operators.
Theorem 11. Let S = (F, A) be a soft set over U. Forany X C U, mP(X) = XVA, aprp(X) = X248,
Proof. (1) For any x € ﬂp(x)’ Ja € Ast x € f(a) C X. Then, x € a® and a® X.
Therefore, a € XV and consequently x € a2 C XV2. We conclude that %P(X) C XVA,

Conversely, if x € XV2, then 3a € XV st. x € a®. Then, x € f(a) and f(a)
Thus, x € {f(c); f(c) € X} = apr,(X) and hence XVA C apr,(X).

(2) For any x € aprp(X), 3a € A satisfying x € f(a) and f(a) N X # @. It follows that x € a®
and a® N X # @. Thus, a € X* and consequently x € % C X%,

Conversely, 3a € X2 s.t. x € a® if x € X»2. Then, x € f(a) and f(a) N X # @. Consequently,
xe{f(e); flo)NX # @} =aprp(X). O

FCA has become increasingly popular among various methods of conceptual data analysis,
knowledge representation and decision-making. Depth study on the connections of soft rough sets
theory and FCA contributes to the reference and fusion for decision-making approaches in these two
different fields.

N

N

X.

5. A New Generalization of F-Soft Rough Set: Soft Rough Soft Sets

In this section, by extending the notion of F-soft rough set, a new generalization model called soft
rough soft set will be proposed. In this new model, we use a soft set is as the elementary knowledge
to compute the approximations of soft set. In this way, parameterized tools can be used to the
greatest extent. Some basic properties of the new proposed model are discussed. A multi-group
decision-making approach based on soft rough soft sets has been provided.

Definition 11. Let U be the universe set and A, Ay be parameter sets. Let S; = (f1, A1) be a full soft set
over U and (U, S) be a soft approximation space. Let S = (f, A) be a soft set over U. The lower and upper
soft rough approximations of S in (U, Sy) are denoted by saprg (8) = (fs,, A) and saprg (S) = (f51,A),
which are soft sets over U defined by:
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fsi(e) ={xeU:3e € Ay[x € fi(¢') C ()]},
fSr(e)={xeU:3 € Ay[x € fi(¢), fi(e) N fle) # D)},

foralle € A. sapr, , Saprg, are the lower and the upper soft rough approximation operators on soft set S,
— 1

respectively. If sapr . (S) = saprq (S), the soft set S is soft definable, or else S is so-called a soft rough soft set.
P Y- ysaprg Prs, 8

Example 2. Suppose that the universe set U = {x1,x2,X3,X4,X5,X¢} and the parameters set
E={ey,ere3e4,0506,07}. Let A = {ey,er,e3,ea} C Eand Ay = {e3,es,¢5,¢5,7} C E. Let S; = (f1, A1)
be a full soft set and S = (f, A) be a soft set over U as shown by Tables 1 and 2, respectively. In the soft
approximation space (U, S1), by Definition 11, we get the lower soft rough approximation sapr 5 (S) = (fs,, A)
and the upper soft rough approximation saprs (S) = (f51, A) of soft set S = (f, A), as shown by
Tables 3 and 4, respectively. In order to facilitate the readers to understand, Figure 1 is given to show the
process of computing fs, (es) and 51 (eq) from f(es).

Table 1. Soft set (f1, A1).

u
A X1 X2 X3 X4 X5 X6
o T 0 0 0 0 1
eq 01 1 0 0 0
es 00 0 0 0 0
e 0 0 0 0 1 0
e o0 0 o0 1 1 1

Table 2. Soft set (f, A).

u
A X1 X2 X3 X4 X5 X6
e T 1 0 1 o0 1
e 01 1 0 0 0
es 000 0 1 1 1
ey 11 1 1 0 1

Table 3. Soft set (fs,, A).

u
A X1 X2 X3 X4 X5 X6
e T 0 0 0 0 1
e 01 1 0 0 0
e3 00 0 1 1 1
eq 1 1 1 0 0 1

Table 4. Soft set (f51, A).

u
A X1 X2 X3 X4 X5 Xg
) T 1 1 1 1 1
e 01 1 0 0 1
es 1 0 0 1 1 1
ey 1 1 1 1 1 1
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fales) = {x,x6} U {x2,x3} = {x,x,%3%}
A

-

={x,x} filea) = {223} files)=@ files) ={xs} filer) = {xa 5%}

files th\ \124 C fles)

flea) = {x1,x2,%3, %4, %6}

fles)Nfi(es) #@ flea) N fi(er) #@
fled) N fi(es) #@

files) = {x1,%} files) = {x2,x3} files) =@ files) = {xs} fi(er) = {xs,%5,%}

| | |
1 1 I
| i I
| I |
A \ v

fies) = {x,x%} U {xzx3} u {x4,x5,%6}
= {x1,x2,%3, %4, %5, X6 }

Figure 1. The process of computing fs, (es) and f51(e4) from f(es) in Example 2.

Proposition 1. Let S; = (f1, A1) be a full soft set over U and (U, Sy) be a soft approximation space.
Let S = (f, A) be a soft set over U. The following properties hold:

(D saprg (S) €S Csaprs, (S),

1 ~ ~
(2)  sapry (N(UA )= N(u 4) = saprs, (Nu,a)),
(3) saprg, (W u,4)) = W a) = saprg (W (,4))-

Proof. The lower and upper soft rough approximations of N4y = (N, A) in (U, Sy) are denoted
by sapr, (N(UA ) = (Ns;, A) and saprg, (N,ay) = (N1, A); the lower and upper soft rough
appr0x1mat10ns of W4y = (W, A) in (U,81) are denoted by sapr ( w,4)) = (Ws,A) and
saprs, (Wu,a)) = (W51, A).

(la)Forallx € U,e € A,if x € fs,(e) = {x € U: 3¢’ € A1[x € fi(¢/) C f(e)]}, then we obtain
x € f(e),s0 fs,(e) C f(e);

(b)Foralle € A, if x € f(e), since (f1, A1) is a full soft set, we obtain that 3¢’ € Ay, s.t. x € fi(¢),
then x € fi(e')Nf(e) # @, thenx € {x € U : 3 € A[x € fi(¢), fi(¢') N f(e) # D]}, that is,
x € fS1(e) and f(e) C f51(e) foralle € A.

Hence, we know that fs, (¢) C f(e) C f51(e) forall e € A, that is, sapr (S) C S Csaprg (S).

(2a) By the definition of relative null soft set, we know N(e) = @ for all ec A Foralle € A, we
have Ng, (e) = {x € U : 3¢ €A1[x€f1( CN(e))}={xelU:3 cA1lxe fi(¢) CQ]} =D =

N(e), that is, sapr (N UA)) = Nw,a);

(2b) By the defmmon of relative null soft set, we know N(¢) = @ foralle € A. Foralle €
A, we have Nsl( ={xelU: 3 e Axe fi(¢)fi(l¢)NN(e) # @]} = @ = N(e), that is,
saprs, (Nuu,a)) = Niu,a)-
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(3a) By the definition of relative whole soft set, we know W(e) = U for all e € A. For all
e € A, wehave Wi(e) = {x € U: 3’ € A1[x € fi(¢'), fi(e) NW(e) # @]} = U = W(e), that is,
saprs, (Wiu,a) = Wiu,a)-

(3b) By the definition of relative whole soft set, we know W(e) = U for all e € A. Since (f1, A7) is
a full soft set over U, for alle € A, we have Wg, (¢) = {x € U : 3¢’ € Ay[x € fi(¢/) S W(e)]} = {x €
U:3e e A][J( S f1(€/) C U]} =U= W(e),that is, %Sl(W(U’A)) = W(U/A)' O

Proposition 2. Suppose that S = (f1, A1) is a full soft set over U and (U, Sy) is a soft approximation space.
Let S = (f,A), T = (g, A) be two soft sets over U. The following properties hold:

1) ST = saprg (S) C sapr (T)
(2) SCT = saprg, (S) C saprg, (T)

(3) sapr 1(S nT) < saprg (8) Nsapr (T),
4 saprg (S UT) 2 sapr, (S) Usapr (T),
(5) saprg, (S UT) 2 saprs, ( )u suprsl(T),
(6) saprs (SNT) C saprs (S) Nsaprs, (T).

Proof. The lower and upper soft rough approximations of S in (U,S;) are denoted by
saprg (S) = (fs,, A) and saprs (S) = (f51, A); the lower and upper soft rough approximations of 7°
in (U, 81) are denoted by ﬂsl(T) = (8s,,A) and saprs (T) = (g%, A).

(1)If S C T, then foralle € A, we have f(e) C g(e). Assume thatx € fg,(e) = {x e U: 3¢ €
Ai[x € f1(¢) C f(e)]}. From f(e) C g(e), we obtainx € {x € U : 3¢’ € A1[x € f1(¢') C g(e)]} =
gs, (e). Therefore, we get fs, (e) C gs, (¢) foralle € A, ie., saprg, (S) ﬂSI(T);

(2)If S C T, then for all e € A, we have f(e) C g(e). Assume that x € f51(e) =
{x e U: 3 € A1[x € fi(¢), fa(e') N f(e) # D]}, from f(e) C g(e), we obtain e’ € Ay, s.t.
x € fi(e'), fi(e)Ngle) @D, s0 x € ¢%1(e) = {x € U : 3’ € Ay[x € fi(¢), fu(e') Ngle) # D},
it follows that f51(e) C g%1(e) foralle € A, i.e., saprs, (S) Csaprg (T);

(3) Itis obvious that SN7T € Sand SNT C T. From property (1), we obtain saprg, (§NT)C
sapr 1(S) and sapr, (S NT) C sapr 1(T) Thus, sapr (Sﬁ T) C sapry (S) Nsapr, (T)

(4) Itis obvious that S U T2SandSUT 2 T. From property (1) we obtain sapr (S uT) 2
saprg, (S)and saprg, (SUT) > ﬂsl(’T) Thus, sapr (SU T) 2 saprg (S) Usapr, (T)

(5) Itis obvious that SUT 2 Sand SUT 2 7. From property (2) we obtain Sapr, saprs (SUT) >
saprs, (S) and saprs (S UT) 2 saprg (T). Thus, saprg (S U T) 2 sapr (S) Usapr, (T)~

(6) It is obvious that SNT € Sand SNT C 7. From property (2), we obtain saprg (SNT) C
saprg, (S) and saprg (SNT) C saprg, (T). Thus, saprg (SNT) C saprg (S) Nsaprg (T). O

Proposition 3. Let S; = (f1, A1) be a full soft set over U and (U, Sy) be a soft approximation space.
Let S = (f, A) be a soft set over U. The following properties hold:

(1) saprg (S)  saprg (5aprs, (S)),
2) W51(3)2W51(M51(8))'

Proof. From property (1) in Proposition 1, it is obvious that sapr (S) € S C sapr;, (S). From property
—1

(1) and (2) in Proposition 2, we get saprg. (S) C sapr 1(suprs1 (8)) and saprg (S) 2 saprs, (s:zprSl (S)),

respectively. [

In [12], a group decision-making approach based on F-soft rough sets was proposed; however,
if we carefully check their decision scheme, it is not hard to find that they actually use the tool of a
soft rough soft set since the best alternatives provided by each specialist gather together to form a soft
set and they compute the upper and lower soft rough approximations (soft sets) on the preliminary
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evaluation soft set during the decision process. That is, although the concept has not been formally
proposed, the application of soft rough soft sets has already appeared in literature. From another
perspective, the decision-making problem that can be solved by F-soft rough sets in [12] can also be
solved by using soft rough soft sets. It is necessary to propose the concept for soft rough soft sets as
well as its application to introduce parameter tools to the universe description, that is, make it feasible
to describe objects in the universe from different aspects at the same time, information obtained from
different aspects be able to be handled as a whole before the approximations of a soft set are computed,
and allow the flexibility to make operations such as the restricted intersection “N” [25] on soft sets
whose soft rough approximations need to be computed; in this way, soft rough soft sets have the
potential to be applied in more complex decision-making situations to meet demands of applications in
real life cases. As follows, we provide a simple application of soft rough soft sets in decision-making.

Let G = {Ty, Tz, ..., Tp} and Ay = {e}, ¢, ...,e',i} be two groups of specialists to evaluate all the
candidates U = {x1,xy,...,xn}. In group G, each specialist is asked to point out if the candidates
satisfy benefit properties in A = {ey, €3, ...,e, } or not. In this way, a serious of evaluations provided
by specialists are obtained as (g1,4), (g2, 4), (83, A), ..., (gp,A). Afterwards, the evaluation
made by group G could be obtained by S = (f,A) = (g1,4) N (82,A) N (g3, A) N ... (gp, A).
Meanwhile, in another group Ay = {e}, €5, ..., €3}, the specialists are under time pressure, and a lack of
patience, or, because of some other issues, each specialist only points out the best alternatives; however,
we have no clear idea about which properties are under their consideration. The best alternatives
chosen by specialists in group A; form another soft set S; = (f1, A1). We say the assessments provided
by group G are more reliable since the assessments provided by them are more specific than group
Aj. However, in order to make full use of information provided by the two independent groups,
we can compute the lower soft rough approximation on (f, A) in soft approximation space (U, S1).
If x; € fs, (e]-), from the axiomatic definition of soft rough soft sets, we know that the best alternatives of
one or more specialists in A; are totally contained in f(e;), that is, the best alternatives chosen by some
specialists in A; certainly occupy property e;, which indicates that this benefit property e; considered
by group G may also be very important to group A;. The final decision is to select the alternative that
occupies the most number of beneficial properties that may be important for both groups.

The steps of this soft rough soft sets based multi-group decision-making approach can be listed as:

Step 1. Input the evaluations on alternatives U = {x1, x2, ..., X, } provided by specialists group
G = {11, Ty Ty} a5 (g1, A), (32,4), (g3, A), .-, (g, A).

Step 2. Input the best alternatives selected by specialists group A; as S1 = (f1, A1).

Step 3. Compute the group evaluation made by the specialists in Gas S = (f,A) = (g1, 4) N
(82,4) N (83, A) N (8p, A).

Step 4. Compute the lower soft rough approximation of (f, A) in (U, S1), i.e. (fs,, A).

Step 5. Compute the score of alternatives of each x; (j = 1,2,...,m) as s(x;) = LI fs, (e1) (x)),
and the decision result is xy if it satisfies s(xy) = maxj=1,.m $(%;)-

Example 3. Suppose that a factory needs to purchase the best machine from U = {x1,xy, ..., X¢ } according to
evaluations provided by two specialists groups G and Ay, which form a multi-group decision-making problem.
G = {T1, Tr, T5, Tu} consists of four specialists and each of them provides assessments on machines in U
with respect to beneficial properties A = {e; = low price,e; = high endurance,es = advanced technology,
ey = good compatibility}. Each specialist in G points out if the machines satisfy properties in A or not.
In this way, a serious of evaluation soft sets provided by specialists are obtained as (g1, A), (g2, A), (83, 4),
(84, A) (see Tables 5-8 as their tabular representations) and the group evaluation of G can be computed by
(f,A) = (g1,A) N (g2, A) N (g3, A) N (ga, A) (seealso Tuble 2 as the tabular representation for (f, A)).
Meanwhile, each specialist in another specialist group Ay = {€}, €}, ef, e}, e} only points out the best machines
according to his/her own cognition, which form soft set (f1, A1) (replace ef — ey, by e3 — ey and see also Table 1
for its tabular representation). The lower soft rough approximation of (f, A) in (U, S1) can be easily computed
as (fs,, A) (see also Table 3 for its tabular representation). It is easy to obtain that s(x1) = s(x2) = s(x3) =2,




4. Publications

73

Symmetry 2017, 9, 252 17 of 20

s(xg) = s(x5) = 1and s(xg) = 3, hence x¢ should be the machine purchased by the factory since it satisfies
largest number of beneficial properties that are important to two groups.

Table 5. Soft set (g1, A).

u
A X1 X2 X3 X4 X5 X6
) T 1 1 1 0 1
e 01 1 0 0 0
e 00 0 1 1 1
e 1 1 1 1 0 1
Table 6. Soft set (g2, A).
u
A X1 X2 X3 X4 X5 Xp
e T 1 0 1 0 1
e 1 1 1 0 0 0
e 00 0 1 1 1
e 11 1 1 0 1
Table 7. Soft set (g3, A).
u
A X1 X2 X3 X4 X5 X6
) T 1 0 1 0 1
e 0 1 1 0 0 0
e 1 0 0 1 1 1
ey 11 1 1 0 1
Table 8. Soft set (g4, A).
u
A X1 X2 X3 X4 X5 X6
) T 1 0 1 0 1
e 01 1 0 0 0
e 0 0 1 1 1 1
e 1 1 1 1 0 1

As is mentioned at the beginning of this section, soft rough soft set is an extension model of F-soft
rough set. Sometimes, in a practical situation, the universe set that needs to be granulated is presented
from different attributes’ aspects simultaneously. In other words, the parameter tools are necessary not
only for the knowledge presentation, but also for the universe description. The new model provides
a framework for dealing with these kinds of problems and the exploration of its potential use in
decision-making is promising. Compared to F-soft rough sets, soft rough soft sets introduce parameter
tools to the universe description and a soft set (instead of a subset of the universe) is approximated.
Compared to rough soft set [12], a soft set instead of an equivalence relation has been adopted in
soft rough soft sets to compute the approximations of soft sets [36,37]. In this section, only a small
application attempt of soft rough soft sets in decision-making has been provided, which is far from
enough to meet various demands in real life situations. More flexible and effective approaches need to
be developed in the future.

6. Conclusions

This paper has presented a comparative study of some existing soft rough set models, and new
discoveries on the relationships among various hybrid sets have been summarized in Table 9. It has
been shown that the Z-soft rough fuzzy set is a kind of rough fuzzy set. Therefore, decision-making
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approaches based on rough fuzzy sets have the potential to be addicted to more specific situations in
which Z-soft rough fuzzy sets should be applied to solve the problem. Various soft rough set models
have shown great potential in coping with decision-making problems. Some potential applications of
connections among various soft rough set models in decision-making have been briefly discussed in
the current work. For instance, benefitting from the connections between F-soft rough approximations
and MSR approximations that have been discussed, it is possible to further study the relationships
between the decision results made by using soft rough sets and MSR sets. In future works, deeper and
more specific research on the applications of these connections in decision-making will be conducted.

Acknowledgments:

Table 9. Summary on relationships among various hybrid models.

Various Hybrid Models

Relationships

F-soft rough approximations and modified soft
rough approximations (MSR approximations)

Xp Caprp(X), aprp(X) C X¢, X, C apr,(X),
if some specific conditions hold, respectively
(see Theorems 1-3)

F-soft rough sets in (U, S) and Pawlak’s rough sets
in (U, Rs)

F-soft rough sets in (U, S) could be identified
with Pawlak’s rough sets in (U, Rg), when the
underlying soft set is a partition soft set

(see Theorems 4 and 5)

MSR approximations and Pawlak’s
rough approximations

MSR approximation operator is a kind of
Pawlak rough approximation operator
(see Theorem 6)

Z-lower, Z-upper soft rough approximation operators
and Dubois and Prade’s lower and upper rough fuzzy
approximation operators in [6]

Z-lower and Z-upper soft rough approximation
operators are equivalent to Dubois and Prade’s
lower and upper rough fuzzy approximation
operators in [6] (see Corollary 3)

The (classical) rough fuzzy sets and M-soft rough
fuzzy sets

The (classical) rough fuzzy sets in Pawlak
approximation space (U, R) and M-soft rough
fuzzy sets in soft approximation space (U, S)
are equivalent when the underlying soft

set S is a partition soft set (see Theorem 7)

Z-soft rough approximation operators and M-soft

Rough approximation operators and F-soft rough
approximation operators

sap, () € sapl, () € p, € C iy © SaPp(pe)
C 5app(y) (see Theorem 8 and Corollary 4)

The soft fuzzy rough approximation in Definition 9
and Dubois and Prade’s fuzzy rough approximation
in [6]

The soft fuzzy rough approximation is a kind of
Dubois and Prade’s fuzzy rough approximation
in [6] (see Theorem 9)

F-soft rough set and soft rough soft set

Soft rough soft set is an extension of F-soft
rough set
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1. Introduction

Most of the real-world problems are under uncertainty and inadequacy con-
texts which can not be handled with classical crisp mathematical models. The
demands for mathematic tools for dealing with uncertainty increases with the
rapid development of socio-economic environment. During the past few decades,
rough set theory (Pawlak (1982)), fuzzy set theory (Zadeh (1965)) and several
other models contribute to meet the demands for coping with uncertain situa-
tions, however, all of these theories suffer from a common limitation, that is,
incompatible with parameterization tools. To overcome this limitation, soft set
theory was initiated by Molodtsov (1999), which makes it possible to consider
objects in the universe from different parameter aspects.

To facilitate the applicability of soft set theory for dealing with uncertainty,
one simple and feasible approach is the combination with other mathematic
tools. For instance, fuzzy soft sets (Maji et al. (2001)), vague soft sets (Xu et al.
(2010)) and interval-valued intuitionistic fuzzy soft sets (Jiang et al. (2010)) are
some existing hybrid soft set models obtained in this way. Recently, the ap-
plication of hybrid soft set models in decision making (DM) have drawn atten-
tion from researchers, such as, Alcantud & Santos-Garcia (2017); Fatimah et al.
(2017a,b); Ma et al. (2016). Taking advantage of the parameterization tools of
soft set theory, during the process of decision making based on hybrid soft sets,
the evaluations/assessments on alternatives provided by decision makers could
be considered from different parameters aspects.

In real world situations, decision makers tend to provide linguistic informa-
tion rather than quantitative forms considering the qualitative aspects of prob-
lems. The modeling of linguistic information has been facilitated by fuzzy lin-
guistic approach (FLA) (Zadeh (1975a)) which represents qualitative terms by
linguistic variables. To effectively model linguistic information in situations
in which decision makers hesitate among different linguistic values for a lin-
guistic variable, hesitant fuzzy linguistic term set (HFLTS) was introduced by
Rodriguez et al. (2012). HF LT Ss could be flexibly applied in the computing with
words (CW) process (Rodriguez et al. (2016); Rodriguez & Martinez (2013)) by
means of their envelopes in form of linguistic intervals or fuzzy numbers (Liu &
Rodriguez (2014); Rodriguez et al. (2012)).

Up to present, we are only aware of one paper that combines linguistic vari-
ables and soft set theory, Sun et al. (2017) introduced the concept of linguistic
value soft set, in which the assessment on each alternative with respect to ev-
ery parameter was presented as a linguistic term (LT). However, the application
of single linguistic terms (LTs) constraints the elicitation of complex linguistic
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preferences in real life DM situations (Ma et al. (2007); Rodriguez et al. (2012);
Tanga & Zhengb (2006)). Various proposals have been proposed by researchers
for modeling complex linguistic preferences, such as, linguistic model based
on fuzzy relation introduced by Tanga & Zhengb (2006), proportional 2-tuple
linguistic model introduced by Wang & Hao (2006), and linguistic distribution
assessment introduced by Dong et al. (2013). Compared with all other exist-
ing models, comparative linguistic expressions (CLEs) proposed by Rodriguez
et al. (2012) are closer to cognition of human-being, easily generated by using
a context free grammar in a formal way, and convenient to be transformed into
HFLTSs for carrying out CW process. Subsequently, this research is focused on
further combination of fuzzy linguistic approach and soft set theory to propose a
novel model called hesitant linguistic expression soft set (HLE soft set), which
overcomes previous limitation of linguistic value soft set and fulfills require-
ments in real world DM problems for elicitation of complex linguistic informa-
tion in a human-being cognitive way by using CLEs modeled with HF LT Ss.

The remainder of the paper is structured as follows: soft set, HF LTS, and
related concepts are briefly reviewed in Section 2. In Section 3, it is proposed
HLE soft set together with some operations. Section 4 introduces a multi-criteria
DM approach based on HLE soft set. In Section 5, we present a novel group
decision making (GDM) approach based on HLE soft set as well as a consensus
model cooperates with this approach. Comparison between our GDM proposal
and other existing approaches is provided in Section 6. Conclusions are given in
Section 7.

2. preliminaries

In this section, we provide a brief review on soft set, FLA, HF LTS and other
related concepts which will be useful in the following sections.

2.1. Soft set theory

The concept of soft set theory was initiated by Molodtsov (1999) to overcome
the inadequacy of the parametrization tools of many widely used mathematic
tools for dealing with uncertainty.

Let U be the initial universe of objects and E be the set of parameters related
to objects in U. Both U and E are assumed to be nonempty finite sets. Let P(U)
be the power set of U and A C E.

Definition 1. (Molodtsov (1999)) A pair (F,A) is called a soft set over the uni-
verse U, where F is a mapping given by

F:A—P(U).
3
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A soft set can be viewed as a parameterized family of subsets of the universe
U considering that F(e) can be viewed as the set of e—approximate elements of
the soft set (F,A) for parameter e € A.

Null and absolute soft sets were defined by Maji et al. (2003): For (F,A), if
Ve € A,F(e) = 0, it is a null soft set denoted by 0; if Ve € A, F(e) = U, it is an
absolute soft set denoted by A.

Soft set and its generalization models show great applicability in different
topics such as, data predicting (Liu et al. (2017)), rule mining (Feng et al. (2016)),
medical diagnosis (Muthukumar & Krishnan (2016)) and decision making (Zhan
et al. (2017a,b); Zhan & Zhu (2017)).

2.2. Fuzzy linguistic approach.

Fuzzy linguistic approach uses the fuzzy set theory to model linguistic in-
formation based on linguistic variable, that was described by Zadeh (1975a) as
“a variable whose values are not numbers but words or sentences in a natural or
artificial language” and formally defined as follows:

Definition 2. (Zadeh (1975b)) A linguistic variable is characterized by a quintu-
ple (H,T(H),U,G,M) in which H is the name of the variable; T (H) is the term
set of H, i.e., the set of names of linguistic values of H, with each value being a
fuzzy variable that is denoted by X and ranging across a universe of discourse U,
which is associated with the base variable u, G is a syntactic rule (which usually
takes the form of a grammar) for the generation of the names of values of H; and
M is the semantic rule for associating its meaning with each H, M(X), which is
a fuzzy subset of U.

Suitable descriptors for the terms as well as appropriate semantics are neces-
sary for dealing with linguistic variables. Linguistic descriptors could be selected
by using an ordered structure approach (Herrera et al. (2000); Yager (1995)), or
a context-free grammar approach: the linguistic term set is defined by a context-
free grammar G therefore the LTs are sentences generated by G (Bonissone
(1980); Bordogna & Pasi (1993); Zadeh (1975b)).

Accordingly, the semantics for terms can be defined based on the ordered
structure defined over the linguistic term set, or based on membership functions
and a semantic rule (Rodriguez et al. (2012)). Mixed semantics are also allowed.
Each linguistic term is assumed as a fuzzy number defined in [0, 1], and the use of
parameters of the membership functions is effective to represent fuzzy numbers.
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2.3. Hesitant fuzzy linguistic term set.

Recently, a new linguistic model was provided in Rodriguez et al. (2012) to
improve the elicitation of CLEs by using HFLT'S and a context-free grammar.

Definition 3. (Rodriguez et al. (2012)) Let S be a linguistic term set, and HF LT S
Hg, is an ordered finite subset of consecutive linguistic terms of S.

The complement of HFLTS, Hg, is defined as Hg = S — Hs = {s;/s; € Sand 5; ¢
Hs}.

The following context-free grammar Gy was introduced by Rodriguez et al.
(2013) to generate CLEs closer to the cognition of human-being.

Definition 4. Let Gy be a context-free grammar and S = {so,...,sq} be a lin-
guistic term set. The elements of Gy = (Vy,Vr,1,P) are defined as follows:

Vv = {{primary term), (composite term), (unary relation), (binary relation), (conjunction)}.
Vr = {at most, at least,between,and, so, . . ., Sg }.

1€ Vy.
P = {1 := (primary term)|{composite term)
(composite term) ::= (unary relation)(primary term)|({binary relation) (primary

term) {conjunction)(primary term)
(primary term) ::= sp|s1|...|sq
(unary relation) ::= at most|at least
(binary relation) ::= between
(conjunction) ::= and}.

Definition 5. (Rodriguez et al. (2012)) A transformation function Eg,, from CLE,
ll'to HFLTS, Hg, where S is the linguistic term set used by Eg,, is defined as:

EGH:”_>HS @))]

Based on Eg,,, CLEs generated by Gy can be transformed into HFLT Ss in
different ways according to their meaning in the processes of CW:
Egy (si) = {silsi € S}

Eg,(at most s;) = {sj|s; < s;and s; € S},
Eg, (atleast s;) = {sj|s; > s; and s; € S},
Eg, (between s; and s;) = {sg|s; < s < 5j and s, € S}.

Direct operations on CLEs are hard to be carried out, one feasible approach
is to transform them into HFLT Ss by using Eg,,, afterwards perform the com-
putations based on representation models for HF LT Ss.

Envelope, as an important representation tool for HF LT Ss, was firstly pro-
posed in form of linguistic intervals by Rodriguez et al. (2012), after in form of




4.3. Hesitant linguistic expression soft sets: Application to group
decision making

trapezoidal fuzzy numbers (TFNs) by Liu & Rodriguez (2014). We will adopt
the latter in this work since it keeps the fuzzy characters of linguistic information
and follows the fuzzy linguistic approach. The fuzzy envelope Fy, fora HFLTS
Hg could be computed using the proposal in Liu & Rodriguez (2014) and its
parameterization could be Fyg = T (a,b,c,d).

3. Hesitant linguistic expression soft set

The concept of hesitant linguistic expression soft set (HLE soft set) will be
introduced in this section by combining soft sets and CLEs. Operations on HLE
soft sets will also be discussed.

3.1. Definition of HLE soft sets

HLE soft set will be defined under the background of decision making. In
order to linguistically model the assessments provided by the decision makers,
we choose linguistic descriptors by providing terms directly and the semantics
for the LTs will be represented by fuzzy numbers defined in the interval [0, 1].

Definition 6. Ler U = {x,x2,...,X%y} be the universe setand E ={e},es,...,en}
be related parameters. Let S = {s0,51,...,5¢} be a linguistic term set and 2 (U)
be the power set of all CLEs built from S for the universe U. A pair (FCIE,E) is
called a HLE soft set over U, where F°'¢ is a mapping from a parameter set E to
the power set of all CLEs built from S for U, i.e., F¢ : E — 2 (U).

A HLE soft set (F°’¢E) is a parameterized family of CLEs built from S for
the universe U. Forany e¢; € E, F cle(e ;) is the set of ¢ ;—approximation elements
of HLE soft set (F/,E). F(e;)(x;) is a CLE that indicates to which degree
object x; € U satisfies parameter ¢; € E.

The HLE soft matrix is defined as

pele — (F(”e(ej)(xi))mxn’

(i=1,2,....,m, j=1,2,...,n). Each HLE soft set corresponds to a HLE soft
matrix.

In the definition of HLE soft sets, CLEs are generated by using the context-
free grammar Gy (Rodriguez et al. (2013)) based on S. The semantics for CLEs
can be computed as parametric trapezoidal membership functions using the ap-
proach in Liu & Rodriguez (2014) considering that TFNs are good enough to
capture the vagueness of linguistic assessments (Delgado et al. (1998a,b)). The

6
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descriptors for CLEs should be suitable to characterize the degree to which ob-
jects satisty parameters. To achieve this goal, the first term in S should be a single
term that indicates an object does not satisfy a parameter at all (label “none” will
be used to represent this assessment in the current work) and the last term is a sin-
gle term that means an object absolutely satisfies a parameter (label “absolute”
will be adopted to represent this assessment in the current work). An example
of the linguistic term set S = {s0,51,...,5¢} (g = 8) with its semantic is shown
by Fig.1, where the TFNs representations for LTs “none” and “absolute” are the
single terms 7°(0,0,0,0) and 7'(1,1,1,1), respectively.

Almost none Very low  Low Medium High  Very high Almost absolute

None Absolute

Figure 1: A linguistic term set of nine terms with its semantic.

LTs are special CLEs, hence the concept of HLE soft set generalizes the
concept of linguistic value soft set proposed by Sun et al. (2017). If all CLEs
in a HLE soft set degenerate to LTs, the HLE soft set will degenerate to a lin-
guistic value soft set. In real world DM situations, decision makers might hesi-
tate among different LTs when they are under time pressure, lack of confidence,
knowledge or uncertain issues. The main limitation of linguistic value soft set
is that it fails to deal with these hesitant situations. HLE soft set overcomes
this limitation by allowing more flexible way in eliciting linguistic information,
therefore we say that the use of HLE soft set will be more practical.

A simple example for the definition of HLE soft set could be the presented:

Example 1. Suppose that U = {x|,x,x3} is a set of houses, E = {e] = convenient
traffic,ep = low price,e3=good decoration,es=nice environment,es=large area}
is a set of parameters expected by Mr. Jonhson when he chooses a house from U.
An expert provides assessments on these houses by using CLEs built from a lin-
guistic term set S = {s : none(N), s : almost none (AN), s : very low (VL),s3 :
low (L), s4:medium (M), ss:high (H),se:very high (VH),s7:almost absolute (AA),
sg : absolute (A)} by using the context-free grammar Gy. The CLEs assessments
Jor houses with respect to different parameters form a HLE soft set (F cle g ) as
is shown in Table 1.
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Table 1: Tabular representation of a HLE soft set

U el e e3 ey es
X1 between VLand H  between VL and H at most H at least M N
X at most L at most L at least VL at most H at least M

X3 between L and M between Land VH  between Land VH  between VL and H  atmost VL

In detail, by Def. 6, we obtain F'¢(e3) = {x; : at most H,x; : at least VL,x3 :
between L and VHY, which means that F°'¢(e3)(x;) =at most H,F(e3)(x2) =
at least VL, F°(e3)(x3) = between L and VH. Here, “F¢(e3)(x1) = at most H”
indicates that the degree to which house x| satisfies parameter “good decora-
tion” (e3) is “at most high”.

Some relavant definitions will also be provided:

Definition 7. Let U be a universe set, E be the set of parameters related to U
and A C E. Let a linguistic term set S = {s0,51,-- ,8g} in which the term s is
“none” and the term sq is “absolute”. For a HLE soft set (FCI"’,A) over U, if
(i) for any e € A, x € U, F'(e)(x) = none, we call (F'¢,A) a HLE null soft
set (with respect to A), denoted as (0°¢,A); and
(ii) for any e € A, x € U, F*(e)(x) = absolute, we call (F°".A) a HLE
absolute soft set (with respect to A), denoted as (I, A).

The definition of HLE absolute (null) soft set is consistent with the defini-
tion of absolute (null) soft set introduced by Maji et al. (2003), absolute (null)
vague soft set introduced by Xu et al. (2010), and absolute (null) interval-valued
intuitionistic fuzzy soft set introduced by Jiang et al. (2010) to indicate that all
objects satisfy all parameters (any object does not satisfy any parameter at all).

3.2. Operations on HLE soft sets

A method to compute the fuzzy envelopes of HF LT Ss corresponds to CLEs
has been provided in Liu & Rodriguez (2014). However, LTs “none” and “ab-
solute” were not taken into consideration when fuzzy envelopes are computed
in Liu & Rodriguez (2014). To carry out operations on HLE soft set without
ambiguity, the scheme for computing fuzzy envelopes of HFLT Ss based on a
linguistic term set S has to be adjusted (A brief adjustment is given in Appendix
A).

Operations on HLE soft sets are defined on the basis of ranking of CLEs in
this work, therefore a ranking approach for CLEs based on ranking of the fuzzy
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envelopes for HFLTSs in form of TFNs will be introduced firstly. The ranking
approaches for TFNs are various, in the current work the one in Abbasbandy &
Hajjari (2009) will be adopted for ranking fuzzy envelopes of CLEs which is
based on a measure called “magnitude”, and the magnitude of a TFN u will be
denoted as Mag(u) (reviewed in Appendix B).

Definition 8. Let S be a linguistic term set, lly,ll; be two CLEs built from S
by using the context-free grammar Gy, and Eg,, be the transformation function
from CLEs to HF LT Ss, we say
(1)1l <1l lﬁcFHsl < FH%’ (2) 1l > 1l iﬁcFHsl - FHSZ" 3) 1 =1l iﬁ”FHg ~ FH§’
where Eg,,(1l,) = Hi, Eg,, (1l,) = H} are HFLTSs on S, and Fy1, Fyp are their
fuzzy envelopes, respectively. Sequently, the order ll} < I, ll} > Il can be
formulated as:
(4) 1 <L ifflly <l orlly =1l; (5) 1 > L iff Il >l or 1l =115,

N and \ operators can be formulated as:
(6) I Nl =11y iff Ll <llp; (7) ILh VIl =11 iff Ll > 1.

Afterwards, the linguistic complement of CLEs built from § will be defined
considering their meaning.

Definition 9. Let S be a linguistic term set and Il be a CLE built from S =
{50,581, 8¢} by using the context-free grammar Gy. The linguistic comple-
ment of Il is denoted by lI° and defined by

at least sg_;, for ll = at most s;,Vs; € S,

1 — at most sg_, forll = at least s;,Vs; € S; @
between sq_j and sq_;, for Il = between s; and s;,¥s;,s; € S;
Sg—is forll =s;,Vs; €8S.

Afterwards, some operations on HLE soft sets will be defined.

Definition 10. Let U be a universe set and E be the set of parameters related to

U. Let Z(U) be the power set of all CLEs built from S for the universe U. F, G

are two mappings from parameter set E to & (U). For any e € E, we note
Fele(e) C G (e) iff F'¢(e) (x) < G¢(e)(x), Vx € U.

Definition 11. Let U be a universe set and E be the set of parameters related
to U. Let (F'°,A) and (G, B) be two HLE soft sets over U, where A,B C E.
We say that (F°'¢,A) is a HLE soft subset of (G, B), denoted as (F°'¢,A) C
(GCle,B), if

9
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(i)A CB, and
(ii) for any e € A, F'¢(e) C G (e).

Example 2. (Continued from Example 1) Suppose that A={e| =convenient traffic,
ex=low price}, B={ej=convenient traffic, e;=lowprice,e3=good decoration}
are two parameter sets. (F°'. A)and (G, B) are two HLE soft sets.
Fle(e1) = {x1 : between VL and H ,x : at most L,x3 : between L and M};
F¢(ey) = {x1 : between VL and H ,x; : at most L,x3 : between L and VH};
G (e1) = {x1 : at least H,xy : at most L,x3 : between L and VH};
G%(ey) = {x1 : between M and H,x, : at least H,x3 : at least H};
G¢(e3) = {x1 : at most H,x, : at least L,x3 : between M and VH};
By using the transformation function Eg,,, we obtain HF LT Ss corresponds to
Fe(e)) and G (e):
Eg, (F(e1)(x1)) = Eg,, (between VL and H) = {VL,L,M,H},

Gy (F'(e1)(x2)) = Eg,, (at most L) = {N,AN,VL,L},

E )(x2)) =

Eg, (F(e1)(x3)) = Eg, (between L and M) = {L,M},
Eg,(G"(e1)(x1)) = Eg, (at least H) = {H,VH,AA,A},
Eg, (G(e1)(x2)) = Eg,, (at most L) = {N,AN,VL,L},

Eg, (G(e1)(x3)) = Eg,, (between L and VH) = {L,M,H,VH}.

Denote the fuzzy envelope for Eg,, (F'(e;)(x;)) as F;j and Eg, (G"*(e;)(x;)) as
Gij, compute the fuzzy envelopes of the above HF LT Ss:
F11=7(0,0.27,0.57,0.83), F»;=7(0,0,0.15,0.5), F3;=T7(0.17,0.33,0.50,0.67);
G11 =7(0.5,0.85,1,1), G; =7(0,0,0.15,0.5), G3; = T(0.17,0.43,0.73,1);
The magnitudes for these fuzzy envelopes are listed:

Mag(F11)~0.42, Mag(F,1)~0.10, Mag(F31)~0.42,

Mag(G11)~0.90, Mag(G1)~0.10, Mag(G31)~0.58.

Since Mag(F11)<Mag(G11), Mag(F>1)<Mag(Ga1), Mag(F31)<Mag(G31), we know
Fi1 2 Gy, Bo1 2 Gy, B3 2 Gsy.

From Def. 8, we know F(e1)(x1) < G (e1)(x1), F(e1)(x2) < G¢(e)(x2),
Fe(e1)(x3) < G(ey)(x3), then we obtain F'¢(ey) C G¢(e1) from Def. 10.

In a similar way, we can obtain F'(e;) C G¢(e).

Obviously, A C B, then (F'¢ A) C (G¢,B) can be obtained from Def. 11.

Definition 12. (Maji et al. (2003)) Let E = {ey,ea,...,e,} be a parameter set.
The not set of E denoted by —E is defined by —=E = {—e},—ey,...,—e,} where
—e; = not e;.

Definition 13. Let U be a universe set, E be the set of parameters related to
U, and A C E. The complement of HLE soft set (F'¢,A), can be denoted by

10
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(F'e A)¢ and defined by:
(FF¥.A)° = ((F),~4)
where —A € —E, and (F'¢)¢(=e)(x) = (F(e)(x))¢,~e € =A,x € U.

Another kind of complement operation called “relative complement” of HLE
soft set is also provided:

Definition 14. Let U be a universe set, E be the set of parameters related to U,
and A C E. The relative complement of HLE soft set (F°'¢ A), can be denoted
by (F',A) and defined by:

(FCIE7A)/ _ ((Fde)/,A)
where (F¢) (e)(x) = (F(e)(x)),e € A,x € U.
An example is provided to show the difference between Defs. 13 and 14.

Example 3. (Continued from Example 2) Let U = {x1,x2,x3} be the set of
houses, A = {e| = convenient traffic,e; = low price} be the considered parame-
ters. Given a HLE soft set (F°'¢ A).

The relative complement of (F'¢,A) is (F'¢ A) in which
(FeleY (1) = {x| : between L and VH,x, : at least H,x3 : between M and H;
(Fele) (e) = {x| :between L and VH ,x, : at least H,x3:between VL and HY,
where “(F°'¢Y(e)(x2) = at least H” means the satisfactive degree of house x;
with respect to “convenient traffic” is “at least high”.

The complement of (F°'¢,A) is (F'¢,A)¢ in which
(FleYe(=ey) = {x1 : between L and VH x5 : at least H ,x3 : between M and H};
(FleYe(=ey) = {x1 :between L and VH x5 :at least H,x3:between VL and H},
where “(F€'€)(=e1)(x2) = at least H” means the satisfactive degree of house x;
with respect to “not convenient traffic” is “at least high”.

Definition 15. Let U be a universe set and E be the set of parameters related to
U. For any two HLE soft sets (F'° A) and (G, B) over U, where A,B C E,
(i) The extended union of (F°'¢,A) and (G, B) is defined as

(H.C) = ()06 ),
where C = AUB and

Fele(e)(x), fore€ Aje ¢ B,
H%(e)(x) = { F(e)(x) VG(e)(x), forecANB; 3)
G (e)(x), fore¢ Aje € B,

11
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forallxeU.
(ii) The restricted intersection of (F'¢,A) and (G, B) is defined as

(H,C) = (F",A) N (G™,B),
where C =ANB and
H(e)(x) = F"“(e) (x) A G (e) (x) 4

forallxe U, ec ANB.
(iii) The restricted union of (F°'¢,A) and (G, B) is defined as

(Hcle7c) — (Fcle7A) U (601673)7
where C =ANB and
HY(e)(x) = F"*(e) (x) V G"*(e) (x) )

forallxeU,ec ANB.
(iv) The extended intersection of (F°'¢ A) and (G, B) is defined as

(H.C) = (F )G B),
where C = AUB and

ng(e)('x)u forecAeé B,
Hde(e)(x) — F("le(e)(x) /\G["le(e)(x), for e EAﬁB; (6)
G (e)(x), fore¢ Aje€B.

forallxe U.
In the following, some basic operation laws for HLE soft set are presented.

Proposition 1. Let U be a universe set and E be the set of parameters related
to U. Let (F'° A) be a HLE soft set defined on U, where A C E, the following
results hold.

(1) ((Fcle’A)c)c — (FCle,A),' (2) ((FCZe,A),)/ _ (Fde,A),' (3) (@cle’A)/ — (ICle7A).

Proposition 2. Let U be a universe set and E be the set of parameters related
to U. Let (F'¢ A), (G, B) be HLE soft sets defined on U, where A,B C E, the
following results hold.

(]) (Fde,A) U (0(716714) — (FCZE,A), (Fcle7A) n (mcle’A) — (@c'le7A)’.

(2) (FFe,A) U (19, 4) = (1% A), (Fe, ) N (19, 4) = (Fle,A);

(3) (FE',A) U (FXI,A) = (F°I¢,A), (F°I,A) " (F¥I,A) = (F°'°, A);

(4) (FC]e,A)ﬂ(GC]e,B) — (G"le,B)ﬁ (F(:le7A])2’ (FC]e,A)U(GC]e,B) — (G[:le,B)U (F['h’,A).
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Proposition 3. Let U be a universe set and E be the set of parameters related to
U. Let (F'¢ A), (G, A) be HLE soft sets defined on U, where A C E, the De
Morgan’s laws hold as follows.

(1) ((FCle7A) U (GCI",A))C — (Fcle7A)c n (GCIE,A)C,

(2) ((F1e.4) (G A)) = (P4 A) U (G A"

Proof. We only provide the proof for (1), the proof for (2) can be obtained in a
similar way.

(1) From Defs. 13 and 15, (F'¢ U G)¢(=e)(x) = ((F'* UG“¢)(e)(x))°
(Fele(e)(x) V G () (x))° for all e € —A, x € U. ((F€)¢ N (G€)¢)(=e)(x)
(FeIe)<(=e) (x) A (G1) (~e) (x) = (Fe(e) (x))° A (G (e) (x))* for all ~e € —A,
x € U. Since (F(e)(x) V G¢(e)(x))¢ = (F€(e)(x))° A (G (e)(x))¢ from the
definition of complement of CLE, we have ((F¢,A)U (G, A))¢ = (F¢,A)*N
(GCIL),A)C. O

Remark 1. Properties (1)* and (2)* below do not hold unless A = B, considering
that =(ANB) # —~AN—B unless A = B.

(1)* ((FCIE,A) U (Gde,B))C — (FCI",A)CFI (GCZE,B)C,

(2)* ((FC167A) N (GCle,B))C _ (FCle7A)C U (GCZQ,B)C.

Proposition 4. Let U be a universe set and E be the set of parameters related to
U. Let (F'¢,A), (G, B) be HLE soft sets defined on U, where A, B C E, the De
Morgan’s laws hold as follows.

(1) ((FC[e,A) U (GCle,B))' — (FCIE,A)/ N (Gde,B)',

(2) ((F14.4) (G B)Y = (F1%.A) U (G, B).

Proof. We only provide the proof for (1), the proof for (2) can be obtained in a
similar way.

(1) From Defs. 14 and 15, it is easy to obtain that
(FIeUGH) () (x) = ((F UG (¢) (x))° = (Fe(e) (x) V G ) (x) ) = (F(e)
() A (Ge(e) (x))° = (FeY(e) (x) A (GY (e) (x) = (') 1 (GeY')(e) (x)
forallec ANB,xe U. O

Proposition 5. Let U be a universe set and E be the set of parameters related
to U. Let (F' A), (G B), (H',C) be HLE soft sets defined on U, where
A,B,C CE, the following results hold.

(1) ((Fcle ) (Gde,B)) (Hcle C) (Fc[e A) ((GCle,B)U(Hde,C));

(2) ((FC[e,A) (GCle,B)) (Hcle ) (Fcle A) ((GCle,B) ﬂ(Hde,C));

(3) ((Fele,4) U (G, B)) N (HEe,C) = (<1, A) 1\ (', C)) U (G, B)) N (¥, C));
(4) ((Fle,4) N (G, B)) U (H",C) = ((F¥I¢, A) U (H,C)) N (G, B)) U (H°, C)).

13
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Proof. (1) and (2) can be easily proved based on the definition of restricted union
and restricted intersection of HLE soft sets. We only provide the proof for (3),
the proof for (4) can be obtained in a similar way.

(3) From Def.15, it is easy to obtain that ((F/UG€)NH")(e)(x) = (Fl¢U
G)(e)(x) AH"(e) (x) = (F'“ (e) (x)) V G*(e) (x) AH"* () (x) = (F°'“ (e) (x) A
HE(e)(x))V (G () (x) AHE' (€) (x)) = (F/* N HE") (&) (x) V (G/* NHe) (e) ()
= ((F*NH) U (G NH))(e)(x) foralle c ANBNC, x € U. O

4. A multi-criteria decision making approach based on HLE soft set

Exploration on DM approaches based on generalized soft set models shows
a huge development in recent years. However, most of these approaches fail to
deal with linguistic information. In this section, we will provide a DM algo-
rithm based on HLE soft set to deal with linguistic assessments on alternatives
by extending an approach based on fuzzy soft set in Alcantud (2016).

4.1. Decision making scheme

Let U = {x1,x2,...,%n} be a universe of alternatives and E = {ej,ez,...,e,}
be the set of parameters closely related to U. The evaluation on every alternative
with respect to each parameter is presented by a CLE, in this way all assessments
form a HLE soft set. The goal is to select the optimal alternative according to
the linguistic information provided by a decision maker.

A multi-criteria DM algorithm based on HLE soft set can be presented as
below:

Algorithm 1

Step 1 Input a HLE soft set (F"'l",E) on m alternatives xj, xp, ..., X, as an input
table whose cell (i, j) is F(e;)(x;).

Step 2 For each cost criteria/parameter e, replace column j by the result of ap-
plying linguistic complement (see Def. 9) of CLE in each cell. An uni-
formed HLE soft set could be presented as (fde,E ) with corresponding
cell (i, j) in tabular form as F (€j)(xi).

Step 3 Denote the fuzzy envelope of F (e;)(x;) by u;j. For each parameter e},
let M be the maximum magnitude value of fuzzy envelopes for HF LT Ss
corresponds to CLEs on all alternatives, i.e., M; = max;—1,. nMag(u;;)
foreach j=1,...,n. Now we construct a comparison matrix A = (apq)mxm
where for any p, ¢, and let a,, be the sum of the non-negative values in

the following finite sequence:
M”E(”pl)*M“g(”ql) Mag(”pZ)*M“g(uﬂ) Mag(“pn)*Mag(“qn)

M] M2 ]4 Mn :
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Step 4 For eachi=1,...,m, compute R; as the sum of the elements in row i of
comparison matrix A, and 7; as the sum of the elements in column i of A,
then compute the score of each alternative x; by S; = R; — T;.

Step 5 The decision is the alternative x; that maximizes the score, i.e., x; s.t.
Sy = maxi—

4.2. Illustrative example

An example is introduced to illustrate the application of Algorithm 1.

Suppose that a factory needs to purchase the best machine from U = {xi,...,x¢}
and parameters E={e; =high price, ¢, =long endurance, e3=advanced technology }
are under their consideration. Let a linguistic term set S = {s¢ : none (N),s] :
almost none (AN), s;:very low (VL),s3 :low (L), s4 : medium (M), ss : high (H), 56 :
very high (VH),s7 : almost absolute (AA), sg : absolute(A)} (Fig. 1).

1) Input the initial HLE soft set.
The assessments form a HLE soft set (Table 2).

Table 2: Tabular representation of the initial HLE soft set

U e e e3

x| at most L between L and M at most L

X2 at least H at most L M

x3 betweenVLand H between M and VH between M and VH
X4 H between L and VH at least H

X5 at least H between VL and H  between B and VH
x¢ between VL and H at most L between M and H

2) Normalize the decision information.
e is a cost criteria, e and e3 are benefit criteria, the normalized HLE soft set

is obtained (Table 3).

Table 3: Tabular representation of the normalized HLE soft set

U e e e3

X1 at least H between L and M at most L

X2 at most L at most L M

x3 between Land VH between M and VH between M and VH
X4 L between L and VH at least H

Xs at most L between VL and H between L and VH
x¢ between Land VH at most L between M and H

15
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3) Compute the comparison matrix.
Transform CLEs in the normalized HLE soft set into HF LT Ss (Table 4), the

fuzzy envelopes of these HFLTSs are computed (Table 5), as well as the
magnitudes of these fuzzy envelopes (Table 6).

Table 4: HFLT Ss generated from the CLEs

U e

€2

e3

x1 {H,VH,AAA}

x4 {L}
xs {N,AN,VL,L}
xs {LM,HVH} {N,AN,VLL}

{L,M}
x {N,AN,VL,L} {N,AN,VL,L}

v {LMHVH} {M.HVH}

{N,AN,VL,L}
{M}
{M,H VH}

{L,M,H,VH} {H,VH,AA,A}

{VL,L,M H}

{L.M.H,VH}
{M.H}

Table 5: Fuzzy envelopes for the HF LT Ss

U el

e

€3

X1 7(0.5,0.85,1,1)
x2  T(0,0,0.15,0.5)

x3  T(0.17,0.43,0.73,1)
x4 T(0.17,0.33,0.33,0.5)

xs  T(0,0,0.15,0.5)

xg  T(0.17,0.43,0.73,1)

7(0.17,0.33,0.50,0.67)  T(0,0,0.15,0.5)

7(0,0,0.15,0.5)

7(0.33,0.5,0.5,0.67)

7(0.33,0.64,0.70,1)  T(0.33,0.64,0.70,1)
7(0.17,0.43,0.73,1) 7(0.5,0.85,1,1)
7(0,0.27,0.57,0.83)  T(0.17,0.43,0.73,1)

7(0,0,0.15,0.5)

7(0.33,0.5,0.67,0.83)

Table 6: Magnitudes of the fuzzy envelopes for the HFLT Ss

U el e e3

x; 0.896 0416 0.104
xp 0.104 0.104 0.5

x3 0.581 0.669 0.669
x4 0.331 0.581 0.896
xs 0.104 0.419 0.581
xe 0.581 0.104 0.584

From M; = max;—; .. ¢Mag(u;;) for each j = 1,2,3, by Table 6, we obtain
' 16
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M) = max(0.896,0.104,0.581,0.331,0.104,0.581) = 0.896,
M, = max(0.416,0.104,0.669,0.581,0.419,0.104) = 0.669,
M3 =max(0.104,0.5,0.669,0.896,0.581,0.584) =0.896,
Comparison matrix A is obtained as Eq. (7).

0.000 1.350 0.352 0.631 0.884 0.818
0.442 0.000 0.000 0.000 0.000 0.000
1.009 1.566 0.000 0.411 1.004 0.939
1.131 1.408 0.253 0.000 0.847 1.061
0.537 0.561 0.000 0.000 0.000 0.471
0.536 0.626 0.000 0.279 0.536 0.000

4

~

Compute the scores.

It is easy to obtain that
R1 =4.035,R, =0.442, R3 =4.929, R4y = 4.7, Rs = 1.569, R = 1.977.

Ty =3.655, T, =5.511, T3 = 0.605, Ty = 1.321, Ts = 3.271, Ts, = 3.289.
Then the scores of alternatives are

S1=0.38, 85, =—5.069, S3 =4.324, S, = 3.379, S5 = —1.702, S¢ = —1.312.
Make the decision.

The decision is x3, since S3 = max;—;

5

~
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5. Consensus group decision making based on HLE soft set

Multi-criteria group decision making problems are common in daily life,
in these situations decision makers/experts may also use linguistic expressions
rather than numerical values to express their evaluation over alternatives. To
deal with these situations a novel GDM approach based on HLE soft set will be
introduced in this section. Meanwhile, to pursue a reasonable decision result a
novel consensus model will also be provided.

Before presenting the GDM scheme, we pay attention to the approach for
aggregating HLE soft sets, so first the way to aggregate CLEs will be studied.

An operator for aggregating linguistic evaluations in DM under ignorance
was defined in Yager (1995):

Definition 16. (Yager (1995)) Let a set of linguistic valuables L= {Ly,Ly,...,Ly}
such that L; > L; if i > j. A mapping

Fy:L"— L

is called an ordinal OWA operator of dimension n if it has an associated weight-
ing vector
T
W = {Wl71iv%7' . 7Wn}
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such that

1. wj eL,

2. WjZW,‘, ifj>i,

3. Maxj[w;] = Ly,

where for any set of values ay,...,ay

Fw(al,...,an) =Maxj[wj/\bj],
where b is the jth largest of the ay,... ,ay.

Several approaches to generate weighting vectors have been studied in Yager
(1995) to implement the aggregation of linguistic values in a linguistic scale by
using ordinal OWA operator. The idea in their work is to use linguistic values in
the linguistic scale as the weights. However, if we simply follow their approach
to generate weights for aggregating CLEs built from S, all CLEs built from S by
using the context-free grammar Gy (denoted by €(S)) should be listed a prior,
which is hard to realize especially with the growth of numbers of terms in S. To
simplify the calculation, we suggest to aggregate CLEs with weights as LTs in
S, that is, use S instead of € (S) as the linguistic scale to generate the weighting
vector. The simplification is feasible considering that:

(1) the LTs in S are special CLEs built from S, i.e., S C €(S);
(2) the largest CLE and smallest CLE in €(S) are all contained in S;
(3) the uniform and nondecreasing distribution of LTs in S.

In order to aggregate CLEs in %'(S), now we define a CLE-OWA operator in
which the weighting vector will be consisted of LT's in S:

Definition 17. Let S={s0,51,...,5¢} be a linguistic term set and € (S) be all
CLE:s built from S by using the context-free grammar Gy. A mapping

Oy : € (S)" — €(S)
is called a CLE-OWA operator of dimension n if it has an associated weighting
vector

W= {wl,wz,...,wn}T
such that
1. w; €S,
2. WjZW,‘,ifj>i,
3. Maxj[wj] = s,
where for any set of CLEs in € (S), ai,...,an

ew(al,. .. ,an) = Man[wj /\bj],

where b is the jth largest of the ay, . .. ,ay.
18
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Remark 2. The “largest” of CLEs ay,...,a, in Def. 17 refers to a comparison
based on Def. 8.

Remark 3. CLE-OWA operators are special ordinary OWA operators Yager
(1995) in which the weights are LTs while the aggregation objects are CLEs.

Example 4. Assume that a linguistic term set S = {s0,51,52,53,54,55,56,57,58 |,
and four CLEs built from S by Gg: “at least s4”, “at most s3”, “between s3 and
s¢”, “at least ss5” need to be aggregated using the following weighting vector:

»

W= {SI7S27S6758}T

Ordering the elements in “at least s4, at most s3, between s3 and sg, at least s5”
by using Def. 8, we obtain

by = at least ss, by = at least s4, b3 = between s3 and sg, by = at most s3,

hence,

Ow (at least s4,at most s3,between s3 and sg, at least ss)=Max[s) Aat least s5,52 N
at least s4,s6 N\ between s3 and sg,ss Nat most s3] = Max|[sy,s2,between s3 and s,
at most s3] = between s3 and s¢.

By using the CLE-OWA operator, HLE soft sets can be aggregated in the
following way:

Definition 18. Let U = {x|,x2,...,xy} be the universe, E = {e},es,...,e,} be

parameters related to U and S={so,s1,...,5,} be a linguistic term set. Let
(Ffle E), (F§",E), ..., (FJEI"7 E) be HLE soft sets over U, Oy —related collective

HLE soft set comes from (Ff'¢,E), (F{",E), ..., (Ff‘le,E) is defined by

Fe(ej) (i) = Ow (FF™*(e)) (i), ... Ff* () (1)) ®

forall ej € E and x; € U, where By is a CLE-OWA operator associated with a
weighting vector W generated from S.

A consensus GDM algorithm based on HLE soft sets is given as follows:
Algorithm 2.

Step 1 Determine the GDM problem. This phase consists of defining experts
G={t1,1r2,...t7}, alternatives U = {x1,x2,...X,}, parameters £ = {e|, e,
...en}, and a linguistic term set § = {s0,51,...,5,}.

Step 2 Each expert #;, € G provides evaluations on alternatives in U with respect
to all parameters in £ by using CLEs built from S. The CLEs provided
by each expert; (k=1,2,... ,J;)gform a HLE soft set (FkCl"’,E).
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Step 3 Select a CLE-OWA operator 6y of dimension f associated with a weight-
ing vector W generated from S for aggregating CLEs.

Step 4 Carry out the consensus reaching process and denote the HLE soft set
provided by expert f;, after several rounds of adjustments which finally
reaches consensus by (F'$'.E) (k€ {1,2,...,f}).

Step 5 Compute the 8y —related collective HLE soft set (F'*¢, E) comes from
(F/?le,E), (Flgle,E), o (F,L.ZE,E).

Step 6 Apply Algorithm 2 on (£’?¢ E) and select the optimal alternative x;
which satisfies Sy = maxS; (i = 1,2,...,m), where S; is the score of x;.

The optimal alternative can be one or several, and the CLE-OWA operators
that could be adopted in Step 3 are various.

When the GDM is performed with HLE soft sets, the assessments from dif-
ferent experts are collected from various parameter aspects, which makes more
comprehensive the use of information, however increase the amount of data
and the necessary for the consensus reaching process (CRP) (Palomares et al.
(2014)). As follows a consensus model is presented for HLE soft set based lin-
guistic GDM (see Fig. 2).

Moderator

Experts

Problem - S
Alternatives| 4> | CLEs
Alternatives| e &

Parameters M

Compute consensus
legree

—

‘ ion process ‘

Advice

Figure 2: Consensus model

1) Compute the fuzzy envelopes for CLEs in all HLE soft sets provided by ex-
perts.
Transform CLE F¢'¢(e;)(x;) into a HF LTS by using the transformation func-
tion Eg,,. Denote the fuzzy envelopgoof Eg, (F¢'(ej)(x;)) by a TFN uf‘j
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2) Compute the consensus degree based on the magnitudes of fuzzy envelopes
for CLEs.

(a) For each pair of experts #; and #;, compute a similarity matrix SMj; =
(smf’j)mxn in which smff € [0,1] represents the agreement level between
t; and 1 on alternative x; with respect to parameter e, computed by

smiy =1 — |Mag(ul;) — Mag(uf;)| ©)

(b) The consensus degree of all experts on alternative x; with respect to
parameter ¢; is defined as

2

cpij=1- \Mag(uf-j) —Mag(uf-‘j)| (10)

fr=n k,te{la,:if}.k#
(c) The consensus level between experts #; and #; (#;,#; € G) should be com-
puted by

n m

Y Y smlk (11)

1
Cl(thtk) =
mn =iz
(d) The group consensus level among the group G = {t1,t,...t7} should

be defined by

CL—— 2 Y cl(ty,t) (12)

fF=1 kle{1,2,....f} k#l

3) Consensus control.
In this phrase, the consensus threshold i established at the beginning is com-
pared with the group consensus level, if the consensus is not enough, the
assessments of some experts should be adjusted:
if CL > u, the CRP ends and the selection process (steps 5-6 in Algorithm 2)
is carried out;
if CL < u, some experts are suggested to adjust their assessments.
A number Maxround € N could be set a prior to determine the maximum
number of adjusting rounds.
4) Advise Generation.
(a) Compute Oy —related collective HLE soft set:
In this phase, 8y —related collective HLE soft set (F°/¢| E) will be com-
puted from (F{',E), (Fs',E), ..., (F;'le,E) (see Def. 13).
The fuzzy envelope of Eg,, (F/(e;)(x;)) is denoted by i, the HLE
soft matrix corresponds to (¢ E) is denoted by F°¢, then a proximity
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matrix P, = (P];,q)mm between each expert #; (k € {1,2,...,f}) and F¢'e
could be obtained:

pl; = 1—|Mag(u};) — Mag(ii;;)| (13)

where i € {1,2,...,m}, j€{1,2,...,n}.
An average proximity corresponds to x; and e; should be computed by
using an aggregation operator y:

By =Pl P 0l) (14)

(b) Identify the assessments of experts to be changed:
If CL < p, there must exist (i, f), s.t. cp;j < U, we should determine
that the experts need to adjust their assessments, as well as the position
(p,q) corresponds to x,, and ¢, they should change. To do so,

i. Determine position (p,q) by cppq =min(cp;j) wherei € {1,2,...,m}
and j € {1,2,...,n}.

ii. Determine the experts to adjust assessments in position (p,q):
Expert #; who satisfies p’;q < Ppq should be suggested to modify
their assessments on x, with respect to e,. Here, the experts who
should change assessments can be not unique.

(c) Determine the change direction.
In this phase, a positive value close to zero denoted by € will be adopted
to define a margin of acceptability, and some direction rules are pre-
sented as follows:
o If (Mag(u’;,q) — Mag(iipy)) < —€, then expert f; should increase
assessment on alternative x,, with respect to parameter e,,.
o If (Mag(u’l‘,q) — Mag(ii,q)) > €, then expert # should decrease as-
sessment on alternative x, with respect to parameter e;.
o If —e < (Mag(u];,q) — Mag(iipg)) < €, then expert 7 should not
change assessment on alternative x, with respect to parameter e,.

An example to illustrative the GDM scheme cooperates with the proposed
consensus model:

Example 5. Suppose that there are four experts G = {t1,t,13,12} who provides
evaluations on alternatives in U = {x1,x2,x3,x4} to determine the best one. Pa-

rameters E = {ej,e,...,es} are considered and the evaluations form four HLE
soft sets, in which CLEs are built from a linguistic term set S={s¢,s1,...,58}
(Fig. 1).

22
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In the CRP, consensus threshold i1 = 0.9 and margin of acceptability € = 0.1,
maximum adjusting rounds Maxround = 10. We use average aggregation as the

operator Y.

Step 1. Collect the CLEs provided by experts.

Assessments of each expert ty € G form a HLE soft set (Fk”l”, E). Corre-
sponding HLE soft matrices are denoted by Flde,de"’, .. ,Ff"’ (see Egs.

(15)-(18)).

between s, and s4
at least sy

between s, and ss
at most s3

Frle —

between s4 and s¢
between s4 and ss
52

between s, and s3

cle _
=

between s4 and s5
between s4 and ss
58
at least s5

Fj"" _

between s4 and s¢

between s4 and s5

between s3 and s4
at most s3

cle _
=

at least s5
between s3 and s¢

at most s3

at least s5

at least s5
between s3 and s¢

at most s3

at least s5

at least s5
between s3 and s¢

at most s3

at least s5

at least s5
between s3 and s¢
between s, and 53
at least s5

at most 53
S5
53

at most s3

at most s3

52

S0
at most 53
at most s3

52

58
at most 53
at most s3

at most 54

at least s4

at least s5
between s, and s4

at most 54
between s4 and s5
at least s5
between s, and s4

at most s4

at least s5

at least s5
between s, and s4

at most 54

at least s5

at least s5
between s7 and 54

Step 2. Choose a CLE-OWA operator Oy of dimension f.
Here we carry out the unitor function' from [0,1] 70 S to construct the
weighting vector W for aggregating CLEs built from S, and obtain W =

{SO7 §3, 56338}'

between s, and s4
at least s5
50
at least s4

15

between s, and s4
at least s5
So
K

(16)

between s, and s4
at least s5
So
at least s4

a7

between 53 and s4

between s, and s3

between s, and s3
at least s5

(18)

'Assume L = {L1,...,Ly}, an ordinal unitor function is a mapping defined in Yager (1995)
asH:[0,1] — Ls.t. H(r) =L,-,% <r<iLi=1,...,mand H(1) = L.
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The reason why we choose this weighting vector is that it seems to be the
analog of the normative aggregation, w; = 1/n, in the numeric case. The
weights in W of dimension n was computed by Yager (1995):

j—1 .
Wj:H(nfl)’ j=1,....n

In this case, the number of linguistic values in S is 9, and the dimension
of W is n = 4. Here the unit interval is divided into 9 pieces and maps
onto unitor function H. Then we get
= H(%Y) = so- —H(L) = i 3 < 4). —H(2) =
w1 =H(3) = so, w2 = H(3) = 53 (since 5 <r <g); w3 =H(3) = s6
(since g <r<g)iws= H(%) = s53.
Step 3. Carry out the CRP.

1) Compute the consensus degree based on the magnitudes of fuzzy en-
velopes for CLEs.

(a) Transform the CLEs into HF LT Ss (see Egs. (19)-(22)).

{s2,83,84} {55,56,57,58}  {50,51,52,53}  {50,51,52,53,54} {s2,53,54}
pete _ | {sa:5.56,57,58}  {s3,54,55,56} 85 {54,55,56,57,58}  {55,56,57,58} (19)
! {52,53,54,85}  {s0,51,52,53} 53 {55,56,57,88} 50
{s0,51,82,83}  {s5,56,57,58}  {s0,51,52,53} {52,83,84} {54,55,56,57,58}
{54,55,56}  {55,56,57,58} 52 {50,51,52,83,80}  {52,83,54}
Fcle {sayss}  {s3,54,55,56} 55 {s4,55} {s5,56,57,58} 20)
5 {50,51,52,53} 50 {55,56,57,58} 50
{s2.53}  {55.56.57,58}  {s0,51,52,53} {s2,83,84} 58
{s4,55} {s55,56,57,58} 52 {50,51,52,83,54} {52,53,84}
cle {s4,55} {53,54,55,56} 50 {55,56,57,58} {55:56,57,88}
F; 21
sg {s0,51,82,83}  {s0,s1,52,83}  {s5.5.57,58} 50
{55,56,57,58}  {55,56,57,58}  {50,51,52,83} {52,83,84} {54,55,56,57,58}
{55,56557,58} 52 {s0,51,52,83,54}  {s2,53,54}
Fele _ {s3,54,55,56} 58 {s ss} {s2,53} 2
¢ {52,53} {s0,51,52,83}  {85,56,57,58} {s2,53} @2
{s5,56,57,58}  {s0,51,52,83} {s2,83,84} {55,56,57,88}

(b) Compute the fuzzy envelopes of HF LT Ss (see Egs. (23)-(26)).
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7(0,0.30,0.36,0.67)  T(0.5,0.85,1,1) 7(0,0,0.15,0.5) 7(0,0,0.35,0.67)  T(0,0.30,0.36,0.67)
pele_ | T(033,065,1,1)  T(0.17,043,0.73,1)  T(0.5,0.67,0.67,083)  7(033,0.65,1,1) 7(0.5,0.85,1,1)
7| 7(0,0.27,0.57,0.83)  T7(0,0,0.15,0.5)  T(0.17,0.33,0.33,0.5)  T(0.5,0.85,1,1) 7(0,0,0,0)
7(0,0,0.15,0.5) 7(0.5,0.85,1,1) 7(0,0,0.15,0.5) 7(0,0.30,0.36,0.67)  T(0.33,0.65,1,1)
(23)
7(0.33,0.64,0.7,1) 7(0.5,0.85,1,1) 7(0,0.17,0.17,0.33) 7(0,0,0.35,0.67)  T(0,0.30,0.36,0.67)
pete_ | 7(033,05,0.67.0.83) 7(0.17,043,0.73,1)  7(05,0.67,0.67,0.83) 7(033,05,0.67.0.83)  T(05,0.85,1,1)
> 7| 70,0.17,0.17,0.33) 7(0,0,0.15,0.5) 7(0,0,0,0) 7(0.5,0.85,1,1) 7(0,0,0,0)
7(0,0.17,0.33,0.5) 7(0.5,0.85,1,1) 7(0,0,0.15,0.5) 7(0,0.30,0.36,0.67) T(1,1,1,1)
(24)
7(0.33,05,0.67,0.83)  T(0.5,0.85,1,1)  T(0,0.17,0.17,0.33)  7(0,0,0.35,0.67)  T(0,0.30,0.36,0.67)
pete_ | 7(033,05,0.67,0.83)  7(0.17,043,0.73,1) 7(0,0,0,0) 7(0.5,0.85,1,1) 7(0.5,0.85,1,1)
3= T(1,1,1,1) 7(0,0,0.15,0.5) 7(0,0,0.15,0.5) 7(0.5,0.85,1,1) 7(0,0,0,0)
T(0.5,0.85,1,1) 7(0.5,0.85,1,1) 7(0,0,0.15,0.5)  7(0,0.30,0.36,0.67)  T(0.33,0.65,1,1)
(25)
7(0.33,0.64,0.7,1) 7(05,0.85,1,1)  T(0,0.17,0.17,0.33)  T(0,0,0.35,0.67)  T(0,0.30,0.36,0.67)
pete_ | T(0.33,05,0.67,083)  7(0.17,0.43,0.73,1) T(1,1,1,1) 7(0.5,0.85,1,1) 7(0,0.17,0.33,0.5)
4 7| 7(0.17,033,05,0.67) T(0,0.17,0.33,0.5)  T(0,0,0.15,0.5) 7(0.5,0.85,1,1) 7(0,0.17,0.33,0.5)
7(0,0,0.15,0.5) 7(0.5,0.85,1,1) 7(0,0,0.15,0.5)  7(0,0.30,0.36,0.67)  T(0.5,0.85,1,1)
(26)
2) By using Egs. (9), (11) and (12), the consensus degree of the group
is CL =0.868.
3) Consensus control.
Since CL = 0.868 < U, we go to next step.
4) Advise Generation.
(a) Compute Oy —related collective HLE soft set (F'¢, E) comes from
HLE soft sets (Ff'*,E), (F{"“,E), ..., (F}fle,E). Corresponding
HLE soft matrix is denoted by F¢'¢ (see Eq. (27)).
between s4 and s5 at least s5 52 at most 54 between s and s4
=cle between s4 and ss  between s3 and s¢ 55 at least s4 S6
Fele — @27
between s3 and 54 at most s3 at most s3 at least s5 K
between s, and s3 at least s5 at most s3  between s, and s4 at least s4
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By using Eq. (13), proximity matrix P, = (p’l‘,q),-xj (k=1,2,3,4)
between each expert ty, and F€'¢ could be obtained as:

0752 1 0935 1 1
po_| 076 1 1 1 095
=1 0997 1 0773 1 1
084 1 1 1 1
0915 1 1 1 1
p_ 1 1 1 078 0935
271 0753 1 089 1 1
1 1 1 1 0798
11 1 1 1
P 1 1 0331 0902 0935
3T 0416 1 1 1 1
0354 1 1 1
0915 1 1 1 1
P 1 1 0669 0902 0.419
4= 1 0854 1 1 0.75
0.854 1 1 1 0902

(b) Identify the assessments of experts to be changed:

A. Determine the position (p,q): since cpy3 = min(cp;j) = 0.5
wherei€{1,2,...,m}, j€{1,2,...,n}, we know the assess-
ment on xy with respect to e3 should be changed.

B. Determine the expert to adjust ssessments:

By Eq.(14), we obtain py3 = 0.75. Since p%3 =0.331 < Py3,
p§3 = 0.669 < Py3, t3 and t4 should modify assessments on
X with respect to e3.

(¢) Determine the change direction.

In this phase, € = 0.1 is the margin of acceptability, and:

o Mag(u3;) — Mag(iix3) = 0 —0.669 < —¢, then t3 should in-
crease assessment on x, with respect to e3.

o Mag(uty) — Mag(iiaz) = 1 — 0.669 > &, then t4 should de-
crease assessment on xy with respect to es.

(d) Suppose that expert t3 increase assessment to “between s3 and sg”,
and expert ty decrease assessment to “s4”, the new consensus de-
gree is computed as 0.888 which has still not reach the threshold
0.90, turn to second round.
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5) Consensus reaching.

In the second round, expert t3 is suggested to decrease his/her as-
sessment on x4 with respective to ej. Suppose that t3 decreases this
assessment to “between s3 and s4”, then the new group consensus
degree becomes 0.903 > u, the CRP ends.

Step 4. The adjusted assessments provided by experts after CRP form HLE soft
sets (F'" E), (F'S E), ..., (F/;le,E). Now the new Oy —related col-
lective HLE soft set (F" cle g ) is computed from them, and its correspond-
ing HLE soft matrix is denoted by F’Cle (see Eq. (28)).

between s4 and s5 at least s5 52 at most s4 between s; and 54
I;,r-m _ between s4 and ss  between s3 and s between s3 and s¢ at least sy 56
- between s3 and 54 at most s3 at most s3 at least s5 K
between s, and s3 at least s5 at most s3 between s, and s4 at least s4
(28)

Step 5. Based on (F''¢ E), we obtain the scores of alternatives as
S1 =—0.726, S, = 5.746, S3 = —4.380, S4 = —0.635.
Step 6. The final decision is alternative x;.

6. Comparative study

From our knowledge, there is only one exiting algorithm (Algorithm 1 in
Sun et al. (2017), denoted by Sun et al.’s algorithm) proposed for dealing with
linguistic GDM problems under the framework of soft set theory, that is based on
the introduction of a model called linguistic value soft set. A HLE soft set will
degenerate to a linguistic value soft set when all CLEs in it degenerate to LTs.
Therefore, Algorithm 2 based on HLE soft set is also able to deal with situations
in which experts’ assessments are LTs. To carry out a comparison study between
Algorithm 2 and Sun et al.’s algorithm, in this section, we will present a linguistic
GDM problem in which experts’ assessments are LTs, and afterwards deal with
the problem by using Algorithm 2 and Sun et al.’s algorithm separately. Based
on different decision results obtained from these two approaches, we will show
the advantage of our proposal.

6.1. Decision making problem
Suppose that experts G = {t1,1,13,t4} provide assessments on alternatives
U = {x1,x2,x3,%4 } by using LTs in a linguistic term set S = {s, sy, ..., g} in or-

der to determine the best one. The parameters considered are E = {ey,ez,...,es5}
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and the information provided by experts form four linguistic value soft sets (see
Eqgs. (29)-(32) as corresponding linguistic value soft matrices 2,

S¢ S5 S4 S0 S8
S N S ) S
FIL — 8 1 2 55 82 (29)
s3 S8 S2 S0 82
S2 S8 S§3 S1 83

S5 S5 S4 S0 S8
S N S S N
FQL — 8 1 2 50 1 (30)
S5 S8 S22 S0 $2
S2 S8 S§3 81 84

S¢ S8 S4 S0 81
S, N S S N
F3L — 8 1 2 50 51 3D
sg S§ S§2 S0 §2
$2 S§ S§3 S1 84

Sg§ S¢ S4 So S8
S S S S N
F4L — 8 96 52 S0 I1 (32)
§3 S§ S§2 S0 $2
$2 S§ S§3 S1 S4

6.2. Deal with the problem by using Sun et al.’s algorithm in Sun et al. (2017).

The linguistic term set S used in Sun et al. (2017) is symmetric about a middle
term s, however to facilitate comparison here we make tiny adjustments by setting the
middle term as s4 and smallest term as sp, the adjustments will not cause perturbation to
the application.

Denote the parameter set considered by expert ¢; by t£, since the parameters con-
sidered by all experts are the same, the choice value matrices (see Def. 11 in Sun et al.
(2017)), C(t (k=1,2,3,4), are always

E Gl E
N L]

2The definition of linguistic value soft metric is provided in Sun et al. (2017).
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IR
11111
c, =l
W) T
11111

Transformations —1 £ sy and 1 £ sg will be adopted to handle the choice value
matrix to perform the product operation (see Def. 12 in Sun et al. (2017)) with linguistic
value soft sets. For each expert # (k= 1,2,3,4), the product operation result could be
achieved as

s§ S3 S35y S8
§§ Sg Sg Sg 58

: G| 7 =
(il atf) s3 S3 Sg S3 S8
S§ S3 S35y S8

PE=FtecC

Meanwhile, the weights of the four experts can be easily computed as the same, that
is, W = (w1, w2, w3, wa) = (0.25,0.25,0.25,0.25) (see Def. 13 in Sun et al. (2017)), then
the result of the weighted sum is

G 58 s§ S8 S8 58
G|

S S S, S S

PL — Z WkP]f _ 8 8 8 8 8

=1 expertsg Sg Sg S§ S8

58 sg§ S8 S8 58

According to Sun et al’s algorithm the decision will be made based on PL. However,
it can be observed that the aggregated result P* is far from the evaluations of each expert.
For instance, assessment on x; with respect to e3 provided by every expert is always s7,
whereas the aggregation result in P* is s, which is far from assessment of the majority.
Here, we can not make any decision from P since the ranking function (see Def. 14 in
Sun et al. (2017)) for all alternatives are the same, that is, Rps(x;) = ss, i = 1,2,3,4.

6.3. Deal with the problem by using Algorithm 2.

Here we adopt the same weighting vector used in Example 5 to carry out the ag-
gregation of HLE soft sets. The GDM process is similar to Example 5, so only a brief
description will be provided here:

The initial consensus degree among experts is 0.891. During the consensus process,
in the first round #; will be suggested to increase the assessment on alternative x; with
respect to parameter es. At this moment, the group assessment on x; with respect to es
is s¢, whereas the assessment of 74 is s;. Suppose that 4 increases it from s; to s¢, the
new consensus degree reaches 0.912.
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After the CRP, the HLE soft matrix F’¢'¢ corresponds to Oy —collective HLE soft set
(F rele | ) is obtained as Eq. (33), from which the scores of alternatives are S; = 3.826,
S = —4.699, S5 = —2.684, S4 = 3.557. Obviously the optimal alternative is x;.

Se¢ S5 S4 S0 Se
s§ ST S22 S0 S
$3 8§ S§2 S0 §2
S2 S§ S§3 S1 S4

F/C]C — (33)

6.4. Comparison analysis

Based on the decision result obtained from Algorithm 2 and Sun et al.’s algorithm,
now we present a comparison analysis between them.

1. It is shown by the above example that there exist GDM problems which can not
be handled by Sun et al’ algorithm, however can be solved by Algorithm 2.

2. Sun et al’s algorithm is proposed based on linguistic value soft set, while Algo-
rithm 2 is based on HLE soft set. It is determined by the models that Sun et
al’s algorithm can only be applied when experts’ assessments are LTs, whereas
Algorithm 2 can be applied when assessments could be both CLEs and LTs.

3. Although the concept of consensus has been mentioned in Sun et al. (2017), ex-
perts’ assessments have not been adjusted to get closer to the majority to ensure
a group consensus in Sun et al” algorithm. In Algorithm 2, by introducing a con-
sensus model, the assessments provided by experts farthest from the majority has
been adjusted, the goal of consensus has been reached.

4. In the computation process of Sun et al’s algorithm, virtual terms have been ap-
plied (see example in Section 4.3 in Sun et al. (2017)), which are actually not
linguistic values (no syntax) (Rodriguez & Martinez (2013)), and don’t follow
the fuzzy linguistic approach. In the computation process of Algorithm 2, only
linguistic values have been applied with the help of their fuzzy representations.

Table 7 is provided to summarize the comparison. From comparison analysis we
conclude that Algorithm 2 goes beyond Sun et al’s algorithm.

Table 7: Comparison between Algorithm 2 and Sun et al’s algorithm

Method Model Assessments Consensus Decision result
Sun et al’ algorithm  Linguistic value soft set LTs No consensus ~ No result in some situations
Algorithm 2 HLE soft set CLE:s (contain LTs) Consensus Result obtained
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7. Conclusion

This paper introduces a new generalization of soft set called HLE soft set. It is an
extension of linguistic value soft set which overcomes its limitations in eliciting complex
linguistic information in hesitant DM settings. Based on HLE soft sets, we provide a
multi-criteria DM algorithm and afterwards a GDM algorithm. Remarkably, a novel
consensus model based on HLE soft set supports the GDM scheme. Through numerical
examples the effectiveness and feasibility of the proposed algorithms are shown.
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Appendix A: Adjustment for the approach for computing fuzzy envelops of
HFLTSs corresponds to CLEs in HLE soft sets

In HLE soft sets, suppose that CLEs are built from a linguistic term set S={so,s1,...,5},
where 59 = “none” and s, = “absolute” and g+ 1 is the granularity. LTs s, € S are
defined by trapezoidal (triangular) membership functions A* = T'(a¥, ak,, ak,, k), k =
0,1,...,g. The semantic for LT none is defined as T(0,0,0,0) and LT absolute is de-
finedas T(1,1,1,1).

When LTs “none” and “absolute’ are considered, for CLEs built from S, scheme
for computing their fuzzy envelopes in Liu & Rodriguez (2014) could be adjusted as
follows:

1. Fuzzy envelope for CLE “at least s;”.

(1) If 51 <'5; < 51, the fuzzy envelope for “at least s;” could be computed as
following.
i. Obtain the elements to aggregate.
Assume that LTs in S are defined as a triangular membership functions,
the set of elements to aggregate is

i i il i il 2 it g g1 g g
Tf{alLﬂl;\/l’aL 7a;€7aM sy, A .., dp,dp ’anaR}v
From fuzzy partitions in Ruspini (1969) it can be simplified as

— {4 4 git! g—1 g-1
T_{alaaj\/ha;l/[ oGy AR }

ii. Compute the parameters of the trapezoidal fuzzy membership function.
A trapezoidal fuzzy membership function Fy, = T'(a,b,c,d) is used as
the envelope of HFLT' S, Hs, transformed from “at least s;”, where a and
d can be easily computed by the min and max operators, i.e.,
a=min{d ,d,,....a5 " a5} = di,
d= max{aiL,a;.‘,,,A..,aﬁ,fl,ggl = aiﬁl,
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at the same time, b and ¢ are obtained by aggregating the remaining

elements aj'w,a};l Yoo ,a‘}f[l with OWA operators, i.e.,
b= OWAy:(dyy,dit',....a5 "), (15)
¢ = OWAy2(dy,di! ... a8 ") (16)

where W2 will be given in iii.

iii. Obtain the OWA weights.
The OWA weights in Fileva & Yagerb (1998) will be adopted in the
current research to reflect importance of different LTs.

b and c are computed by W? with n =g —i,i.e. W2 = (w},w3,... ,wf,f,-),
where

wi=o T hwi=(l-a)es L wi=(l-a)at 3w, =
(I-a)a,wl =1-a.

c is computed by W2 with o = 1, s0 ¢ = ast.

iv. Obtain the fuzzy envelope.
For the HFLTS, Hs, from the CLE “at least s;”, its fuzzy envelope Fy; is
defined as a TEN T'(,, b,a%; ' ,a% "), where b is computed by Eq. (15).
Remark 1 An approach to determine o for computing b:
Let us consider the value of o to compute b, it should support the properties:
(@0=al <dy,<b<d'=1;
(b) For a fixed s; in “at least s;”, if oo — 0, then b — aj,, if @ > 0, then b > aj,,
ifa— l,thenb—>a§]l;
(c) If s; — 51, then « — O and b — al, = 0;
(d) If s5; — s4—1, then ¢ — 1 andb—>a§,;1 =1.
The value o increases from 0 to 1 as s; increases from sq to s,_1. That is, o
depends on the index of s;. To compute «, a linear function is defined as
N (l) = ﬁi+r, st a=fi (i),
which satisfies the boundary conditions
fil)=0, filg—1 =1
the form of f} can be obtained as:
fil) = Hie,a=1=
(2) If s5; = sp, consider that 5o can be regarded as an inside term of s;, the fuzzy
envelop for the CLE “at least s¢” is the same as the fuzzy envelope for the
CLE “at least s;” which can be computed by steps in (1) with the values of
o= ’%12 by Remark 1.
(3) If 5; = s, the fuzzy envelop for the CLE “at least s,” will be T'(1,1,1,1).
2. Fuzzy envelope for the CLE “at most s;”.
When “none” and “absolute” are taken into consideration, the steps to achieve
the fuzzy envelope for the CLE “at most s;” in Liu & Rodriguez (2014) should be
adjusted as below:
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(¢))

(@)
3

If 51 < 's; <541, the steps for computing the fuzzy envelope of CLE “at most
s;” in Liu & Rodriguez (2014) should be adjusted as follows.
i. Obtain the elements to aggregate.
The set of elements to aggregate is

_ 10 0 1 0 1 2 1 i—1 i i
T ={ay,ay,a;,ap,ay,a;,ag, .- aLvaR NOYRY)
which can be simplified as

ol 12 i
T_{aLaanan"'vanaR}

ii. Compute the parameters of the trapezoidal fuzzy membership function.
A TEN Fy, =T (a,b,c,d) is used as the envelope of HFLT'S, Hs, trans-
formed from the CLE “at most s;”, where a and d can be computed as

il 12 iy ]
a=min{ay,ay,ay,...,dy,dp} =aj,
— 1.1 2 Py i
d = max{aj,ay;,ay;, ..., dy,ax} = a, '
b and c are obtained by aggregating the remaining elements a}w, ab, oAy

with OWA operators, i.e.,

b= OWAy: (ajy, ay, - diy), a7

c=OWAy1(al,d%,....dy) (18)

where W! will be defined in iii.
iii. Obtain the OWA weights.
The weights used to compute b and c are in form of W! withn =i, i.e.

Wl (whwh,...,w}), where
wi=a, wl=a(l-a), wi=a(l-a)? ..., w, =a(l —a)?2
wh=(1-a)~"

The weights W' used to compute b is with & = 0, so b = a}w.
iv. Obtain the fuzzy envelope.
For the HFLT'S, Hy, from the CLE “at least s,”, its fuzzy envelope Fy; is
defined as a TFN T (a},al;, c,ak), where ¢ is computed using Eq. (18).
Remark 2 An approach to determine o for computing c:
Let us consider the value of a to compute c, it should support the properties:

(a)O—aM<c<a <a —1;
(b) For a fixed s;, 1fOC—>O thenc—‘ra}w, if o > 0, thenc>a}\,,, if o« — 1,
then ¢ — aj,.

(c) I 5; — s1, then & — 0 and ¢ — a}, = 0.

(d)If 5; — sg_ 1, then o — T and ¢ — af; ' = 1.

The value of « increases from O to 1 as s, increases from sy to s,_1, it can be
computed in a similar way as “at least s;”, i.e., & = —12

If 5; = s0, the fuzzy envelope for the CLE “at most so” will be 7'(0,0,0,0).

If 5; = 54, consider that s, can be regarded as an inside term of s,_1, the fuzzy
envelope for “at most s, is the same as the fuzzy envelope for “at most sg_1”

which can be computed by steps in (1) with o = :=1 by Remark 2.
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3. Fuzzy envelope for the CLE “between s; and s,”.

(1) If sy <5; <s; < 541, the approach of computing the fuzzy envelope for the
CLE “between s; and s;” should follow steps in Liu & Rodriguez (2014).
A TEN Fyg =T(a,b,c,d) is used as the envelope of HFLT'S, Hs, transformed
from the CLE “between s; and s;”, where a and d can be easily computed by
the min and max operators, b and c are obtained by seperatly aggregating
some of the remaining elements a},,aif!,...,aj, with OWA operators. b is
computed with weight W2 which is related to a parameter o and ¢ is com-
puted with weight W' which is related to a parameter ¢,. Please see more
details in Liu & Rodriguez (2014).
However, the approach for computing o; and @, should be adjusted as fol-
lows:
Remark 3 Let us consider the value of o and 0, to compute ¢ and b. The
method for computing values a; and o5 in the weights W2 and W' has to be
adjusted consider the following two extreme cases:
(a) if j—i =1, in this case there is no necessary to aggregate, &; should be set
as 1 so that this assumption will not affect the result, since b = oy x @i, = al,.
(b) if s; — sy and 5; — 5,1, we have j—i— g—2and oy — 0.
Thus, there exists a function f> : [1,g —2) — (0,1], so that a; = fo(j — i),
which satisfies boundary conditions f>(1) =1 and f2(g—2) =0.
Here f, is also assumed as a linear function, i.e. f2(j—1i)=B(—i)+7,
where f3, ¥ are unknown parameters.

f» canbe obtained as: f>(j—1i) = giz};#, where i = index(s;), j = index(s;),

and g+ 1 is the granularity of S = {so,...,5,}.

Therefore, ; is defined by a; = %@, andop=1—04 = %

(2) If 5; = 59, consider that sp can be regarded as an inside term of s, the fuzzy
envelop for the CLE “between sg and s;” is the same as the fuzzy envelope for
the CLE “between s1 and s;” which can be computed by the approach in Liu &
Rodriguez (2014) with the values of o and o computed as in Remark 3.

(3) If s; = s¢, consider that s, can be regarded as an inside term of s, 1, the fuzzy
envelop for the CLE “between s; and s,” is the same as the fuzzy envelope for
the CLE “between s; and s, which can be computed by the approach in Liu &
Rodriguez (2014) with the values of ¢ and ; chosen as in Remark 3.

Appendix B: An approach for ranking trapezoidal fuzzy numbers.

A ranking approach of TFNs based on magnitude in Abbasbandy & Hajjari (2009)
will be briefly recalled here.

Firstly, we recall the parametric form of fuzzy numbers presented in Ma et al. (1999)
which was considered in Abbasbandy & Hajjari (2009):
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Definition 19. (Ma et al. (1999)) A fuzzy number u in parametric form is a pair (u, i) of
Sfunctions u(r), u(r), 0 < r < 1, which satisfies the following requirements:
1. u(r) is a bounded monotonic increasing left continuous function,
2. u(r) is a bounded monotonic decreasing right continuous function,
3ou(r)<u(r),0<r<il.

The trapezoidal fuzzy number u = (xo,y0, &, ) (Fig. 3), with two defuzzifiers xo, yo,
and left fuzziness o > 0 and right fuzziness 8 > 0 is a fuzzy set where the membership
function is
(x—xo+0a), xo—a<x<xy

1
o
17 E b
ulx) =14 | * € o, 30] (19)
ao—x+B), y<x<y+pB
0, otherwise,

and its parametric form is u(r) = xo — a+ ar, u(r) = yo+ B — Br. uis a triangular fuzzy
number which can be written as u = (xo, o, ) if it is provided that xo = yo.

Figure 3: Trapezoidal fuzzy number u = (xo,yo, @, ).

Based on the parametric form of FNs, a measure called magnitudes of TFNs was
introduced in Abbasbandy & Hajjari (2009) for the purpose of ranking TFNs:

For an arbitrary trapezoidal fuzzy number u = (xo,yo, @, ), with parametric form
u = (u(r),u(r)), the magnitude of the trapezoidal fuzzy number is defined as

T

where the function f(r) is a non-negative and increasing function on [0, 1] with f(0) =
0, /(1) =1 and fol f(r)dr = 1. Function f(r) can be chosen according to the actual
situation. In this paper we use f(r) = r, following the way in Abbasbandy & Hajjari
(2009).

The rule for ranking TFNs is the larger Mag(u), the larger the fuzzy number, for-
malized as: for any two trapezoidal fuzzy numbers u and v, their ranking is determined
by:

o)+ 700) + 30+ 0) (1)) (20)

o u=<viff Mag(u) < Mag(v),
37
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o u > viff Mag(u) > Mag(v),
o u~viff Mag(u) = Mag(v),

then the order u < v, u > v can be formulated as
e u=viffu<voru~v,

e u>viffu-voru~v.
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Type-2 fuzzy envelope of hesitant fuzzy linguistic
term set: a new representation model of
comparative linguistic expressions

Yaya Liu, Rosa M. Rodriguez, Hani Hagras, Hongbin Liu, Keyun Qin*, and Luis Martinez

Abstract—The use of hesitant fuzzy linguistic term sets con-
tributes to the elicitation of comparative linguistic expressions
in decision contexts when experts hesitate among different
linguistic terms to provide their assessments. Since the existing
representation models for linguistic expressions based on hesitant
fuzzy linguistic term sets do not consider properly the uncertainty
caused by the inherent vag of such linguistic expressi
it is necessary to improve their modeling to cope with such
vagueness. In this paper, we propose a new fuzzy envelope for
the hesitant fuzzy linguistic term sets in form of type-2 fuzzy
sets for representing comparative linguistic expressions. Such an
envelope overcomes the limitation of existing representations in
coping with inherent uncertainties and facilitates the processes
of computing with words for linguistic decision making problems
dealing with comparative linguistic expressions.

Index Terms—Hesitant fuzzy linguistic term sets, Type-2 fuzzy
sets, Envelope, Comparative linguistic expressions.

I. INTRODUCTION

N many real world decision making situations the use of

linguistic information is appropriate due to the qualitative
aspects of the problem [26]. The application of linguistic
information usually implies to carry out computing with words
(CW) processes, which is defined as a methodology for
reasoning, computing and decision making using linguistic
information [24]. CW in decision making will enhance the
reliability and flexibility of classical decision models, since it
does not only makes the reasoning processes related to the
decision making closer to human cognition, but also improves
the resolution of decision making under uncertainty with
linguistic information [15].
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One common approach that has provided successful and
reliable results in linguistic decision making is the fuzzy
linguistic approach [39], taking advantage of the fact that
it represents the qualitative terms by means of linguistic
variables rather than numerical values. The fuzzy linguistic
approach [18], [39] facilitates the modeling of linguistic in-
formation to capture inherent language uncertainties. However,
usually the use of the fuzzy linguistic approach is restricted
to the elicitation of single and simple terms to express the
information provided by the experts, which may not reflect
exactly the expert’s real assessment in a linguistic context with
a high level of uncertainty, in which experts hesitate among
multiple terms.

To overcome this limitation, several linguistic approaches
have been introduced to elicit more elaborated linguistic
expressions than single linguistic terms [25], including the
proportional 2-tuple model that adopts the proportion of two
consecutive linguistic terms [35], the linguistic model that
merges different single linguistic terms into a new synthesized
term [13], and the linguistic model built by logical connectives
and fuzzy relations that measure the similarity between any
two linguistic terms [33]. Although these proposals provide
greater flexibility to elicit linguistic expressions in hesitant
decision situations, it is noticed that the expressions generated
by them are either far from common language used by experts
in decision problems or lack of systematic formalization.

Recently, Rodriguez et al. introduced the concept of Hesi-
tant Fuzzy Linguistic Term Set (H F'LT'S) [27], its application
to CW processes improves previous approaches by eliciting
comparative linguistic expressions (CLEs) that are closer to
human beings’ cognition based on context-free grammars,
which formalize the generation of flexible linguistic expres-
sions.

In CW the statement “words mean different things for the
different people” has been studied and managed from different
views such as the use of multi-granularity linguistic term sets
in order to deal with multiple sources of linguistic information
[7]1, [10], and the linguistic model based on type-2 fuzzy sets
representation that represents the semantics of linguistic terms
as type-2 membership functions [17], [34], [40].

Similarly, CLEs also mean different things to different
people, fuzzy models can be used to capture the uncertainties
of such expressions. For CW dealing with CLEs represented
as HFLTSs, it is necessary to explore suitable fuzzy repre-
sentations for H F'LT Ss. So far, two different representation
models of HFLTS have been developed to facilitate CW
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processes. In [27], [28] the computational linguistic model
cooperates with the envelope of HFLTS which is repre-
sented as linguistic intervals and the process of CW is finally
accomplished with the help of a symbolic model, losing
information. However, in [12] a fuzzy envelope for HF LTS
has been introduced whose representation is a type-1 fuzzy
membership function obtained through the aggregation of the
fuzzy membership functions of the linguistic terms contained
in the HFLTS. Both envelopes for HFLTS fail to reflect
and deal with the fact that linguistic expressions mean different
things for different people, therefore the semantics of CLEs
generated by the context-free grammar and based on HF LTS
should be improved to overcome such a limitation.

Following the idea of type-2 fuzzy sets in CW with linguis-
tic terms, in this paper we adopt interval type-2 fuzzy sets for
representing the meaning of CLEs based on HF LT'S's, by us-
ing the entropy of HF LTS [38] to compute the uncertainties
contained in such expressions. Such a proposal offers a new
way of providing a wide and adaptive vocabulary for decision
making problems dealing with linguistic information.

The remainder of the paper is structured as follows: Section
2 reviews the type-2 fuzzy set theory, the CLEs based on
HFLTSs and several related concepts. Section 3 proposes a
type-2 fuzzy envelope for CLEs based on HF LT'S's. Section
4 presents examples of the type-2 fuzzy envelope. In Section
5, a comparison between type-1 and type-2 fuzzy envelopes of
HFLTSSs in decision making is provided. And finally, Section
6 provides several conclusions and future work.

II. PRELIMINARIES

This section reviews some basis concepts of type-2 fuzzy
sets (T2 FS), interval type-2 fuzzy sets (IT2 FS), the elicitation
of CLEs based on H F'LT'S with its type-1 fuzzy envelope and
the entropy measure of HF LTS that will be used to obtain
the type-2 fuzzy envelope.

A. Type-2 fuzzy sets and interval type-2 fuzzy sets

Some basic concepts on T2 FS and IT2 FS are reviewed
in this subsection. The background materials are mainly taken
from [16], [19], [21], [22], adapted to the recommendations
in [23].

A T2 FS, initiated by Zadeh [39] as an extension of an
ordinary fuzzy set (type-1 fuzzy set), is denoted by A and
characterized by a type-2 membership function y ;(z, w) [20],
[21], where x € X and

A:{((x,u),ug(x,u))\xeX,ue [0’1]} (N

in which 0 < pz(z,u)) <1.
If all po5(x,u) =1, the T2 FS A turns to an IT2 FS ( see
Fig. 1), it is characterized as

A:/IEX /ue‘,u_ 1/(%“9:/@([/”% 1ulfz, J, C[0,1]

(@)

where z, the primary variable, has domain X; u € U, the
secondary variable, has domain J, at each =z € X; J, is
called the primary membership of x and is defined in Eq. (6).

u

1 4 az(z)
Aa(z)
> v
wy(x)
° FOU(A)

Fig. 1. FOU (shaded), LMF (dashed) and UMF (solid) for IT2 FS A

Note that Eq. (2) means: A:X = {la,b] : 0 <a<b<
1}. Uncertainty about IT2 FS A is conveyed by a bounded
region called the footprint of uncertainty (F’'OU), that is the
aggregation of all primary memberships, i.e.,

FOU(A) = {(z,u) :u € J, C[0,1]} 3)

The upper membership function (UMF) of A, denoted by
Ii(r), Vo € X, and lower membership function (LMF) of
A, denoted by p;(z), Vo € X, are two type-1 membership
functions that bound the F'OU, i.e.

fi(x) = sup{ulu € [0,1],pz(x,u) >0}, VzeX @
p(2) = influlu € [0,1], pi(z,u) >0}, YreX (5
Note that .J, is an interval set, i.e.

Jo={(z,u) 1 u € [p4(z), ma(x)]} (6)

FOU(A) in Eq. (3) can also be expressed as
FOU(A) = {(z,u):x € X,u € ;@) 5@} (D
An IT2 FS A can also be represented as

A=1/FOU(A) ®)

with the understanding that this means putting a secondary
grade of 1 at all points of FOU(A).

Recently, the relationship between interval-valued fuzzy sets
(IVFS) [30] and IT2 FS have been discussed in [20], [32]. It
is pointed out that the phrase “IT2 FS” is a more general term
than the phrase “IVFS” and includes IVFS as a special case
[32]. The operations, methods, and systems that have been
developed and published about IT2 FSs are, so far, only valid
in the special case when IT2 FS = IVES [20]. Actually when
J,;, is defined as Eq. (6), the IT2 FS should be called a CIT2 FS
!, Since every CIT2 FS is an IVFS [23], the proposed envelope
in form of IT2 FS calculated by Eqgs. (7) and (8) will not lead
to ambiguous operations in future applications. Besides, in this
paper when phrase “IT2 FS” is used it means CIT2 FS. At
this moment, the use of FOU (A) is unambiguous, as well as
Egs. (6) and (7) [23].

'An IT2 FS should be called a closed IT2 FS (CIT2 FS) if {u €
[0, 1]|p 5 (z,u) = 1} is a closed interval for every = € X [23].
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B. Type-1 fuzzy envelope of HF LTS

Recently, several proposals have been provided using lin-
guistic expressions richer than a single linguistic term [13],
[33], [35], they are not close to common language of human
being or lack of defined formalization to generate the linguistic
expressions. A new linguistic model was provided in [27] that
overcomes this limitation by using HF LTS and the context-
free grammars which provide a formal way to generate CLEs.

Definition 1. [27] Let S = {sq, ..., 54} be a linguistic term
set. A HFLTS, Hg , is an ordered finite subset of the
consecutive linguistic terms of S.

To generate simple but rich linguistic expressions suitable
to provide preferences in decision making problems modeled
by means of HF LTS, a context-free grammar [2] Gy was
defined in [28]. Usually the CLEs generated by the context-
free grammar G gy are hard to be directly used in the processes
of CW, to tackle this issue a transformation function E¢,, was
defined in [27], which can transform CLEs into HFLTSs.

The concept of envelope for HF LTS was firstly provided
in form of linguistic intervals [27]. Nevertheless, the models
based on linguistic intervals loss the initial fuzzy represen-
tation for linguistic information. A type-1 fuzzy envelope of
HFLTS has been proposed to overcome this limitation [12].
Here we make a brief review on the steps to achieve the type-1
fuzzy envelope.

1. Obtain the elements to aggregate. Assume that every lin-
guistic term can be defined by a triangular membership
function, the set of elements to aggregate is
T= {”'iLv ”’3&17 ”‘iLJrlv U‘Zév “é\}lv ”‘iLJr2 o "’%v a’g;lv ”’?\47 af, }

It follows the fuzzy partitions [29] that a% * = ak, = a} !
(k=1,2,...,g — 1), hence the elements to aggregate can
be simplified as
T= {at}ﬂ a11.w~, aé\}—lv t 7‘1'5]»% a;]?}

2. Compute the parameters of the trapezoidal fuzzy member-
ship function. A trapezoidal fuzzy membership function
Fy, = T(a,b,c,d) is used as the type-1 fuzzy set
representation of a CLE using HF LTS Hg as a media,
where a and d can be easily computed by the min and
max operators, i.e.,

Y B IE | R R
ufnmL{aL,dM,a%l,...,aM,ali}7aL’
= gt v S R |
d_max{a’;ﬂal]\xﬁa]u a---yaM,aR}—aR,

b and c are obtained by aggregating the remaining elements

aig,aitt . d, wiTlOWA operators, i.e.,
— i 0 J
b= OWAwu(tzM,(zAil, .. .,a,éu),
K 7
d=OWAw:(dy;,ayr ..., ahy),

with s,t =1,2,s #t or s =t.

3. Obtain the OW A weights. Different importance degrees
of linguistic terms are reflected by means of the OW A
weights, which can be computed as follows:

Definition 2. [8] Let o € [0,1], the first type of OW A
weights W1 = (wi,wi, ..., wl) is defined as

wi=a wi=al-a), wi=a(l-a) ..., wi | =
a(l —a)" 2wl =1 —a)";

the second type of OWA weights W2 = (w?, w3, ..., w2)
is defined as

n—2

wi=a"L wi=(1-a)" % wi=(1-a)" 3 ...,

w: i =(1-a)a wl=1-a

4. Obtain the type-1 fuzzy envelope. Let Hg be a HF LTS,
its type-1 fuzzy envelope Fp, can be defined as the
trapezoidal fuzzy membership function 7'(a,b,c,d), ie.,
Fy, = T(a,b,c,d), where parameters a, b, ¢, d are
computed using the previous steps. The type-1 fuzzy mem-
bership function in accordance with Fp  is denoted by
Frg(z), z € X.

C. Entropy for HF LTS

Recently, Wei et al. [38] studied the entropy measures
for extended hesitant fuzzy linguistic term set (EHFLTS)
considering not only the fuzziness, but also the hesitation of
the EHFLTS. HFLTS is a special case of EHFLTS.
Taking into account that HF'LTS is the only tool that will
be applied in the current work, we will deduce the entropy
measures of EHFLTS in [38] into HFLTS cases in the
following review.

Definition 3. [38] Let S = {so,51,...,84} be a linguistic
term set, Hg = {Sa,, Say, -+ 5, } be a HFLTS on S. The
deviation function of a HF LTS Hg is defined as:

-1 1
WHs) = gy 0 3 Ulsa) = I(s)) 9)

i=1 j—it1
where I(sq,,) is the index of the linguistic term s,,,.

Definition 4. [38] Let Hs = {Say,Sass--->Sa,} be a
HFLTS on the linguistic term set S = {so,1,...,54}, and
H(S) be the set of all the HFLTSs on S. Let Es, By, E. :
H(S) — [0, 1] be three mappings, if they satisfy the following
axiomatic requirements:

(F1) E¢(Hs) = 0 if and only if Hs = {so}, Hs = {s4},
Hs = {s0,5, 1

(F'2) Ef(Hs) =1 if and only if Hg = {sa };

(F3) Let H: = {SaysSans -8, } be a HFLTS, and H3
be another HF LTS given by changing any element s, (i =
1,2,...,1) in H§ t0 sor. If [[(50,) — 4| > |I(sar) — §|, then
By (HY) < By (H2);

(F4) Ey(Hs) = Ey(Neg(Hg)), where Neg(Hg) is the
negation operator of Hg,

and

(H1) En(Hs) =0, if and only if Hs = {sq, } (no hesitancy);
(H2) En(Hs) = 1, if and only if Hg = {so,51,...,54}
(whole hesitancy);

(H3) En(Hg) < En(H3), if n(Hg) < n(H3);

(H4) En(Hs) = Ep(Neg(Hs)), where Neg(Hg) is the
negation operator of Hg,

and

(E1) Ec(Hs) =0 if and only if Hg = {so}, Hs = {s4},
(E2) E.(Hs) =1if and only if Hs = {sg };

(E3) Let HY = {Say+Sas:---+5a;} be a HFLTS, and
HZ% be another HFLTS given by changing any element
Say(i=1,2,...,0) in H 10 sor. If |1 (50,)— 5| = [I(50:)— %
and y(HY) < n(H), then B.(HY) < E.(H2);

(E4) EC(HS) = Ec(Neg(HS))‘
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Then Ey, Ey, and E, are the fuzzy, hesitant and comprehensive
entropies of a HF LTS, respectively.

The axiomatic definition of comprehensive entropies is
actually based on the combination of fuzzy and hesitant
entropies, therefore it arises naturally that the specific calcu-
lation formulas for comprehensive entropies can be achieved
through the combination of calculation formulas of fuzzy and
hesitant entropies. It is noteworthy that a general formula to
construct the comprehensive entropies of HFLTS through
fuzzy entropies and the hesitant entropies have been provided
in [38], as well as a class of comprehensive entropies with a
parameter to control the importance degree of hesitancy when
the overall uncertainty need to be computed.

Theorem 1. [38] If a real valued function E. : H(S) —
[0,1] is defined by

E.(Hs) = f(Ef(Hs), En(Hs)) (10)

where the function f : [0,1] x [0,1] — [0, 1] sarisfies the
following conditions

2)f(z,y) is stricily monotone increasing with respect to x
and vy, respectively,
then E. is a comprehensive entropy measure of the HF LTS

Hs.
Define f : 0,1] — [0,1] as f(x,y) = 4%, B € [0,1].
Since f(z,y) satisfies the two conditions in Theorem 1, the
comprehensive entropy measure of a HF LTS, Hg, can be:
Ey(Hs) + BEn(Hs)
E.(Hg) = ——————7-"—- 11
C( S) 1+ﬁEh(HS) (11)
with 3 € [0, 1] that can be fixed according to the importance
of the hesitation of Hg. The smaller value of [ indicates that
the less hesitancy will be taken into consideration if the overall
uncertainty of Hg is evaluated by using Eq. (11), while § =0
indicates that only the fuzzy uncertainty will be considered.

III. TYPE-2 FUZZY ENVELOPE OF HF LTS

Linguistic expressions are inherently vague and uncertain,
i.e. linguistic expressions mean different things to different
people, so a qualified representation model of linguistic ex-
pressions must be able to incorporate these uncertainties. How-
ever, previous representations for CLEs based on HFLTS's
in form of linguistic intervals [12] and type-1 fuzzy set
[27] do not consider these uncertainties. To overcome this
limitation, we propose the use of a type-2 fuzzy membership
function as the representation, that is similar to the way in
which linguistic terms may be represented by type-2 fuzzy
membership functions.

One precondition to deal with the uncertainty contained
in HFLTS is the proper estimation of the uncertainty. The
current proposal is proposed based on noticing that the hesi-
tancy among linguistic terms more fuzzy will result in more
uncertainty. Here is an example to illustrate:

Example 1: Suppose that a company need to make a deci-
sion on purchase of a machine or not based on the assessment
of an expert on this machine, the linguistic term set S =

{super bad, very bad, bad, a little bad, a little good, good,
very good, super good}. If the expert provides the evalua-
tion result as Hg, = {super bad, very bad}, then the com-
pany intends to avoid this machine; if the estimation is
Hg, = {very good, super good}, then the company intends
to buy this machine. However, if the assessment is Hg, =
{a little bad, a little good}, the company may be much more
harder to make a decision on “buy it” or “not buy it”
considering the uncertainty on the general condition of the
machine.
Based on the above consideration, we obtain:

Lemma 1. The hesitancy among linguistic terms more fuzzy
will lead to more uncertainty compared with hesitancy among
linguistic terms less fuzzy.

Therefore, the hesitancy of different HFLT'Ss should be
treated differently when dealing with the overall uncertainty.
In this proposal, we will use the comprehensive entropies
[38] as Eq. (11) to consider two different types of uncertainty
contained in HF'LT'S, the hesitancy and the fuzzy uncertainty
for constructing the type-2 fuzzy envelope. Furthermore a
mechanism to determine the importance of hesitancy accord-
ing to the linguistic terms contained in HF LTS themselves
will be carried out to achieve the goal of different treatments
of hesitancy of different HFLTS's.

In the following subsections a general process to construct
the type-2 fuzzy envelope for H F'LT'S will be introduced and
afterwards its applications in different CLEs generated from
the context-free grammar will be discussed separately.

A. Type-2 fuzzy envelope of HFLTS: general process

Let Hs = {si,Sit1,...,5;} be a HFLTS, where s;, €
S = {so,...,8¢},k € {i,...,j}. A three-step process is
carried out to compute the type-2 fuzzy envelope of HF LTS
(see Fig. 2).

General process to obtain the type-2 fuzzy envelope

Type-1 fuzzy Estimate the Type-2 fuzzy
envelope uncertainty envelope

HFLTS

Fig. 2. General process to obtain the type-2 fuzzy envelope

1. Calculate the type-1 fuzzy envelope of HF LT'S. Accord-
ing to [12], reviewed in Section II.

2. Evaluate the uncertainty contained in H F'LT'S. Taking into
account both types of uncertainty contained in a HFLTS.
The fuzzy uncertainty determined by the deviation of the
linguistic terms contained in the HF'LT'S from the fuzziest
element, and the hesitancy related to the number of terms
in HFLTS and to the fuzziness of terms (see lemma 1).
Therefore, comprehensive entropies introduced in [38] can
be constructed by using fuzzy and hesitancy entropies,
which provide the advantage of controlling the importance
degree of hesitancy when evaluating the overall uncertainty.
We prefer to use this class of comprehensive entropies to
measure the uncertainty contained in the H F'LT'S's in order
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to perform different treatments for hesitations contained in
different HFLTSs by determining their importance de-
grees of hesitancy according to their specific characteristics
. Thus, the comprehensive entropy of a HF LTS, Hg, will
be calculated by

Ef(Hs) + B(Hs)En(Hs)
1+ B(Hs)En(Hs)

where Ef(Hg) and Ej(Hg) are the fuzzy and hesitant

entropy of Hg, respectively. The function 3(Hg) repre-

sents the importance/emphasis degree of hesitancy when
evaluating the overall uncertainty contained in Hg. From

Eq. (12), the larger 5(Hg), the greater the value of overall

uncertainty E.(Hg), because the more hesitancy is con-

sidered for computing the overall uncertainty in Hg. Two
main factors will be considered for determining the value
of B(Hg) according to Hg:

e The number of linguistic terms contained in the

HFLTS Hg;

o The positions of the terms in the HFLTS Hg.
Several principles to determine 3(Hg) are listed below:
Pl. B(Hg) =1if Hg = {s0,51,...,8¢}-

If all the linguistic terms are contained in Hg, the

hesitancy reaches the max, which calls for a highest

level of attention being focused on hesitancy.

P2. B(HS) =0if Hg = {Sl}, s; €.

If only one single linguistic term is contained in Hg,

the hesitancy reaches the min, which calls for a lowest

level of attention being focused on hesitancy. It is
noteworthy that if the value of 3(Hg) reaches 0, by

Eq. (12) the comprehensive entropy degenerates to the

fuzzy entropy of Hg.

P3. [H}| > |Hs| = B(H}) > B(Hs).

It reflects that the larger number of linguistic terms

contained in Hg the higher importance of hesitancy.

Keeping in mind that our goal is to evaluate the

uncertainty contained in a CLE represented by the

HFLTS Hg, the larger number of terms in Hg the

higher level of hesitancy of the CLE, as well as the

higher impact of hesitancy on the overall uncertainty,
which is implemented by a larger value of 3(Hg) when
the overall uncertainty is estimated as E.(Hg) with Eq.

(12).

P4. The change quantity of 3(Hg) should be positively
correlated to the fuzzy degree of the linguistic term
added in/deleted from Hg, i.e.,

e Add a linguistic term s, into Hg and then it turns
to Hg, add another linguistic term s, into Hg and
therefore it turns to HY. If Ef(sp) < Ef(sq), then
|8(Hg) — B(Hs)| < |B(Hg) — B(HE)l;

Delete a linguistic term s, from Hg and then it turns

to H g, delete another linguistic term s, from H. {5

and therefore it turns to Hg. If Ef(s,) < Ef(sq),

then |3(HY%) — B(Hs)| < |B(HY) — B(HE)!.

Lemma 1 can be implemented by controlling the

change quantity of 5(Hg) to be positively correlated to

the fuzzy degree of the linguistic term added in/deleted

E.(Hs) = 12)

from a given HF LTS, Hg. If a term is added into a
Hg, the value of §(Hg) should increase, positively
correlated to the fuzzy degree of the term added,
i.e., the larger fuzzy degree of the added term, the
more importance of hesitancy; on the other hand, if
a term is deleted from Hg, the decrease quantity of
B(Hg) should be positively correlated to the fuzzy
degree of the terms deleted from the HFLTS, i.e.,
the more fuzzy the deleted term, the less importance
of hesitancy.
P5. B(Hs) = B(Neg(Hs)).
According to the axiomatic definitions, (F'4) and (H4)
the fuzzy uncertainty and hesitancy contained in the
HFLTSs, Hs and Neg(Hg) are always the same.
Hence the importance of hesitancy should be the same
for E.(Hg) and E.(Neg(Hg)).
Our ultimate goal is to construct a suitable representation
for CLEs based on HFLTSs. For different CLEs gen-
erated from the context-free grammar which can be trans-
formed to Hg, 8(Hg) will be defined as different functions
with respect to variables closely related to the number and
positions of the terms in Hg. The functions for calculating
B(Hs) provided in this proposal will satisfy principles P1-
P5, and they will always be twice differentiable with respect
to the corresponding variables in order to be easily proved
satisfying principles P3 and P4.
3. Construct the type-2 fuzzy envelope for HFLT'S.
For a HFLTS Hg, its type-2 fuzzy envelope, denoted as
FHS, will be built based on its type-1 fuzzy envelope [12],
denoted as Frg. As an initial exploration of type-2 fuzzy
envelope for HF LTS, it will be defined as an IT2 FS for
simplification of calculation.
When the type-2 fuzzy envelope Fir, of Hg is constructed,
the type-1 fuzzy envelope Fy, will be used as the UMF,
and then the LMF of F‘HS determined by its UMF consid-
ering the uncertainty contained in Hg, which is measured
by the comprehensive entropy E.(Hs), i.e., the LMF of
F s can be presented as
EF,H‘(II?) =maz{0, Fu,(z) — E.(Hs)}, Vz € X.
An T2 FS can be uniquely determined by its FOU,
when the LMF and UMF are determined, the FOU is
uniquely determined, as well as the IT2 FS. By constructing
LMF and UMF using the above approach, the uncertainty
contained in Hg can be approximately reflected by the
width of the FOU, and envelope can be presented as an
IT2 FS Fy, = 1/FOU(Fy,) with

FOU(Fyg) = {(z,u) : © € X,u € [maz{0, Fy, ()
— Ec(Hs)}, Fus ()]}

B. Type-2 fuzzy envelope for HF LTS

Now the specific type-2 fuzzy envelopes for different CLEs
represented by HF LT Ss will be discussed. A mechanism to
make different treatments for hesitancy of different CLEs will
be provided by means of calculating the importance degrees of
hesitancy for different expressions using different functions.
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1) Type-2 fuzzy envelope for the CLE “at least s;”: This
expression is used by an expert when he/she hesitates among
different linguistic terms however is clear about the worst
assessment. By using the transformation function Eg,,, it is
easy to obtain a HF' LTS as

Eq, (at least s;)= {s;, Si41,...,5¢}

The type-2 fuzzy envelope is computed as:

1. Compute the type-1 fuzzy envelope for the HFLTS

tone decreasing function with respect to i € [0, 5],
which indicates that if the left-most linguistic terms in
E¢, (at least s;) are deleted one by one, the decrease
quantity of B(Eg, (at least s;)) increases when the
left-most linguistic term s; changes from so to sg
(if g is even), or changes from sy to Saz1 Gf g is

odd); meanwhile, from M > (0 when
i € [§,9] it is easy to obtain w is

Ec¢ , (at least s;).
a) Obtain the elements to aggregate:

O N 9 .9
T ={ap, ayp ayp -, a4y, 0}

b) Remaining steps refer to [12], and the constructed type-1
fuzzy envelope Fr, (at teast sy (), © € X is represented
as T(ab, b, a%, %)

2. Compute the uncertainty contained in Fg , (at least s;).

The uncertainty of HF LTS Eg,, (at least s;) is evaluated
by E.(Egq, (at least s;)) that is computed by Eq. (15). In
this case, both the number and the positions of linguistic
terms are closely related to the label of s;, ie., i. To
define B(Eq,, (at least s;)) as a unary function related to
independent variable ¢, it cannot be determined only by the
number of linguistic terms in E¢,, (at least s;), but also by
the fuzzy degree of linguistic terms added into/deleted from
Eg, (at least s;), associated with the positions of linguistic
terms contained in Fg¢ , (at least s;). S(Eq,, (at least s;))
is twice differentiable with respect to ¢ to facilitate the
discussion, while the first-order derivative and second-
order derivative are denoted by w

d* (B(Eg,, (at least s; .
LBEey (et 50)) | respectively.

In order to ensure principles P1-P4, 3(Eq,, (at least s;))
should fulfill the following properties:
i. B(Eg, (atleast s;)) =1if ¢ = 0.

If i — 0, ie., s; — s, we have |Eg,, (at least s;)| —
|Ec, (at least so)| = [{s0,s1,...,84} = g+ 1L
This property ensures that if all the linguistic terms
in S are contained in FEg, (at least s;), the im-
portance degree of hesitancy reaches the max, i.e.,
B(Eg, (at least s;)) = 1.

ii. B(Eg,(atleast s;)) =0if i =g.

If i g, ie., s; = sg, we have |Eq,, (at least s;)| —

|EGy (at least sy)| = [{sy}| = 1. This property en-

sures that if there is only one single term in .S contained

in Eg,, (at least s;), the importance degree of hesitancy

reaches the min, i.e., B(Eq, (at least s;)) = 0.

HPPFey Gl 50)) < ) when i € [0, g].

Since the number of linguistic terms contained in

Egq, (at least s;) decreases when 7 increases, the

monotone decreasing property of 3(E¢, (at least s;))

with respect to ¢ ensures that the value

B(Eq, (at least s;)) decreases when the number

of terms in E¢,, (at least s;) decreases.

7‘12([3(th(€“ lest s)) < 0 when i € [0,4], and

2
d (B(EGH(dt least s;))) >0 when i € [2,9]

,di?

e e o e ¢ € 0,1
d(B(Eg (at least s;)))
- a4

and

iii.

From

it is easy to obtain is a mono-

a monotone increasing function with respect to i €
[%, 9], which indicates that if the left-most linguistic
terms are deleted one by one from Fg , (at least s;),
the decrease quantity of 3(Eg,, (at least s;)) decreases
when the left-most linguistic term s; changes from
sg 10 54 (if g is even), or from 5441 to s, (if g is
odd) Considering the axiomatic definition of fuzzy
entropy for linguistic terms, the above properties of
M ensure that the change quantity
of ﬁ(EG . (at least s;)) is positively correlated to the
fuzzy degree of the linguistic terms being deleted from
E¢, (at least s;), in other words, the more fuzzy the
deleted term, the more 3(Eq,, (at least s;)) decreases.
Based on the above analysis, now we give an example
definition of B3(E¢, (at least s;)) as Eq. (13) (see Fig. 4),
which can be easily proved satisfying above properties i-iv.
The definition method is not unique, as long as it satisfies
principles P1-P5.
1 7 1.
B(Eqy (at least s;)) = acasgz + 50 €[0,g9]. (13)
3. Compute the type-2 fuzzy envelope for Eg,, (at least s;).
For the HFLTS, E¢,, (at least s;) obtained from the CLE
“at least s;”, its type-2 fuzzy envelope can be defined as
an IT2 FS -
FEGH(al least s;) — 1/F0U(FEGH(31 least sl)) with its foot-
print (see Fig. 3):

FOU(FEG"(M least s,)) = {(il’,’lt) e X,u€ [maw{O:
Fre, @ieast 5:)(2) — Ec(Eay (at least s;))},
Frg,, atteast 5) ()]}

2) Type-2 fuzzy envelope for the comparative linguistic
expression “ at most s;”: This expression is used by an
expert when he/she is clear about the best assessment however
still hesitates among different linguistic terms. By using the
transformation function F¢,,, the HF LTS is obtained as

EGH(at most s;)= {507 S1y..- ,Si}

The type-2 fuzzy envelope is computed as:

1. Compute the type-1 fuzzy envelope for the HFLTS

Eg,, (at most s;).

a) Obtain the elements to aggregate:

T = {ad,afs. ajp, -, ahy. a}

b) Remaining steps refer to [12], and the constructed type-1
fuzzy envelope FEGH(‘,[ most s;)(2), € X is represented
as T(a}, a}y, ¢, af).

2. Compute the uncertainty contained in Eg, (at most s;).

The uncertainty of HF' LTS Eg,, (at most s;) is evaluated

by E.(Egq, (at most s;)) and computed by Eq.(16). In
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a'L a'y a'g bady=a%y

FOU(FE(,.” (at least s:))

this case, both the number and the positions of linguistic
terms contained in Eg, (at most s;) are closely related
to the label of s;, ie., i, we define 3(E¢, (at most s;))
as a unary function related to independent variable q.
B(Eg, (at most s;)) is twice differentiable with respect
to i to facilitate the discussion, while the first-order
derivative and second—orgler derivative are denoted by
d(B(Egy (3; most s;))) and d (;S(hGHd(;\; most s;))) , respectively.
In order to ensure principles P1-P4, 3(E¢,, (at most s;))
should fulfill the following properties:
i. B(Eg, (at most s;)) =1if i = g.
If i — g, ie, s; — 54, then |Eg, (at most s;)| —
|Fay (at most sg)| = |{so,51,...,84} = g+ 1. It
ensures that if all the terms in S are contained in
E¢,, (at most s;), the importance degree of hesitancy
reaches the max, i.e., 3(Eg, (at most s;)) = 1.
ii. B(Eq, (at most s;)) =0 if i =0.
If ¢ — 0, ie, s; — so, then |Eg,, (at most s;)| —
|Eg,, (at most so)| = |{so}| = 1. This property en-
sures that if there is only one single term in .S contained
in Eg, (at most s;), the importance degree of hesi-
tancy reaches the min, i.e., 3(F¢, (at most s;)) = 0.
7[1(‘3(}56”(; most 54))) >0 when i € [0, g].
As ¢ increases, the number of terms in the HFLTS
increases. From the monotone of the first-order
derivative, it is easy to obtain that the value of
B(Egq, (at most s;)) increases when i increases, which
indicates that the value of 3(E¢, (at most s;)) in-
creases when the number of terms increases.
L(B(Eoy (at most s1))) > 0 when i € [0,4],

iv. T

W*Hm <0 when i€ [4,g]

From the negative and positive of the second-

order derivative, we obtain that the first-order
derivativew is a monotone increas-
ing function with respect to i € [0,%], which
ensures that if new linguistic terms are added to
Eg¢, (at most s;) from the right side, the increase
quantity of 8(Eq, (at most s;)) increases when the
right-most linguistic term changes from so to sg (if
g is even), or changes from sy to sy—1 (if g is
d(B(Eg y (at most s;))) 2

di

iii.

and

odd); meanwhile, . is a monotone
decreasing function with respect to i on domain [§, g],
which ensures that if new linguistic terms are added
to Eg,, (at most s;) from the right side, the increase

0 _.0 i i
a% =a®, c ay ay

FOU(FE(,." (at most 54))

FOU(I:“E(;" (botweon #¢ ad a5))

Fig. 3. FOU for type-2 fuzzy envelopes of Eg, (at least s;), Eq , (at most s;) and Eg, (between s; and s;)

quantity of 3(Eq, (at most s;)) decreases when the

right-most linguistic term changes from sg to s, (if

g is even), or changes from s,-1 to s, (if g is odd).
2

2 S (s s
The above properties of %‘W ensure

that the increase quantity of B(ESH (at most s;)) is
positively correlated to the fuzzy degree of the lin-
guistic term being added in Eg,, (at most s;), that is,
the more fuzzy the added linguistic term is, the more
B(E¢q, (at most s;)) increases.
Based on the above analysis, now we offer an example
definition of 3(E¢, (at most s;)) as Eq. (14) (see Fig. 4),
which can be easily proved satisfying above properties i-iv.
The definition method is not unique, as long as it satisfies
principles P1-P5.

1. 7 w1
B(Eq, (at most s;)) = —sin(—i——)+=,i € [0,g]. (14)
2 g 27 2
BE, ,,[alleasls‘)):;ws;;‘;,xe[u Pl 3(.‘:’,,,(armos(m):;nm(;‘—;]+;.:e\ny}
s )
0
os
o7
o
0s
02
)
10 2 % ) 0 g 0 10 2 30 ) 0 4
‘ 9=10 —— g=20 g=30 — g=40 —— g=50 ‘

Fig. 4. B(Egy (at least s;)) defined by Eq.(13) and B(Eg, (at most s;))
defined by Eq. (14), when g = 10,20, ..., 50.

3.

Compute the type-2 fuzzy envelope for E¢ , (at most s;).
For the HF LTS, E¢,, (at most s;) obtained from the CLE
“at most s;”, its type-2 fuzzy envelope can be defined as
an IT2 FS ~
FEGH(m most s;) — 1/FOU(FECH (at most 51)) with its foot-
print (see Fig. 3):

FOU(FEGH(al most s:)) = 1(z,u) : x € X, u € [maz{0,

FEGH (at most sl)(m) - EC(EGH (at most Si))}7

FEGH (at most sJ(I)]}

3) Type-2 fuzzy envelope for the CLE “ between s; and

s;”: This expression hesitates among different linguistic terms
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E¢(Eq, (at least s;)) + B(Eq,, (at least s;)) - Ey(Eq, (at least s;))

E.(Eg, (at least s;)) =

E.(Eg, (at most s;)) =

E.(Egq, (between s; and s;)) =

but the best and worst assessments are clear. By using the

transformation function, we obtain the HF LTS as

Eq, (between s; and s;)={s;, S;11,...,5;}.

The type-2 fuzzy envelope is computed as:

1. Compute the type-1 fuzzy envelope for the HFLTS
Eg,, (between s; and s;).

a) Obtam the elements to aggregate:
= {aj, ayy,ahf's - ayy,ag)
b) Remaining steps refer to [12], and the constructed type-
1 fuzzy envelope, Fp (between s; and sy(@), v € X is
represented as T'(a}, b, c, ).

2. Compute the uncertainty in Eg,, (between s; and s;).
The uncertainty of HFLTS Eg, (between s; and s;) is
evaluated as E.(E¢, (between s; and s;)) and computed
by Eq. (17). In this case, both the number and the positions
of terms in the HFLTS Eg, (between s; and s;) are
actually determined by the positions of s; and s;, in order
to construct a link between 5(Eq, (between s; and s;))
and the number of linguistic terms contained in
E¢, (between s; and s;), as well as the positions of lin-
guistic terms contained in E¢,, (between s; and s;), we de-
fine B(E¢,, (between s; and s;)) as a function of two vari-
ables, i and j. B(Eq, (between s; and s;)) is twice differ-
entiable with respect to ¢ and j respectively. The first-order
partial derivative and second- order partial derivative with

b i and
respect to ¢ are denoted by g (between s and 37))) g

ot
9%(B(Eg,, (b i and
BEoy ( uwef“ i an s’))), respectively, while the first-

i
order partial derivative and second-order partial derivative
D(B(Ec py (b ; and
with respect to j are denoted by O(B(EG y (between s; and s,))

9j
and P (B(Eey (bdwfn 5: and 55))) , respectively.

To ensure prrncrpleb P1-P4, B(EGH (between s; and s;))
should fulfill some properties which will be shown in three
different cases as follows:

a) if

55}

0<i<;<j<gy.

should satisfy the following

— N

B(Eq,, (between s; and s;)

properties:
i.ifi=0,j=g, B(Eq, (between s; and s;)) =
ii. if i = j = §, B(Eq, (between s; and s;)) = 0
iii. (1) I(B(Eg y (between s; and s;))) <0Ge [ %

D
@ : D >0 e [§.9):
If j is already determined, the larger i, the less

i
A(B(Ecy( (between s; and s

1+ B(Eg, (between s; and s;))- E(Eq,, (between s; and s;))

b) if

iv. (1)

1+ BB (at least 5,)) - Ep(Bcy (at least 5,) ()
E¢(Eq, (at most s;)) + B(Eq,, (at most s;)) - Ey(Eq,, (at most s;)) (16)
1+ B(Ec, (at most s;)) - Ep(Eg, (at most s;))
E¢(Eg, (between s; and s;)) + S(Eq,, (between s; and s;)) - En(Ecq,, (between s; and s;)) an

number of terms in the HFLTS. From iii. (1),
B(Eg, (between s; and s;)) is monotonically de-
creasing on the independent variable 4, which en-
sures that B(Egq, (between s; and s;)) decreases
when the number of terms in a HF LTS decreases;
If ¢ is determined, the larger j, the more
number of terms in the HFLTS. From iii.
(2), B(Eq, (between s; and s;)) is monotoni-
cally increasing on the independent variable j,
which ensures that the importance of hesitancy
B(Eg, (between s; and s;)) increases with the
growth of terms in a HF LTS,

9 (B(Egy betwleen s; and s;))) <0Ge [O7 %]),
(2)8 (d(E(*H(belaw]e;:n s; and sj5)) S 0 e [%79])
From iv. (1), suppose that j is a fixed value,
8<H(h"”(buW50" 5 and 55))) is  monotonically
decreasing  with respect to i € [0,%],
which ensures that the decrease quantity of
B(Egq, (between s; and s;)) increases when the
left-most linguistic term changes from so to sg (if
g is even), or changes from sy to sg—1 (if g is odd).
From the axiomatic definition of 2fuzzy entropy
for linguistic terms, that means if the left-most
linguistic terms are deleted one by one from a
HFLTS, the more fuzzy the deleted term, the
more 3(Eq¢, (between s; and s;)) decreases.

From iv. (2), suppose that i is a fixed value,
9By (between s; and ;) is monotonically

decreasing ai}vith respect to j € (%, 9],
which ensures that the increase quantity of
B(Ec, (between s; and s;)) decreases when the
right-most linguistic term changes from s to s,
(if g is even), or changes from Sat1 10 5 (f g is
odd), that is, if linguistic terms are added one by
one into Eg, (between s; and s;) from the right
hand end, the less fuzzy the added linguistic term
is, the less B(Eq,, (between s; and s;)) increases.

0<i<j<

l\')\%

B(Eq, (between s; and s;)) should satisfy the following
properties:

i
ii.

ifi=0,j =%, B(Eg,(between s; and s;)) = 3
if i = j, 8(Eq, (between s; and s;)) = 0;
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5] E betw i and
(B(Eg y (bet ;9“ si and s;))) <0Ge [O, 2]
D5 (B (btvetn s: and 5,) 5 ) (i 0, 2]

9j
9?2 ([J(ECH(belween s; and s

iii. (1)
2

iv. (1) s D <0 (i e [0, 4)).
(2) E(,H(helween s; and s;))) > 0 (J c [0’ 5] )
Here we only illustrate property iv. (2):

9(B(Eg y (between s; and s;)))

From iv. (2), 57 is
monotonically increasing with respect to j € [0, 5],
which ensures that the increase quantity of
B(Eq, (between s; and s;)) increases when right-
most linguistic term s; changes from so to sg (if g
is even), or changes from sg to s a1 (f g is odd),
that is, if linguistic terms are one by one added
into Eg, (between s; and s;) from the right hand
end, the more fuzzy the added linguistic term is,
the more 3(E¢,, (between s; and s;)) increases.

o) if

S 1<j<g.

N

B(Eq, (between s; and s;)) should satisfy the following

properties:

i ifi= 2, j =g, B(Eg, (between s; and s;)) = %;

ii. if i = j, B(Eq, (between s; and s;)) = 0;

i, (1 6(H(E(v"(belw;en s; and s;))) <0G e[2 g,
(2)d(/7’(E(,H belwejen s; and s;))) >0G e (2 g

iv. (1) EGH(be!L\;I:;n s; and s;))) >00¢e [%7!]]),
(z)ﬁz(ﬁ(EcH(belaw;;n s; and s;))) <0(e [%791).
Here we only illustrate property iv. (1):
From iv. (1), 6(/3(FC,H(bclwucn siand s5) oo

monotonically increasing with respect toic (4,9,
which ensures that the decrease quantity of
B(Eq, (between s; and s;)) decreases when the
left-most linguistic term changes from sg to s,
(if g is even), or changes from Sat1 10 5 (1f g is
odd), that is, if the left-most hngumtlc terms are
one by one deleted from Eg,, (between s; and s;),
the less fuzzy the deleted linguistic term is, the less
B(Eg, (between s; and s;)) decreases.

Remark 1. The property v in cases (a)-(c)
can only ensure that the change quantity of
B(Eq, (between s; and s;)) is positively related
to the fuzzy degree of linguistic terms added to/deleted
from Eg, (between s; and s;) from one single
side. A supplementary condition to ensure that
B(Eq, (between s; and s;)) satisfies principle P4 is
needed, that is, if linguistic terms are respectively
added into E¢,, (between s; and s;) from the right side
and from the left side, as long as the fuzzy degree of
added linguistic term is larger, the increase quantity
of B(Eg, (between s; and s;)) will be larger. This
supplementary condition can be formalized as follows:
(1) B(Eg, (between s;_1 and s;))-B(Eg,, (between s;

and s;)) = P(Eg,between s; and s;41))-

B(Egy (between s; and s;)) if Ef(si—1) =
E¢(sjy1), 4,5 €{1,2,...,g—1} and i < j.

(2) B(Eqy(between s;—1 and s;))-B(Eg, (between
si and s;))<p(Eq,(between s; and s;41))-
B(Eg, (between s; and s;)) if Ef(si-1) <
Ef( 7+1) iaj€{1723"'7971} and‘S]

(3) B(Eg, (between s;_1 and s;))-B(Eg,, (between
s; and  s;))>B(Eq,(between s; and s;41))-
B(Eqy (between s; and s;)) if Ef(si—1) >
E¢(sj41), 4,5 €{1,2,...,g—1} and i < j.

Based on the above analysis, an example of

B(Eq, (between s; and s;)) is presented as Eq.

(18), which can be easily proved satisfying properties

i-iv in cases (a)-(c) and satisfying the supplementary

condition in Remark 1 as will be shown in Theorem

2. The formula is not unique, as long as it satisfies

principles P1-P5.

1
—cos— L+

B(Egq, (between s; and s;)) = 3

-,
i,j €[0,g].
(18)
Theorem 2. $(Eq,, (between s; and s;)) calculated by
Eq. (18) satisfies the condition in Remark 1.

Proof. The proof can be found in Appendix A. |

3. Compute the type-2 fuzzy envelope for
Egq, (between s; and s;). For the HFLTS,
Eg, (between s; and s;) obtained from the CLE
“between s; and s;”, its type-2 fuzzy envelope can be
defined as an IT2 FS

FEGH(be(ween si and s;) — I/FOU(FEGH (between s; and sJ))
whose footprint is (see Fig. 3):

FOU(FE(,H(bclwccn s; and :j) { cx e X,ue
[”LdL{O FECH(between s; and s; ( ) (E('H

(between S and 5] }7 FEGH(belween s; and sj)(z)]}-

Several theorems to support the mechanism to determine the
importance degree of hesitancy by means of Eqgs. (13), (14)
and (18) are provided.

Theorem 3. If B(Ec,, (at most s;)) is calculated by Eq. (14)
and B(Ecq, (between sy and s;)) is calculated by Eq. (18),
then B(Eq,, (at most s;))= B(Eq, (between sy and s;)), i €
{0,1,..., g}

Proof. B(Eg, (between sy and s;)) —%(‘090+%sin(%ifg) =
% + %sin( i — 5)=p(Eg, (at most s;)). ' O

Theorem 4. If 5(Eq,,(at least s;)) is calculated by Eq. (13)
and B(Eg, (between s; and sg)) is calculated by Eq. (18),
then B(Eq,(at least s;))= B(Eq, (between s; and s;)), i €
{0,1,..., g}

Proof. ,B(Ec H(belween Si

3 -1

and 5q)) —2w<sft + 257n( g —
2cos Ti 4+ —E(EGH(at least $i))-
O

508 Ti+ 2sm2 =
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Remark 2. Noticing that Eg,, (at most s;)=FE¢ , (between
so and s;) and Eg,, (at least s;) = Eg, (between s; and s,),
from theorems 3 and 4, we conclude that Egs. (13), (14) and
(18) are consistent.

Theorem 5. If B(Eq, (at most s;)) is calculated by Egq.
(14) and B(Eg,(at least sq_;)) is calculated by Eq. (13),
then B(Eq,(at most s;))= pB(Eq,/(at least sq_;)), i €
{0,1,...,g}

Proof. 8 (ECH(at least sq—;))= %cos(%(g 1)) + % =
Leos(m — ﬂ) +1= 7$cos§i + 1 = —3sin(f + o i) +
1= —§sm(ﬂ' + (%z -+ 1 %sin(%z -3+
%=ﬁ(EGH(dt most s;)). O

Theorem 6. If JB(Eq,(between s; and s;)) and
B(Egy(between sq_; and sq_;)) are calculated by Eq.
(18), then 3(Eq,, (between s; and s;))=p(Eq,, (between s,_;
and sq_;)), i,j €{0,1,...,9} and i < j.

+

Proof. B(Eg, (between sg _j and s4_;)) = cos(’;(g —] )
%sm(ﬁ(g —i)—Z) = Lcos(m — 2 +s ysin(m 757 - =
2(05(,,( Ji—=%)+ Zsm( i+ %)= zsm(gjfa)
—cos i= ﬂ(EG,,(between Si and 54)).

—

ERVE]
—

O+

Remark 3. Noticing that Eg, (at most  s;)=
Neg(Eg,(at least s;,_;)) and Eg,(between s; and s;)
= Neg(Eg, (between s,_; and s,_;)), from theorems 5
and 6 it is obvious that the importance degrees of hesitancy
obtained by Egs. (13), (14) and (18) satisfy principle P5.
For future formulas computing the importance degrees
of hesitancy that will replace Eqgs. (13), (14) and (18),
they should satisfy B(Eq,(at most s;))= S(Eq, (at least
sg—i)), © € {0,1,...,9} and B(Egq,(between s; and
$))=B(Eq, (between s,_; and sy_;)), i,j € {0,1,...,9}
and ¢ < j in order to satisfy principle P5.

IV. COMPUTING THE TYPE-2 FUZZY ENVELOPES:
ILLUSTRATIVE EXAMPLES

Let us reconsider the example illustrated in [12] that pre-
sented type-1 fuzzy envelopes for CLEs, the type-2 fuzzy
envelopes for such expressions generated by the context-free
grammar G g will be introduced as below.

Example 2 Let S = {so : nothing,s; : very bad, sy :
bad, s3 : medium, s4 : good, s5 : very good, s¢ : perfect} be a
linguistic term set shown in Fig. 5.

nothing  very bad bad medum  good  verygood perfect

In this example, we will adopt the measures proposed
in [38] to estimate the fuzzy entropy of HFLTS Hg, =

Isl
{(Sas Sazs- 8} by Ep(Hg) = 1y afled

%) and the hesitant entropy of Hg by Ej(Hg) =

+n(Hs), where 7)(Hs) is calculated by Eg. (9).
Several type-2 fuzzy envelopes for HF LT Ss transformed
from different CLEs are computed as follows.
o Type-2  fuzzy envelope for the HFLTS
Eg, (at least s4) = {s4,85,86} corresponds to
1, = at least s4.
1. The type-1 fuzzy envelope for E¢,, (at least s4) is
Frg, (atteast s,) = 1(0.5,0.85,1,1).
2. It is easy to obtain that

E¢(Eq, (at least s4)) =

3 I(sa;)
% X g4 56 1 -
1(801))
6

7 0.48 (50, = 54, 5a; = 55,505 = 56);
En(Bgy(atleast s1)) =  § X gggy X
Y Y (se) — I(sa)) o~ 022
(8ay = 54,80, = S5, 8a; = 56);
B(Egy (at least s4)) = tcos(F x 4) + 5 = 0.25 by
Eq. (13),
therefore E.(E¢, (at least s4)) ~ 0.51 by Eq. (15).
3. The type-2 fuzzy envelope is given as an IT2 FS
FE( H(al least s4) — 1/FOU FEC,H(al least 54))
with its footprint (see Fig. 6)

FOU(FECH(,M least sq)) = 1(z,u) : & €[0,1},u € [max
{O FEGH(dt least s4) ( ) 0. 51} FEGH at least s4) (27)]}

nothing  very bad bad medum  good
1

verygood perfect

0 017 033 05 087 083085 1

Fig. 6. FOU for the type-2 fuzzy envelope of the HF LTS corresponds to
1258

o Type-2  fuzzy envelope for the HFLTS
Eg,(at most s2) = {so,s1,82} corresponds to
ll, = at most s2, E¢, (between s3 and s5) = {s3, 4,55}
corresponds to Ill3 = between s3 and s; and
E¢, (between sy and sg) = {s4,85,5¢} corresponds
to ll4 = between s; and sg can be found in the
supplementary material Appendix B.

V. COMPARISONS ON APPLICATIONS OF TYPE-1 AND
TYPE-2 FUZZY ENVELOPES IN DECISION MAKING.

In this section, we will make a comparison on the appli-
cations of type-1 fuzzy envelopes and type-2 fuzzy envelopes
in decision making and show the advantages of the use of
type-2 fuzzy envelopes through reconsidering the multi-criteria
decision making problem in [12].

Example 3 Suppose that the manager of a company wants
to select a material supplier to purchase some key components
of a new product. After preliminary screening, four alternatives
X = {z1, 29,23, 24} remained in the candidate list. The con-
sidered criteria are C' = {¢; = quality, c; = delivery speed}.
Because of the lack of information and knowledge about
problem, the manager hesitates among several linguistic terms
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therefore use CLEs close to the natural language used by
human beings in decision making problems. To do so, the
context-free grammar Gy in [28] and the linguistic term set
S = {sp : nothing (N), s; : very bad (VB), sy : bad (B), s3 :
medium (M), s4 good (G), 55 very good (VG), sg
perfect (P)} are used. The assessments provided for this prob-
lem are shown in Table I.

To avoid the interference induced by different treatment
methodologies for cost criteria in different fuzzy TOPSIS ap-
proaches, only benefit criteria have been adopted. Meanwhile,
the weights of all criteria are supposed to be equal in order to
make the comparison feasible. It is based on the consideration
that type-1 fuzzy TOPSIS schemes are usually carried out
with setting the weights of criteria type-1 fuzzy numbers
[11, [3], [141, [37], [36], type-2 fuzzy TOPSIS schemes are
usually carried out with setting the weights of criteria type-
2 fuzzy numbers [4], [5], [6], [11], [31], however it will be
unreasonable to make the comparison of the applications of
type-1 and type-2 envelopes in a decision making problem if
the weights of criteria are in different forms.

The CLEs (rating) for alternative z; (i € {1,2,3}) with
respect to criteria ¢; (j € {1,2}) are denoted by ll;; (i €
{1,2,3}, j € {1,2}) and shown in Table I. The corresponding
HFLTS Fg, (u,,) of these CLEs are shown in Table II.

TABLE I
ASSESSMENTS (I) OF THE PROBLEM.

- Cc1 c2

x1 between B and M between B and M
xo  at most B at least G

x3  between M and G between B and M
x4 between B and VG between VB and G

TABLE II
HFLTSs GENERATED FROM THE CLES.

- c1 c2
71 {B, M} {B, M}
2z {N,VB,B} {G,VG, P}
z3  {M,G} {B, M}

zs  {B,M,G,VG} {VB,B,M,G}

Now we handle this problem with type-1 fuzzy envelopes
of linguistic expressions by using the approach in [12], which
actually follows the fuzzy TOPSIS model in [3].

The calculation process can be found in the supplementary
material Appendix C, the alternatives are ranked according to
their closeness coefficients:

1 < T2 = X3 = T4.

Therefore, the best alternative is zo or x3 or 4.

In [6], an interval type-2 trapezoidal fuzzy TOPSIS method
has been proposed for dealing with fuzzy decision making
problems. By conducting several comparisons with other inter-
val type-2 fuzzy multiple criteria decision analysis approaches,
they proved that their method is easy to implement and
produces effective and valid results for solving multiple criteria
decision-making problems. Since the type-2 fuzzy envelopes
proposed in the current work are also interval type-2 trape-

zoidal fuzzy numbers (IT2TrFN), we can handle the problem
in this example by using their method.

The calculation process can be found in the supplementary
material Appendix D, the alternatives are ranked according to
the likelihood based closeness coefficients:

1 < Tg XT3 < Ta.

Therefore, the best alternative is xs.

Some other examples can be found in the supplementary
material Appendix E.

Analysis:

The use of type-2 fuzzy envelope is consistent with type-
1 fuzzy envelope in obtaining best result. However, through
the above example it is shown that in situations when two
alternatives cannot be distinguished by using type-1 fuzzy
envelope, the use of type-2 envelope provides a more precise
result. It is determined by the fact that, compared with type-
1 fuzzy envelope, the construction of type-2 fuzzy envelope
considers more comprehensive information contained in lin-
guistic expressions, taking better use of the linguistic uncer-
tainties which have been reflected by the fuzzy uncertainty
and hesitancy of the HF'LT'Ss. That is, compared with type-
1 TOPSIS cooperates with type-1 fuzzy envelope of CLEs,
type-2 TOPSIS cooperates with type-2 fuzzy envelope of
such expressions (with closeness coefficient as crisp values)
perform better in reducing information loss in the decision
process, that is the reason why it achieves more accurate
decision result.

VI. CONCLUSIONS AND FUTURE WORKS

The use of CLEs based on context-free grammars and
HFLTSSs has already provided some successful applications
in linguistic decision making. The context-free grammar pro-
vides the generative mechanism for comparative linguistic
preferences, meanwhile the use of HFLTSs provides a
manner to present CLEs by using several consecutive lin-
guistic terms. In order to facilitate the CW process using
CLEs presented by HFLTSs, it is necessary to figure out
a suitable representation model which is capable to deal with
the uncertainty contained in such expressions. To reach this
goal, in the current work,

« A reasonable and effective way to estimate the uncer-
tainties contained in H F'LT'S's has been provided, taking
into account both the fuzzy uncertainty and the hesitancy.

o A new fuzzy envelope of HFLTSs in form of IT2
FSs has been constructed based on its type-1 fuzzy
envelope, which can be successfully used to deal with
the uncertainty contained in a HFLTS.

o By means of transforming CLEs to HF'LTSs and then
construct the type-2 fuzzy envelopes of HFLTSs, a
representation method for CLEs in form of IT2 FSs has
been achieved.

In the future, we plan to work on the following issues.

o Considering that linguistic decision making problems
require CLEs in real life cases, it would be promising
to study the application of the proposed representation
for CLEs in the information representation process and
the CW process of such problems.
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[6]

[11]

[12]

[13]

[14

[15]

[16]

[17]

[18]

[19]

121

[22]

New group decision making models will be developed
that manage complex linguistic preference information
presented as CLEs by means of type-2 fuzzy envelopes.
Since IT2 FSs are special cases of general T2 FSs, it
would be interesting to see how the envelope can be
extended to generate general T2 FS models for CLEs.
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APPENDIX A
THE PROOF FOR THEOREM 2.

(1) If E¢(si—1) = Ef(sj41), considering i < j, by the
axiomatic definition of fuzzy entropy for linguistic terms in

[38], we obtain (i — 1)+ (j+1) =g, ie. i+j =g Itis
easy to prove that %cosg(i 1)+ %sin(%j -%)= %cas%i—t—

%sm(%(j +1) — %), that is, 3(Eq, (between s;_; and s;))
= B(Eq, (between s; and s;41)), then B(Eg,, (between s;_1
and s;))-B(Eq,, (between s; and s;))=p(Eq,, (between s; and
sj+1))-B(Eq, (between s; and s;)).

(2) From the axiomatic definition of fuzzy entropy of lin-
guistic terms, there are only two possibilities for F¢(s;—1) <

Ep(sj1):

®

(i)

0<i-1<i<j<j+1<4.

We only need to prove [B(Eqg, (between s;_1 and
5;))<B(Eq, (between s; and s;41)),

ie, jcosZ(i — 1) + gsin(Zj — 5) < jcosTi +
Lsin(2(j +1) - 3),

ie., %cos%(z -1) - %cosgl < %Sln(%(] +1)—-3) -
%sm(%.' - %)

ie., %sin(gi -5)— %sin(%(i -1)-3)< %Si?L(%(j +
1) = 5) - gsin(Zj - 5).

Construct a function f(z) = %sin(%x — %), it is easy
to obtain f'(z) = 5 - % - cos(Tx—5) >0,z € [0, §]
and f(z) = —1%- fusd sin(fr—3) >0,z € [0, 4], that
indicates f(x) is an increase function and its increase
quantity increases when z changes from 0 to %, since
i —1 < j, it is obvious that f(x) changes more when
z changes from j to j + 1 than it changes from i — 1
to i, that is, gsin(Ti — ) — gsin(3(i —1) - 3) <
1sin(%(j +1)-3)— %sin(%j -2
§i71<i§%§j<j+1§gand
—(i-1)>@G+1) -5 e, j<g—i

From (1) we obtain that S(Egq, (between s;—; and
sg—i))-B(Eq, (between s; and s,_;))= B(Eg, (between
s; and s4_;y1))-B(Eg, (between s; and s,_;)) since
E¢(si—1) = E¢(sg—i41) by the axiomatic definition of
fuzzy entropy for linguistic terms and the definition of
negation operator of a linguistic term in [38].
Considering 1 < ¢ < % < j < g—1,itis easy to obtain
4 <j+1<g—i+1. Refer to the analysis for property
iv. (2) in case (a), when s; is fixed, S(E¢,, (between
si and sy_;y1))-B(Eg,(between s; and s,_;) <
B(Eg, (between s; and s;j11))-B(Eg, (between s; and
S]‘)) since Ef(sg_i_,_]) < Ef(Sj_H).

By Eq. (18), it is easy to prove S(Eq, (between s;_;
and s;))-B(Eq,, (between s; and s;)) = B(Eq,, (between
si—1 and s4_;))-B(Eq, (between s; and s,_;)).

Based on the above considerations, we obtain that
B(Eg,(between s;_1 and  s;))-B(Eg, (between
s; and s;)) = [(Eg,(between s;_; and sg_;))-
B(Eg,(between s; and s,_;))= [(Eg, (between
si and sy_;y1))-B(Eg, (between s; and s,_;) <
B(Eq, (between s; and s;1))-B(Eg, (between s; and

Q

ke Ol

(3) It can be proved in a similar way of (2).
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SUPPLEMENTARY MATERIAL

APPENDIX B
COMPUTING THE TYPE-2 FUZZY ENVELOPES:
ILLUSTRATIVE EXAMPLES
o Type-2  fuzzy
E¢g, (at most s2)
Il = at most ss.
1. The type-1 fuzzy envelope for E¢, (at most s2) is
Fpe, (amost o) = 1(0,0,0.15,0.5).

envelope  for the HFLTS
{s0,81,82} corresponds to

2. It is easy to obtain that
E¢(Eg, (at most s3)) = 3 X ZL 14 5" Lsap) (1 -
15%) =~ 0.48 (54, = 50,8,,2 = 81,505 = 52),
En(Bgy(atmost s2)) =  § X ggigy X
E?:l E?:Hl(I(Sa,) - I(sq,)) ~ 0.22

(Sa; = 50, 8ay = 81, Sas = 52);
B(Eg, (at most s3)) = isin(Z x2—Z)+ 4 =0.25
by Eq. (14),
therefore F.(Eq, (at most s2)) ~ 0.51 by Eq. (16).
If the result of theorem 5 is used, the computation can
be significantly simplified.

. The type-2 fuzzy envelope is given as an IT2 FS
FEGH(al most s2) — 1/F0U(FEGH(M most sz))
with its footprint (see Fig. 7)

1‘7OU(17};G”(al most s2)) = 1(x,u) : x € [0,1],u € [max
{07 FEGH(al most sg)(x) - 051}7 FECH (at most 52)(‘7‘.)]}

nothing very bad

bad medum  good  verygood perfect

0 015017 033 05

Fig. 7. FOU for the type-2 fuzzy envelope of the HF LTS corresponds to

il
o Type-2  fuzzy envelope for the HFLTS
E¢,, (between s3 and s5) = {s3, S4, S5} corresponds to
ll3 = between s3 and ss.
1. The type-1 fuzzy envelope for

Eg,, (between s3 and s5) is
FEGH (between sz and s5) — T(0~33» 0.64,0.70, 1)-
. It is easy to obtain that
3 I(sa
FXD 4 (gsfl) (1-

54, 5a3 = S5);
1

E¢(Eq, (between s3 and s5))
I(sa
Lei)) % 0.82 (50, = 53, 50

En(Eq, (between s3 and s5)) = 5 X 3o X
Zi:lzj:i+l( (s0;) = 1(sa,)) » 022 (sa, =
83, Say = S458a3 = 55);

B(Eg, (between s3 and s3)) = Zcos(% x 3) +

1sin(Z x5 — Z) ~ 0.43 by Eq. (18),

therefore E.(Eg,, (between s3 and s5)) ~ 0.84 by Eq.
(17).
3. The type-2 fuzzy envelope is given as an IT2 FS

FEGH(bclufccn s3 and s5) :1/F0U<FEGH(bctwccn s3 and s3))

with its footprint (see Fig. 8)
FOU(FEGH(be&Ween s and 55)) = {(CE» u) HEAS [0: 1]7
(RS [maz{O, FEGH (between s3 and 55)(1‘) - 0-84}3
FEG"(belween s3 and 95)(‘3)]}

nolhing  very bad

medium very good perect

good

05 083 1

Fig. 8. FOU for the type-2 fuzzy envelope of the HF LTS corresponds to
3
o Type-2  fuzzy envelope for the HFLTS
Eg,, (between s, and sg) = {su4, S5, S} corresponds to
Il4 = between s4 and sg.

1. The type-1 fuzzy envelope for
E¢,, (between sy and sg) is
FEGH (between s4 and sg) — T(0-57 0.80,0.86, 1)'

2. It can be easily obtained that
E¢(Eq, (between s4 and sg)) ~ 0.48,
Ej(Eg, (between sy and sg)) ~ 0.22, and
B(Eg, (between sy and sg)) = 3cos(E x 4) +
1sin(Z x 6 — Z) = 0.25 by Eq. (18),
therefore E.(Eq, (between s4 and sg)) ~ 0.51 by
Eq. (17).

3. The type-2 fuzzy envelope is given as an IT2 FS

Frg, (vaveen 54 and s6) = 1/FOU(Fg (between 51 and 5))-
with its footprint (see Fig. 9)

FOU(FF(,H(bclwccn s4 and 55) = {
u € [7”(1“1 {0 FEpH(belween s4 and 3())( )

FEGH (between s4 and 56)(1)]}.

,u) sz € 0,1],
0.51},

nohing veybad  bad  medum  good  verygood perfect

1 =0

080 086

0 017 033 05 087 083 1

Fig. 9. FOU for the type-2 fuzzy envelope of the HF LTS corresponds to
ly

In the above example, the HF LTS, {s4, s5,56} occupies
two different type-1 fuzzy envelope FEGH(dl least s4)
T(O'57 0.85,1, 1) and FEC”(between s4 and sg)
7(0.5,0.80,0.86,1), meanwhile it occupies different type- 2
fUZZy envelope FEGH (at least s4) and FEGH (between s4 and sg)>
according to different CLEs it represents. In real life cases,
we believe that the representations of “at least s;” and
“between s4 and sg” should be different, since “at least s4”
and “between s4 and sg” means different things according
to human-being’s cognition/intuition. However, these two
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different linguistic expressions are translated into the same
HFLTS by using the transform function E,. It is caused by
the information losing during the transforming process from
linguistic expressions to HFLTS. Constructing different
envelopes for HF LTS according to corresponding CLEs is
a good way to reduce this kind of information losing.

APPENDIX C
THE CALCULATION PROCESS FOR DECISION MAKING WITH
TYPE-1 FUZZY ENVELOPES OF HF LTSs.

(1) Transform the CLEs into HF'LT'Ss and their type-1 fuzzy
envelopes.
The type-1 fuzzy envelopes for HEFLTSs transformed
from CLEs can be listed as follows:
Frg, ) = (0.17,0.33,0.5,0.67);
FE(H(”m) =(0.17,0.33,0.5,0.67);
Frg, (2 = (0,0,0.15,0.5);
FE(-H (lla2) = (05q 0857 1, 1),
Frg, (s = (0.33,0.5,0.67,0.83);

L (lls2) = (0.17,0.33,0.5,0.67);

L) = (0.17,0.43,0.73,1);
FEGH (il2) = (0,0.27,0.57,0.83).
The above type-1 fuzzy envelopes remain unchanged after
normalization and therefore the normalization process is
omitted here.
Calculate the distance from the type-1 fuzzy envelope of
each HF LTS to the fuzzy positive ideal solution At =
(7(1,1,1,1),7(1,1,1,1)), and the fuzzy negative ideal
solution A~ = (7'(0,0,0,0),7(0,0,0,0)).
The same geometrical distance [9] as in [12] is adopted
here to calculate the distances, and the distances are listed
as follows:
Df =466, DT =3.34, Df =4, Dy =4, D =4,
Dy =4, Df =4, Dy =4.
Calculate the closeness coefficient of each alternative.
CCy = 0418, CCy = 0.5, CC3 =0.5, CCy = 0.5.
Selection process.
In this phase, the alternatives are ranked according to their
closeness coefficients:
1 < To = T3 = X4.
Therefore, the best alternative is x5 or x3 or x4.

@

-
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APPENDIX D
THE CALCULATION PROCESS FOR DECISION MAKING WITH
TYPE-2 FUZZY ENVELOPES OF HF LTS's

For the convenience of discussion, as follows all type-2
fuzzy numbers will be adjusted to the form as presented in
[6]. That is, let an IT2TrFN fli]‘ denote the assessment of the
alternative z; € X with respect to criteria ¢; € C. A;; is
expressed as

Ay =45, 4] =

- as A a e + .t
i [(aujv A3i5> A3i5> aij hA” ), (ali,j’ A4

a‘;rij? Qyij5 h}” B

where Af; and Afj denote the respective lower and upper
membership functions of A;;.

(1) Transform the CLEs into HF'LTSs and their type-2 fuzzy
envelopes.
The type-2 fuzzy envelopes for HF LTSs transformed
from CLEs can be listed as follows:
A = [A;, Af] = [(0.32,0.33,0.5,0.51; 0.05), (0.17,
0.33,0.5,0.67; 1)],

AlZ = [ATQ-,AE] =
0.33,0.5,0.67;1)],

[(0.32,0.33,0.5,0.51;0.05), (0.17,

2121 [A21 A 11 =1(0,0,0.15,0.32;0.49), (0,0, 0.15,
0.5;1)],
A22 = [AEQ’AL] =
Dl

[(0.68,0.85,1,1;0.49), (0.5,0.85, 1, 1;

Az = [A5, Af] = [(0.49,0.5,0.67,0.68; 0.05), (0.33,0.5,
0.67,0.83;1)],

Agy = A5, Ady) = [(0.32,0.33,0.5,0.51;0.05), (0.17,0.33,

0.5,0.67;1)],
Aq = [A7, Af] = [(0.39,0.43,0.73,0.77;0.14), (0.17,0.43,
0.73,1;1)],

A42 = [Alw Aiz] =
0.57,0.83;1)].

[(0.23,0.27,0.57,0.61;0.14), (0,0.27,

@

-

Calculate the negative-ideal solution and positive-ideal
solution.

Since the criteria considered in this example are all ben-
efit criteria, according to [6], the negative-ideal solution
A,; and positive-ideal solution A,; with respect to each
criteria ¢;(j = 1,2) are defined as following:

A - [Am’ ;7] - [(alm’alm 305> Tagyjs }A )s (alm

+ +
G2nj (1371]7 a4n]’ h )]
where

m — m — m m —
= (ATL1a3;5, AiZ1 @5, N2 1G5, N2 Ai:lhAiJ )

104455

and

i+ m + m + + AT + .
Ay = (NLyagy, Nqasg;, iz h} )~,

m
A2 lagz] Ni=1@.

1ij> 41]
meanwhile,
=[A ., At =(al,; a5, a5, a5, :hs ), (ai

/’J pJ’ m 1p5° B2p5> U350 Vapjs Ay N pg?
+ 4+ Lt

U2pjs X3pj> Adpji hAp] )]
where

i m - m - m - m — . Am -
A= (Viliayy;, Vityag;, Vitiag;;, Vit ag; ANitihy )

ij
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(€

o7

and

A+ m o+ m o+ m o+ m _+ . am p+
Apj = (Vizlaujv Viz10gi5, Viz13455 Viz10g553 /\1:1]7’4” )-

In this case, it is easy to obtain that

Ay =45, &) = (0,0,0.15,0.32;0.05), (0,0,0.15,0.5;

nl>

D,

Az = [A5,, A,] = [(0.23,0.27,0.5,0.51;0.05), (0, 0.27,

5,0.67;1)],
meanwhile,

Ay =4}, A%] =1(0.49,0.5,0.73,0.77;0.05), (0.33,
0.5,0.73,1;1)],

A [AvaA 2] =(0.68,0.85,1,1;0.05), (0.5,0.85, 1,
1;1)].
Calculate the likelihood of IT2TrF binary relation.
Let
A (= [AUwA 1= [(aﬂjva;i,j'ﬂaf;ijﬂali,j;hg”)v(ari,ja

(l2ij~, a’;if, fl4+¢j§ h’:glj)])a

17( [ i ]: [(b;ij7b27ij7b;ij7b4;;j;hii )s (b1+,J:
”21’]‘7531‘7 bLJ h+ )])

be any two IT2TrF numbers in X. Let ¢ be a positive
integer. Assume that at least one of h; # h}, ay # aj,
b # b}, and a_ # b holds, and at least one of h}j #
hg, af # af, by # b7, and af # bZ holds, where
¢=1,2,3,4.

The lower likelinood L~ (A > B) of an IT2TtF binary

L(Apz > Alz) ~ 0.793, L(A,,Q > AQz) ~ 0.449,
L(Ay, > A32) ~ 0.793, L(Apz > Ayp) = 0.778.

Calculate the likelihood based closeness coefficient of

each alternative.

Since the criteria considered in this example are all

benefit criteria, according to [6], the likelihood based

closeness coefficient can be calculated by

Yo LAy > Ay)
Sioi(L(Ay = Ayg) + L(Ay; > Ayy))

It is easy to obtain that LC; ~ 0.461, LCy ~ 0.531,
LC3 ~ 0.503, LCy =~ 0.496. (The process for determining
likelihood-based comparison indexes has been omitted
here, considering that all criteria are of benefit type.)
Selection process.

In this phase, the alternatives are ranked according to the
likelihood based closeness coefficients:

1 <2y < T3 < Ta.

Therefore, the best alternative is xo.

4

=

LC; =

(22)

©

=

APPENDIX E
MORE EXAMPLES

If the problem assessment I change to assessment II as
is shown by Table III, the ranking obtained by using type-
1 fuzzy envelopes is zo < x; < x4 = x3, whereas
the ranking obtained by using type-2 fuzzy envelopes is
Ty < o1 < x4 < x3. If the problem assessment I change to
assessment IIT as is shown by Table IV, the ranking obtained
by using type-1 fuzzy envelopes is o < x4 = w3 < 1,
whereas the ranking obtained by using type-2 fuzzy envelopes
is To < T4 < T3 < 1.

TABLE III
ASSESSMENTS (1) OF THE PROBLEM.

. b . - c1 c2
relation A > B is defined by Eq' (19). x1 between M and VG  between VB and B
_ 2 _mas(b! —aZ 04 (bf-a D) mas(icy 3.0 xg  at most B between M and VG
L (A2 B)= mar{l —maz| LbF —ag \+(a4 —a; >+(;)‘ —b7)+2[h rm 0], 0} x3  between M and G between B and M
9) x4 between B and VG between VB and G

The upper likelihood L’(A > B) of an IT2TrF binary
relation A > B is defined by Eq. (20).

S - i
LA > B) = max 177n”[z 4 maz(b] —a,0)+(b; —af)+2maz(hp—h%.0) 01,0 TABLE IV
{ ST T o e s )T ) ASSESSMENTS (IIT) OF THE PROBLEM.
The likelihood L(A > B) of an IT2TrF binary relation — -
A > B is defined by: x1  at most B at least G
xo  at most B between M and VG

L~(A>B)+L*(A>B)
2

In this case, the necessary likelihoods of IT2TrF binary
relations are listed as follows, which will be adopted in

L(A>B)= 1)

Eq. (22): ~

L(AM Z Anl) ~ 0692 L(Agl Z A’I]l) ~ 0524,
L(Ag1 > Ayy) ~ 0.777, L(Ag1 > Ayp) ~ 0.770,

LA zjx,ﬂ) ~ 0.568, L(Ax > Ay) =~ 0.876
L(Agg > 2) ~ 0.568, L(A42 > Ang) =~ 0.544;

L(Ap zjxu) ~ 0.679, L(A, > An) =~ 0.789,
L(Apl > ) ~ 0.534, L(Apl > A41> 0.556,

x3  between M and G between B and M
x4 between B and VG  between VB and G




Chapter 5

Conclusions and Future Works

Finally, this section concludes the current research memory, reviews the main pro-

posals and results, and points out some future works.

5.1 Conclusions

Linguistic DM problems under uncertainty are common in our daily life. The diver-
sity and complexity of uncertainties calls for useful mathematic models to deal with
these problems. The generalized models of soft sets obtained by combing them with
fuzzy sets, rough sets and linguistic models show great potential dealing with un-
certain DM situations, since the hybrid models take advantages of different models
and therefore enhance the ability for dealing with diverse uncertainties.

For DM approaches based on fuzzy soft sets and rough soft sets, there are still
arguments that need to be settled and limitations need to be overcome. By providing

the following proposals, we successfully reach the first objective (see Section 1.2):

1. An analysis on limitations for fuzzy soft sets based DM approaches has been
carried out. One of the popular DM approaches based on fuzzy soft sets, called
the score based approach, has been improved by introducing the concepts of
D-Score and D-Score table. The improved approach decreases successfully
the time consumption when parameters need to be deleted/added during the

process of DM.

2. An adjustable approach based on fuzzy soft sets has been proposed by intro-
ducing threshold values or threshold fuzzy sets when the scores for alternatives
are computed. The proposed approach can be used to solve problems which

cannot be handled by existing ones.

135
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3. An analysis on limitations for rough soft sets based DM approaches has been
carried out. Two DM approaches and one GDM approach based on rough
soft sets have been introduced. In the GDM approach, the weights of decision

makers are obtained by using similarity measures between soft sets.

Various soft rough set models have been proposed in the literature by construct-
ing different approximation operators on crisp sets [15, 63] or fuzzy sets [15, 49, 83].
However, no systematic research on them has been carried out about the connec-
tions among them. By carrying out the following researches, the second objective

(see Section 1.2) has been reached:

1. The relationships among various soft rough approximations have been dis-

cussed in a systematic way.

2. A novel model called soft rough soft sets has been proposed by using a soft
set as the knowledge to compute the approximations of another soft set. The
application of soft rough soft sets in DM has been illustrated by using an

example.

Although a model called linguistic value soft sets was already introduced in the
literature, which combines soft set theory with linguistic information, this model
only allows decision makers to provide initial assessments by using single linguistic
terms, which limits the elicitation of linguistic information because sometimes deci-
sion makers need to use more complex expressions to express their knowledge. To
facilitate the elicitation of more complex linguistic expressions with soft set models,
it is necessary to construct new hybrid soft set models that combines soft set theory
and CLEs. By providing the following proposals we successfully reach the third

objective (see Section 1.2):

1. A novel model called HLE soft sets has been introduced, in which assessments
of decision makers could be both linguistic terms or CLEs. A decision making

approach based on CLEs soft sets has been presented.

2. A GDM approach based on HLE soft sets has been introduced. A consensus
model to cooperate with the GDM process is proposed. Comparisons of our
proposed GDM approach and existing approaches based on linguistic value

soft set have been done to show some advantages of the proposed model.

New fuzzy representation models for CLEs need to be constructed to deal with
linguistic uncertainties. These representation models are expected to facilitate the
CW processes when handling with DM problems in which experts provide evalu-

ations on alternatives using CLEs. By constructing the following representation




5. Conclusions and Future Works 137

model or CLEs and comparing it with some existing models, the fourth objective

(see Section 1.2) has been reached:

1. A new representation model for CLEs called type-2 fuzzy envelope has been in-
troduced. This new representation model follows the fuzzy linguistic approach

and can successfully reflect the uncertainties contained in CLEs.

2. The comparison between type-2 fuzzy envelope and type-1 fuzzy envelope has
been carried out by using an illustration example in DM. Finally it has been
shown that the decision results are consistent however the result is more precise

when type-2 fuzzy envelope is used.

5.2 Future works

Despite several proposals have been made in this research, there are still some
challenges to deal with DM and GDM problems under uncertainties by using hybrid
soft set models. In the near future, we will concentrate on the extension of the

proposals presented:

1. To research in deep the inner relationships among different hybrid soft set

models.

2. By using different hybrid soft set models and corresponds decision making
methodologies, different decision results could be obtained. To explore the
relationships among different decision results by using the relationships among

different models.

3. To carry out the CW processes in GDM under the framework of HLE soft
sets by using type-2 fuzzy TOPSIS method [10] and type-2 fuzzy envelopes for
HFLTSs. Deal with a GDM problem based on a linguistic value soft set, and
then solve the problem by using type-1 fuzzy TOPSIS [9] (with type-1 fuzzy
envelopes for HFLTSs) and type-2 fuzzy TOPSIS (with type-2 fuzzy envelopes
for HFLTSs), respectively. To make a comparison on different decision results
when two decision schemes are applied, and analyze the advantages of the

application of type-2 fuzzy envelope.

4. To research in further detail the construction of representation models for lin-
guistic expressions and apply them to hybrid soft sets based decision making.
IT2 FSs are special cases of general type-2 FSs, it would be interesting to see
how general T2 FSs could be constructed to serve as representation models
for CLEs.
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Appendix A

Resumen escrito en Espanol

Titulo de la tesis: Toma de decisiones lingtistica basada en modelos matemdticos
hibridos.

Este apéndice incluye el titulo, indice, introduccién, resumen y conclusiones
escritas en espanol como parte de los requisitos necesarios para obtener el doctorado
segun el articulo 23.2 del Reglamento de Estudios de Doctorado de la Universidad
de Jaén.

En primer lugar se muestra el indice de esta memoria de investigacién. A con-
tinuacién se introduce brevemente la investigacién llevada acabo, indicando la moti-
vacién, objetivos planteados y la estructura en capitulos que componen esta tesis. Se
presenta también un resumen de la misma, y finalmente se describen las conclusiones

obtenidas y trabajos futuros.
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A.2 DMotivacion

Los modelos matematicos cldsicos no son capaces de resolver problemas reales de
toma de decisiones que presentan informacién vaga e incierta. Existen algunos enfo-
ques matematicos tales como, la teoria de conjuntos difusos, la teoria soft sets y la
teoria rough sets, que han sido ampliamente utilizados en problemas de toma de de-
cisiones bajo incertidumbre, sin embargo, presentan una limitacién ya que no tienen
herramientas de parametrizaciéon. Esta limitacién indica que individualmente estos
modelos no pueden considerar alternativas con diferentes aspectos en los parametros.
Molodstov [50] propuso un modelo llamado soft set (conjuntos suaves), que evita
esta limitacién satisfactoriamente. La combinacién de este modelo con otros ha gen-
erado la aparicién de nuevos modelos generalizados para modelar diferentes tipos

de incertidumbre.

Los modelos soft sets hibridos pueden ser clasificados en dos categorias: (i)
modelos hibridos obtenidos mediante la combinacién de conjuntos difusos (y modelos
generalizados de conjuntos difusos) con soft sets; y (ii) modelos hibridos obtenidos
de la combinacién de rough sets (y modelos generalizados de rough sets) con soft
sets. Los soft sets pertenecen a la primera categoria, mientras rough soft sets y
soft rough sets pertenecen a la segunda categoria. Estos modelos soft sets hibridos
son bastante simples, por tanto, se han propuesto modelos hibridos més complejos
para generalizarlos. Por ejemplo, intuitionistic fuzzy soft sets [36] e interval valued
intuitionistic fuzzy soft sets [28] podrian ser vistos como extensiones de fuzzy soft
sets. Jiang et al. [27] y Zhang et al. [85] extendieron el modelo de toma de decisiones
basado en fuzzy soft sets introducido por Feng et al. [14] definiendo dos modelos de
toma de decisiones, uno basado en intucionistic fuzzy soft sets y el otro basado en

interval-valued intuitionistic fuzzy soft sets.

Los dos enfoques méas populares de toma de decisiones basados en fuzzy soft
sets son: 1) el enfoque basado en choice value [30] y ii) el enfoque basado en score
[61]. Diferentes investigadores han discutido sobre cual de ellos es el més razonable
[14, 30], aunque ambos presentan algunas limitaciones. Por ejemplo, el enfoque
basado en score introducido por Roy y Maje en [61] requiere una gran cantidad de
calculos cuando se anaden o se eliminan parametros durante el proceso de toma de
decisiones, ésto causa algunas limitaciones cuando los problemas tienen informacién
dindmica. Los estudios realizados sobre toma de decisiones y toma de decisiones
en grupo basados en rough soft sets estan aun en una fase inicial. No hay métodos
que permitan a los expertos proporcionar sus valoraciones sobre las alternativas
utilizando la combinacién de rough sets y soft sets. Los modelos mencionados an-

teriormente requieren que cada experto proporcione una decisién optima antes de
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aplicar un proceso de toma de decisiones en grupo. Teniendo en cuenta estas lim-
itaciones, vemos necesario realizar un estudio sistemético para mejorar los enfoques

de toma de decisiones basados en fuzzy soft sets y rough soft sets.

Aunque varios algoritmos basados en los modelos soft rough sets y sus exten-
siones difusas han sido propuestos para resolver problemas de toma de decisiones
[81, 82, 83], no se han realizado ain estudios de la relacién entre ellos. Para hacer
mas flexible la aplicacién de estos modelos, soft rough sets, en toma de decisiones y
poder aplicar el més adecuado dependiendo de cada problema, es importante tener

en cuenta estas relaciones.

En algunos problemas de toma de decisiones del mundo real, los expertos pueden
usar informacion lingiiistica en lugar de valores crisp para proporcionar sus valo-
raciones sobre las alternativas. Entre los distintos modelos soft sets hibridos, el
modelo linguistic value soft set es el inico que podria usarse para modelar la infor-
macién lingilifstica en el marco de trabajo de soft sets. Sin embargo, si aplicamos este
modelo, los expertos que participan en el problema de toma de decisiones siempre
tienen que proporcionar sus valoraciones mediante términos lingiisticos simples, lo
que puede ser dificil en algunas situaciones donde los expertos duden entre varios
términos lingiiisticos y el uso de un unico término lingiifstico no es suficiente para
reflejar su conocimiento de forma adecuada. Por tanto, es conveniente definir nuevos
modelos soft sets hibridos capaces de utilizar no sélo términos lingiiisticos simples

sino también expresiones lingiiisticas mas complejas.

Existen diferentes enfoques para modelar la informacién lingiiistica, uno de el-
los es el enfoque lingiiistico difuso [78] que proporciona un método directo para
modelar la incertidumbre mediante variables lingiiisticas. Este enfoque ha sido am-
pliamente utilizado en problemas de toma de decisiones en los que se han obtenido
muy buenos resultados. En el enfoque lingiiistico difuso las palabras significan cosas
diferentes para diferentes personas, por tanto, un conjunto difuso es utilizado para
capturar la incertidumbre contenida en una palabra. Sin embargo, la mayoria de
los modelos lingiiisticos [39, 40] estan limitados, ya que los expertos proporcionan
sus preferencias mediante términos lingiiisticos simples definidos a priori y en algu-
nas situaciones, debido a la falta de informacién, o presiéon del tiempo, los expertos
pueden dudar entre varios términos lingiiisticos por lo que el uso de un tinico término
lingiiistico no es suficiente para expresar sus opiniones. Para evitar esta limitacion,
recientemente se ha introducido un modelo llamado conjunto de términos lingiiisticos
difuso dudoso (CTLDD) [58]. También se definié una gramética libre de contexto
para generar expresiones lingiiisticas comparativas cercanas al modelo cognitivo de
los seres humanos y una funcién de transformacién que transforma las expresiones

lingiifsticas comparativas en CTLDD [58]. El uso de las expresiones lingiiisticas
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comparativas basadas en CTLDD permite a los expertos expresar sus valoraciones
de una forma mas flexible y elaborada que los términos lingiiisticos simples. Por
tanto, parece interesante investigar el uso de expresiones lingiiisticas comparativas
y definir nuevos modelos soft sets capaces de utilizar dichas expresiones.

El uso de expresiones lingiiisticas comparativas en estos modelos hibridos im-
plica realizar procesos computacionales, y al igual que sucede con los términos
lingiiisticos simples en los procesos de computacién con palabras, las expresiones
lingliisticas comparativas significan diferentes cosas para diferentes personas. De ahi,
que para modelar la incertidumbre contenida en una expresion lingiiistica compar-
ativa, sea necesario construir un modelo de representacién adecuado para CTLDD.
Hasta ahora, los modelos de representaciéon para CTLDD estan basados en interva-
los lingtiisticos [58] o conjuntos difusos tipo-1 [33], pero ninguno de estos modelos
tiene en cuenta la duda y la incertidumbre contenida en los CTLDD, lo que puede
causar pérdida de informacién cuando las expresiones lingiiisticas comparativas se
usan en toma de decisiones. Por tanto, es necesario definir nuevos modelos de repre-
sentacién para CTLDD que puedan reflejar y modelar la incertidumbre lingiiistica

de una forma més adecuada.

A.3 Objetivos

Teniendo en cuenta la motivacién y consideraciones mencionadas en la seccién an-
terior, el propdsito de esta investigacion se centra en mejorar las metodologias de
modelos matematicos hibridos en toma de decisiones, concretamente en toma de
decisiones con informacién lingiiistica.

Los objetivos que perseguimos para alcanzar este propdsito son los siguientes:

1. Realizar un estudio comparativo de los enfoques de toma de decisiones basados
en fuzzy soft sets y rough soft sets existentes, destacando y analizando sus
limitaciones. Proponer nuevas metodologias para evitar estas limitaciones, asi
como explorar nuevos enfoques basados en modelos hibridos que satisfagan

diferentes demandas en aplicaciones reales.

2. Realizar un estudio comparativo de los modelos soft rough sets existentes, asi
como de sus extensiones difusas, analizando la relaciéon entre los diferentes
modelos y destacando su uso en toma de decisiones. Investigar nuevas formas
de combinar la teoria soft set con la teoria rough set y proponer nuevos modelos
soft rough set. Estudiar la aplicacién de los modelos propuestos en toma de

decisiones.

3. Definir un nuevo modelo soft set hibrido capaz de utilizar expresiones lingiiisticas
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comparativas para mejorar la elicitaciéon de informacion lingiiistica y construir
nuevos algoritmos basados en el modelo propuesto para resolver problemas
de toma de decisiones en grupo. Una vez definidos estos algoritmos, es nece-
sario examinar su funcionalidad comparandolos con los algoritmos existentes

basados en otros modelos soft sets hibridos.

4. Por 1ultimo, construir un nuevo modelo difuso para representar expresiones
linglifsticas comparativas. Este modelo puede utilizarse para reflejar y mod-
elar la incertidumbre lingiiistica contenida en tales expresiones. Dado que
las expresiones lingiiisticas comparativas pueden transformarse en CTLDD, el
nuevo modelo de representacién basado en conjuntos difusos tipo-2 deberia
reflejar y modelar ambos tipos de incertidumbre: difusa y dudosa. Ademds,
examinaremos la funcionalidad del nuevo modelo de representacién para ex-
presiones lingiifsticas comparativas y lo compararemos con otro modelo de

representacién basado en conjuntos difusos tipo-1.

A.4 Estructura

Para alcanzar los objetivos planteados y segin lo establecido en el articulo 23, punto
3, de la normativa vigente para los Estudios de Doctorado en la Universidad de Jaén,
correspondiente al programa establecido en el RD 99/2011, esta investigacién serd
presentada como un conjunto de articulos publicados por el estudiante de doctorado.

Dichas publicaciones constituyen el nticleo de la tesis y corresponden a dos
articulos cientificos publicados en revistas internacionales indexadas por la base
de datos JCR (Journal Citation Reports), producida por IST (Institute for Scientfic
Information), junto con otros dos articulos que se encuentran sometidos bajo re-
visién en dos revistas internationales también indexadas por JCR al finalizar esta
memoria. Por tanto, la memoria se compone de un total de cuatro publicaciones,
dos de ellas publicadas en revistas de reconocido prestigio.

A continuacién hacemos una breve descripcién de la estructura de esta memoria:

e Capitulo 2: Este capitulo revisa los conceptos tedricos que son utilizados en
nuestras propuestas para alcanzar los objetivos planteados: definicién de soft
sets, fuzzy soft sets, rough soft sets y otros modelos soft sets hibridos; el con-
cepto de enfoque lingiiistico difuso, CTLDD y expresiones lingiiisticas com-

parativas generadas mediante una gramatica libre de contexto.

e Capitulo 3: Este capitulo introduce brevemente las propuestas publicadas y
sometidas que forman parte de esta memoria de investigacién. Para cada

articulo, se realiza una breve discusién de los resultados obtenidos.
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e Capitulo 4: Constituye el nucleo de la tesis doctoral, incluyendo un compendio
de las publicaciones obtenidas como resultado de la investigacién realizada.
Para cada publicacién se indican los indices de calidad donde la propuesta ha

sido publicada.

e Capitulo 5: Expone las conclusiones finales extraidas de esta investigacion y

propuestas para trabajos futuros.

A.5 Resumen

Existen diferentes modelos matematicos hibridos, obtenidos de la combinacion de
soft sets con otros modelos, tales como conjuntos difusos y rough sets, llamados soft
sets hibridos. Estos modelos han sido recientemente aplicados a problemas de toma
de decisiones. Sin embargo, presentan algunas limitaciones cuando los problemas
se definen en contextos cualitativos y es necesario usar informacion linglistica. Por
tanto, esta tesis se centra en mejorar las metodologias de los modelos existentes,
asi como proponer nuevos modelos soft sets hibridos capaces de modelar distintos
tipos de incertidumbre. También se definen modelos soft sets hibridos para resolver
problemas de toma de decisiones con informacién lingiiistica. Para ello, se presentan

las siguientes propuestas:

1. Se introducen metodologias para mejorar algunos enfoques de toma de deci-
siones basados en fuzzy soft sets y rough soft sets. Se proponen nuevos modelos
de toma de decisiones basados en estos dos modelos matematicos hibridos para

hacer frente a algunas limitaciones existentes.

2. Se realiza un estudio sistemaético de la relacién entre diferentes modelos soft
rough set. Se propone un modelo matematico hibrido llamado soft rough soft

sets el cual es aplicado a toma de decisiones.

3. Se define un modelo matemaético hibrido llamado, hesitant linguistic expression
soft set, que combina la teoria soft set con el enfoque lingiiistico difuso. Este
modelo es capaz de modelar la duda que pueden tener los expertos cuando
expresan sus valoraciones y el uso de un término lingiiistico no es suficiente
para reflejar su conocimiento. Este modelo se aplica a problemas de toma
de decisones y toma de decisiones en grupo. Ademads, se introduce un mod-
elo de consenso basado en hesitant linguistic expression soft set para obtener

soluciones consensuadas y aceptadas por todos los participantes.

4. Se construye un nuevo modelo de representacién para expresiones lingiiisticas

comparativas basado en conjuntos difusos tipo-2 para modelar la incertidum-
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bre contenida en dichas expresiones. Este nuevo modelo facilita los procesos
de computacién con palabras en problemas de toma de decisiones lingtiisticos.
Se realiza también un estudio comparativo entre el modelo tipo-2 propuesto y
otro modelo de representacion existente basado en tipo-1, en el que se muestra

que el modelo propuesto obtiene resultados mas precisos.

A.6 Conclusiones y Trabajos Futuros

Esta seccién cierra la memoria de investigacién revisando las diferentes conclusiones
obtenidas de las propuestas que se han realizado en la misma y exponiendo lineas
de investigacién sobre trabajos futuros que podrian realizarse partiendo de los re-
sultados presentados en ella. Finalmente, se indican las publicaciones adicionales

derivadas de la investigacién realizada.

A.6.1 Conclusiones

Los problemas de toma de decisiones bajo incertidumbre son comunes en nuestra
vida diaria. La diversidad y complejidad de la incertidumbre hace necesario el
uso de modelos matematicos que sean capaces de resolver este tipo de problemas.
La generalizacién de modelos soft sets obtenidos de la combinacién de éstos con
conjuntos difusos, rough sets y modelos linglifsticos, muestran gran potencial para
modelar la incertidumbre que aparece en problemas de toma de decisiones, ya que
los modelos hibridos presentan ventajas de diferentes modelos y por tanto, fortalecen
su capacidad para modelar diversos tipos de incertidumbre.

Los enfoques de toma de decisiones basados en fuzzy soft sets y rough soft sets
existentes en la literatura, presentan algunas limitaciones que necesitan ser evitadas.
Por tanto, el primer objetivo planteado en la seccién 1.2 se ha alcanzado mediante

las siguientes propuestas.

1. Hemos realizado un anéalisis sobre las limitaciones de los enfoques de toma
de decisiones basados en fuzzy soft sets. Uno de los enfoques de toma de
decisiones basados en fuzzy soft sets més populares, llamado enfoque basado
en score ha sido mejorado introduciendo los conceptos de D-Score y D-Score
table. Este nuevo enfoque decrementa el coste temporal cuando anadimos o

eliminamos parametros durante el proceso de toma de decisiones.

2. Se ha propuesto un enfoque adaptativo de fuzzy soft sets con umbrales o um-
brales difusos al calcular las valoraciones de las alternativas. El enfoque prop-
uesto puede resolver problemas que no puedian ser resueltos con los modelos

previos.
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3. Hemos estudiado las limitaciones de los enfoques de toma de decisiones basados
en rough soft sets y hemos definido dos enfoques de toma de decisiones y otro
de toma de decisiones en grupo basados en rough soft sets. En este tltimo
enfoque, los pesos de los expertos que participan en el problema se obtienen

mediante medidas de similitud entre soft sets.

En la literatura se han propuesto varios modelos de soft rough sets mediante
la construcciéon de diferentes operadores de aproximacion sobre conjuntos clasicos
[15, 63] o conjuntos difusos [15, 49, 83]. Sin embargo, no se ha realizado un estudio
sistematico sobre las relaciones que existen entre ellos. Para alcanzar el segundo

objetivo indicado en la seccién 1.2, hemos realizado los siguientes estudios.

1. Hemos analizado y discutido de forma sistematica las relaciones entre varios

modelos de soft rough.

2. Hemos propuesto un nuevo modelo llamado soft rough soft sets utilizando un
soft set para representar el conocimiento y calcular las aproximaciones a otro
soft set. Un ejemplo ilustrativo del nuevo modelo aplicado a toma de decisiones

ha sido mostrado.

A pesar de que existe un modelo llamado linguistic value soft sets que combina la
teoria soft set con informacién lingtiistica, este modelo sélo permite que los expertos
expresen sus valoraciones mediante términos lingiiisticos simples, ésto limita la elic-
itacién de informacién lingiiistica ya que en algunas ocasiones los expertos necesitan
usar expresiones mas complejas que términos lingliisticos simples para expresar su
conocimiento. Para facilitar la elicitacion de expresiones lingtiisticas més complejas
mediante el uso de modelos soft sets, es necesario construir nuevos modelos soft set
hibridos que combinen la teoria soft sets con expresiones lingiifsticas comparativas.

Este objetivo (seccién 1.2) se ha alcanzado con las siguientes propuestas.

1. Hemos definido un nuevo modelo llamado hesitant linguistic expression soft
sets, que permite que los expertos proporcionen sus valoraciones mediante
términos lingiiisticos simples o expresiones lingiiisticas comparativas. Un en-
foque de toma de decisiones basado en dicho modelo ha sido también prop-

uesto.

2. Teniendo en cuenta el modelo anterior, hemos introducido un enfoque de toma
de decisiones en grupo basado en hesitant linguistic expression soft sets y un
modelo de consenso para obtener soluciones consensuadas. Ademas se ha real-
izado un estudio comparativo para mostrar las ventajas y mejoras que presenta
nuestra propuesta respecto a los modelos existentes basados en linguistic value

soft sets.
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Otro de los objetivos que nos planteamos al inicio de esta investigacion fue,
definir modelos de representacién difusos para expresiones lingiiisticas comparativas
que sean capaces de reflejar y modelar la incertidumbre lingiiistica que aparecen
en dichas expresiones. Estos modelos deben facilitar los procesos computacionales,
cuando son aplicados a problemas de toma de decisiones en el que los expertos
proporcionan sus valoraciones mediante expresiones lingiiisticas comparativas. Para

ello, se han presentado las siguientes propuestas:

1. Se ha construido un nuevo modelo de representacion para expresiones lingiiisticas
comparativas basado en conjuntos tipo-2, type-2 fuzzy envelope. Este modelo
sigue la base del enfoque lingiiistico difuso y es capaz de reflejar de forma
satisfactoria la incertidumbre contenida en las expresiones lingiiisticas com-

parativas.

2. Se ha realizado una comparacién entre el modelo propuesto basado en tipo-2
y el modelo existente en la literatura basado en tipo-1 mediante un ejemplo
ilustrativo aplicado a toma de decisiones. Los resultados obtenidos de este
ejemplo muestran que cuando se aplica el modelo propuesto basado en tipo-2

se obtienen resultados mas precisos.

A.6.2 Trabajos futuros

A pesar de las propuestas presentadas en esta investigacién, ain existen algunos

retos por alcanzar y que aqui presentamos como trabajos futuros.

1. Profundizar en el estudio de las relaciones existentes entre los distintos modelos
soft sets hibridos.

2. Estudiar la relacién entre modelos soft sets hibridos y analizar los resulta-
dos obtenidos cuando estos modelos son aplicados a problemas de toma de

decisiones.

3. Definir modelos computacionales para realizar procesos de computacién con
palabras en problemas de toma de decisiones en grupo dentro del marco de
trabajo de hesitant linguistic expression soft sets utilizando el método TOPSIS
difuso para tipo-2 [10] y el método de representacién propuesto para CTLDD
basado también en tipo-2. Buscar un problema de toma de decisiones en grupo
basado en linguistic value soft set y resolverlo mediante el método TOPSIS
difuso tipo-1 [9] (with type-1 fuzzy envelopes for HFLTSs) y el método TOPSIS
difuso tipo-2 (with type-2 fuzzy envelopes for HFLTSs), para posteriormente
realizar un andlisis comparativo de los dos métodos mostrando las ventajas de

usar el método basado en tipo-2.
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4. Desarrollar otros modelos de representacién para expresiones lingiifticas com-
parativas y aplicarlos a problemas de toma de decisiones que utilicen soft sets
hibridos. Los conjuntos difusos intucionistas tipo-2 son un caso especial de
conjuntos difusos tipo-2, por tanto, seria interesante estudiar la generalizacion
de los conjuntos difusos tipo-2, para construir modelos de representacion de

expresiones lingliisticas comparativas.

Publicaciones adicionales
En relacién a la difusion y publicacion de los resultados presentados, ademéds
de las publicaciones presentadas en esta memoria, destacamos las siguientes aporta-

ciones:

e Revistas Internationales

— Y Liu, K Qin. Object-parameter approaches to predicting unknown data
in incomplete fuzzy soft sets. International Journal of Applied Mathe-

matics and Computer Science, vol. 27, issue 1, pp. 157-167, 2017.
— Y Liu, J Luo, B Wang, K Qin. A theoretical development on the entropy

of interval-valued intuitionistic fuzzy soft sets based on the distance mea-
sure. International Journal of Computational Intelligence Systems, vol.
10, issue 1, pp. 569, 2017.

— A Labella, Y Liu, R M Rodriguez, L. Martinez. Analyzing the Perfor-
mance of Classical Consensus Models in Large Scale Group Decision Mak-
ing: A comparative Study. Applied Soft Computing, vol. 67, issue C, pp.
677-690, 2018.

e Congresos Internationales

— Y Liu, R M Rodriguez, K Qin, L Martinez. Improved score based decision
making method by using fuzzy soft sets. The 13th International FLINS
Conference on Data Science an knowledge Engineering for Sensing Deci-
sion Support (FLINS 2018) held on Belfast (UK) in August 21-24, 2018.




154 A.6. Conclusiones y Trabajos Futuros




List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3

Descriptors and semantics of a linguistic termset . . . . . . . . . .. 15
Computing with words scheme [12, 21] . . . . . ... ... ... ... 15
Selection process for the solution of a GDM problem . . . . . .. .. 19
A general CRP scheme . . . . . . . ... ... 20
A consensus model based on HLE soft set . . . . . . ... ... ... 31

A three-steps process to construct the type-2 fuzzy envelope for HFLTS 33
Footprints of type-2 fuzzy envelopes for CLEs . . . . . . .. ... .. 36

155



156 LIST OF FIGURES




Bibliography

[1]

[2]

S. Abbasbandy and T. Hajjari. A new approach for ranking of trapezoidal fuzzy
numbers. Computers and Mathematics with Applications, 57(3):413-419, 2009.

J. C. R. Alcantud. A novel algorithm for fuzzy soft set based decision making
from multiobserver input parameter data set. Information Fusion, 29:142-148,
2016.

M. J. Barranco. A knowledge based recommender system with multigranu-
lar linguistic information. International Journal of Computational Intelligence
Systems, 1(3):225-236, 2008.

D. Ben-Arieh and Z. Chen. Linguistic group decision-making: opinion aggre-
gation and measures of consensus. Fuzzy Optimization and Decision Making,

5(4):371-386, 2006.

P. P. Bonissone. A fuzzy sets based linguistic approach: Theory and applica-
tions. In Conference on Winter Simulation, pages 99-111, 1980.

G. Bordogna and G. Pasi. A fuzzy linguistic approach generalizing boolean
information retrieval: A model and its evaluation. Journal of the American
Society for Information Science, 44(2):70-82, 1993.

N. Bryson. Group decision-making and the analytic hierarchy process: Ex-
ploring the consensus-relevant information content. Computers and Operations
Research, 23(1):27-35, 1996.

C.T.L. Butler and A. Rothstein. On Conflict and Consensus: A Handbook on
Formal Consensus Decision Making. Food Not Bombs Publishing, 2006.

C. T. Chen. Extensions of the topsis for group decision-making under fuzzy

environment. Fuzzy sets and systems, 114(1):1-9, 2000.

T. Y. Chen. An interval type-2 fuzzy technique for order preference by similarity

to ideal solutions using a likelihood-based comparison approach for multiple

157



158

BIBLIOGRAPHY

[13]

[14]

[16]

[17]

[20]

[21]

22]

criteria decision analysis. Computers and Industrial Engineering, 85:57-72,
2015.

M. Delgado, J. L. Verdegay, and M. A. Vila. Linguistic decision-making models.
International Journal of Intelligent Systems, 7(5):479-492, 2010.

D. Dhouib and S. Elloumi. A new multi-criteria approach dealing with de-
pendent and heterogeneous criteria for end-of-life product strategy. Applied
Mathematics & Computation, 218(5):1668-1681, 2011.

D. Didier and P. Henri. Rough fuzzy sets and fuzzy rough sets*. International
Journal of General Systems, 17(2-3):191-209, 1990.

F. Feng, Y. B. Jun, X. Y. Liu, and L. F. Li. An adjustable approach to fuzzy soft
set based decision making. Journal of Computational & Applied Mathematics,
234(1):10-20, 2010.

F. Feng, C. X. Li, B. Davvaz, and M. I. Ali. Soft sets combined with fuzzy sets
and rough sets: a tentative approach. Soft Computing, 14(9):899-911, 2010.

D. Fileva and R. R. Yagerb. On the issue of obtaining owa operator weights.
Fuzzy Sets and Systems, 94(2):157-169, 1998.

C. Fu and S. L. Yang. An evidential reasoning based consensus model for mul-
tiple attribute group decision analysis problems with interval-valued group con-
sensus requirements. European Journal of Operational Research, 223(1):167—
176, 2012.

J. L. Garcia-Lapresta, B. Llamazares, and M. Martinez-Panero. A social choice
analysis of the borda rule in a general linguistic framework. International
Journal of Computational Intelligence Systems, 3(4):501-513, 2010.

T. George. Decision making in political systems: Veto players in presidential-
ism, parliamentarism, multicameralism and multipartyism. British Journal of
Political Science, 25(3):289-325, 1995.

Y. Hatamura. Decision-Making in Engineering Design. Springer London, 2006.

F. Herrera. Improving fuzzy logic controllers obtained by experts: a case study
in hvac systems. Applied Intelligence, 31(1):15-30, 2009.

F. Herrera and E. Herrera-Viedma. Linguistic decision analysis: steps for solv-
ing decision problems under linguistic information. Fuzzy Sets and Systems,
115(1):67-82, 2000.




BIBLIOGRAPHY 159

[23]

[24]

[26]

F. Herrera, E. Herrera-Viedma, and L. Martinez. A fusion approach for man-
aging multi-granularity linguistic term sets in decision making. Fuzzy Sets and

Systems, 114(1):43-58, 2000.

F. Herrera, E. Herrera-Viedma, and J. L. Verdegay. A sequential selection
process in group decision making with a linguistic assessment approach. Infor-
mation Sciences, 85(4):223-239, 1995.

F. Herrera and L. Martinez. A model based on linguistic 2-tuples for deal-
ing with multigranular hierarchical linguistic contexts in multi-expert decision-
making. IEEFE Transactions on Systems Man and Cybernetics Part B Cybernet-
ics A Publication of the IEEE Systems Man and Cybernetics Society, 31(2):227,
2001.

H. Ishibuchi. Classification and Modeling with Linguistic Information Granules:
Advanced Approaches to Linguistic Data Mining. Springer Berlin Heidelberg,
2005.

Y. C. Jiang, Y. Tang, and Q. M. Chen. An adjustable approach to intuition-
istic fuzzy soft sets based decision making. Applied Mathematical Modelling,
35(2):824-836, 2011.

Y. C. Jiang, Y. Tang, Q. M. Chen, H. Liu, and J. C. Tang. Interval-valued
intuitionistic fuzzy soft sets and their properties. Computers and Mathematics
with Applications, 60(3):906-918, 2010.

J. Kacprzyk. Group decision making with a fuzzy linguistic majority. Fuzzy

Sets and Systems, 18(2):105-118, 1986.

Z. Kong, L. Q. Gao, and L. F. Wang. Comment on “a fuzzy soft set theoretic
approach to decision making problems”. Journal of computational and applied
mathematics, 223(2):540-542, 2009.

J. Lawry. An alternative approach to computing with words. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9(supp01):3—
16, 2001.

J. Lawry. A methodology for computing with words. International Journal of
Approximate Reasoning, 28(2):51-89, 2001.

H. B. Liu and R. M. Rodriguez. A fuzzy envelope for hesitant fuzzy linguis-
tic term set and its application to multicriteria decision making. Information
Sciences, 258(3):220-238, 2014.




160

BIBLIOGRAPHY

[34]

[36]

[37]

[38]

[39]

[40]

[41]

[44]

J. Ma, D. Ruan, Y. Xu, and G. Zhang. A fuzzy-set approach to treat deter-
minacy and consistency of linguistic terms in multi-criteria decision making.
International Journal of Approzimate Reasoning, 44(2):165-181, 2007.

X. L. Ma, Q. Liu, and J. M. Zhan. A survey of decision making methods based
on certain hybrid soft set models. Artificial Intelligence Review, 47(4):507-530,
2017.

P. K. Maji, R. Biswas, and A. R. Roy. Intuitionistic fuzzy soft sets. Journal of
fuzzy mathematics, 9(3):677-692, 2001.

P. K. Maji, R. K. Biswas, and A. Roy. Fuzzy soft sets. Journal of Fuzzy
Mathematics, pages 589-602, 2001.

M. Marimin, M. Umano, I. Hatono, and H. Tamura. Linguistic labels for ex-
pressing fuzzy preference relations in fuzzy group decision making. IEEFE Trans-
actions on Systems Man and Cybernetics Part B Cybernetics A Publication of
the IEEE Systems Man and Cybernetics Society, 28(2):205, 1998.

L. Martinez. An overview on the 2-tuple linguistic model for computing with
words in decision making: Extensions, applications and challenges. Information
Sciences, 207(1):1-18, 2012.

L. Martinez, R. Da, and H. Francisco. Computing with words in decision sup-
port systems: An overview on models and applications. International Journal
of Computational Intelligence Systems, 3(4):382-395, 2010.

L. Martinez, R. Da, F. Herrera, E. Herrera-Viedma, and P. P. Wang. Linguistic
decision making: Tools and applications. Information Sciences An Interna-

tional Journal, 179(14):2297-2298, 2009.

L. Martinez and J. Montero. Challenges for improving consensus reaching
process in collective decisions. New Mathematics and Natural Computation,
3(2):203-217, 2007.

L. Martinez, L. G. Pérez, and M. Barranco. A multigranular linguistic content-
based recommendation model. International Journal of Intelligent Systems,
22(5):419-434, 2010.

J. M. Mendel. An architecture for making judgments using computing with
words. International Journal of Applied Mathematics € Computer Science,
12:325-335, 2008.




BIBLIOGRAPHY 161

[45]

[46]

[47]

[48]

[54]

[55]

[56]

[57]

J. M. Mendel, H. Hagras, and R. I. John. Standard background material about
interval type-2 fuzzy logic systems that can be used by all authors, 2006.

J. M. Mendel and R. I. John. A fundamental decomposition of type-2 fuzzy
sets. In IFSA world congress and 20th NAFIPS international conference, 2001.
Joint 9th, volume 4, pages 1896-1901. IEEE, 2001.

J. M. Mendel and R. I. John. Type-2 fuzzy sets made simple. IEEFE Transactions
on fuzzy systems, 10(2):117-127, 2002.

J. M. Mendel, L. A. Zadeh, E. Trillas, R. Yager, J. Lawry, H. Hagras, and
S. Guadarrama. What computing with words means to me [discussion forum)].
IEEE Computational Intelligence Magazine, 5(1):20-26, 2010.

D. Meng, X. H. Zhang, and K. Y. Qin. Soft rough fuzzy sets and soft fuzzy
rough sets. Computers and mathematics with applications, 62(12):4635-4645,
2011.

D. Molodtsov. Soft set theory—first results. Computers and Mathematics with
Applications, 37(4-5):19-31, 1999.

S. A. Orlovsky. Decision-making with a fuzzy preference relation. Fuzzy Sets
and Systems, 1(3):155-167, 1978.

I. Palomares, F. J. Estrella, L. Martinez, and F. Herrera. Consensus under a
fuzzy context: Taxonomy, analysis framework afryca and experimental case of
study. Information Fusion, 20(15):252-271, 2014.

I. Palomares, F. J. Estrella, L. Martinez, and F. Herrera. Consensus under a
fuzzy context: Taxonomy, analysis framework AFRYCA and experimental case
of study. Information Fusion, 20(November 2014):252-271, 2014.

R. Parreiras and P. Ekel. A dynamic consensus scheme based on a nonreciprocal

fuzzy preference relation modeling. Elsevier Science Inc., 2012.

Z. Pawlak. Rough sets. International Journal of Parallel Programming,
11(5):341-356, 1982.

L. G. Pol and R. K. Thomas. Demography for business decision making. West-
port Connecticut Quorum Books, 2018.

C. Porcel and E. Herrera-Viedma. Dealing with incomplete information in a
fuzzy linguistic recommender system to disseminate information in university
digital libraries. Knowledge-Based Systems, 23(1):32-39, 2010.




162

BIBLIOGRAPHY

[58]

R. M. Rodriguez, L. Martinez, and F. Herrera. Hesitant fuzzy linguistic term
sets for decision making. IEEE Transactions on Fuzzy Systems, 20(1):109-119,
2012.

R. M. Rodriguez, L.. Martinez, and F. Herrera. A group decision making model
dealing with comparative linguistic expressions based on hesitant fuzzy linguis-
tic term sets. Information Sciences, 241:28-42, 2013.

M. Roubens. Fuzzy sets and decision analysis. Fuzzy Sets and Systems,
90(2):199-206, 1997.

A.R. Roy and P. K. Maji. A fuzzy soft set theoretic approach to decision making
problems. Journal of Computational and Applied Mathematics, 203(2):412-418,
2007.

S. Saint and J. R. Lawson. Rules for Reaching Consensus. A Modern Approach
to Decision Making. Jossey-Bass, 1994.

M. Shabir, M. I. Ali, and T. Shaheen. Another approach to soft rough sets.
Knowledge-Based Systems, 40:72-80, 2013.

V. Stepan and M. Dohnal. Decision making in goverment tenders: A formalized
qualitative model. Acta Universitatis Agriculturae Et Silviculturae Mendelianae
Brunensis, 60(4):397-406, 2013.

B. Z. Sun, W. M. Ma, and X. N. Li. Linguistic value soft set-based approach to
multiple criteria group decision-making. Applied Soft Computing, 58:285—-296,
2017.

Y. C. Tang and J. C. Zheng. Linguistic modelling based on semantic similarity
relation among linguistic labels. Fuzzy Sets and Systems, 157(12):1662-1673,
2006.

T. Tanino. Fuzzy preference orderings in group decision making. Fuzzy Sets &
Systems, 12(2):117-131, 1984.

T. Tanino. Fuzzy Preference Relations in Group Decision Making. Springer
Berlin Heidelberg, 1988.

J. H. Wang and J. Y. Hao. A new version of 2-tuple fuzzy linguistic represen-
tation model for computing with words. IEEFE Transactions on Fuzzy Systems,
14(3):435-445, 2006.




BIBLIOGRAPHY 163

[70]

[71]

[72]

[77]

[78]

[82]

C. Wei, R. M. Rodriguez, and L. Martinez. Uncertainty measures of extended
hesitant fuzzy linguistic term sets. [IEEE Transactions on Fuzzy Systems,
PP(99):1-1, 2017.

S. W. Wu, M. R. Delgado, and L. T. Maloney. Economic decision-making
compared with an equivalent motor task. Proceedings of the National Academy
of Sciences of the United States of America, 106(15):6088-6093, 2009.

Z. Wu and J. Xu. A consistency and consensus based decision support model
for group decision making with multiplicative preference relations. Decision
Support Systems, 52(3):757-767, 2012.

Z. S. Xu. Group decision making model and approach based on interval pref-

erence orderings. Computers and Industrial Engineering, 64(3):797-803, 2013.

R. R. Yager. On ordered weighted averaging aggregation operators in multicri-
teria decision making. IFEFE Transactions on Systems, Man, and Cybernetics,
18(1):183-190, 1988.

R. R. Yager. An approach to ordinal decision making. International Journal
of Approzimate Reasoning, 12(3-4):237-261, 1995.

R. R. Yager. On the retranslation process in zadeh’s paradigm of comput-
ing with words. IEEE Transactions on Systems Man & Cybernetics Part B
Cybernetics A Publication of the IEEE Systems Man € Cybernetics Society,
34(2):1184-1195, 2004.

L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338-353, 1965.

L. A. Zadeh. The concept of a linguistic variable and its application to ap-
proximate reasoning. Information Sciences, Part I, II, III, 8,8,9(3):199-249,
301-357, 43-80, 1975.

L. A. Zadeh. The concept of a linguistic variable and its application to approx-
imate reasoning. Information Sciences, Part I, 8(3):199-249, 1975.

L. A. Zadeh. Fuzzy logic. Computer, 21(4):83-93, 1988.

J. M. Zhan, M. L. Ali, and N. Mehmood. On a novel uncertain soft set model: Z-
soft fuzzy rough set model and corresponding decision making methods. Applied
Soft Computing, 56:446-457, 2017.

J. M. Zhan, Q. Liu, and T. Herawan. A novel soft rough set: Soft rough
hemirings and corresponding multicriteria group decision making. Applied Soft
Computing, 54:393-402, 2017.




164 BIBLIOGRAPHY

[83] J. M. Zhan and K. Y. Zhu. A novel soft rough fuzzy set: Z-soft rough
fuzzy ideals of hemirings and corresponding decision making. Soft Comput-
ing, 21(8):1923-1936, 2017.

[84] G. Q. Zhang, Y. C. Dong, Y. F. Xu, and H. Y. Li. Minimum-cost consensus
models under aggregation operators. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 41(6):1253-1261, 2011.

[85] Z. M. Zhang, C. Wang, D. Z. Tian, and K. Li. A novel approach to interval-
valued intuitionistic fuzzy soft set based decision making. Applied Mathematical
Modelling, 38(4):1255-1270, 2014.




