Managing Multigranular Linguistic Distribution Assessments in Large-Scale Multiattribute Group Decision Making
Type of publication: International Journal
Year of publication: 2017
Authors: Z. Zhang
Director: C. Guo, Luis Martínez
Type: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Editorial: IEEE
Volumen: 47
Pagination: 3063-3076
ISSN number: 2168-2216
Abstract: Linguistic large-scale group decision making (LGDM) problems are more and more common nowadays. In such problems a large group of decision makers are involved in the decision process and elicit linguistic information that are usually assessed in different linguistic scales with diverse granularity because of decision makers distinct knowledge and background. To keep maximum information in initial stages of the linguistic LGDM problems, the use of multigranular linguistic distribution assessments seems a suitable choice, however, to manage such multigranular linguistic distribution assessments, it is necessary the development of a new linguistic computational approach. In this paper, it is proposed a novel computational model based on the use of extended linguistic hierarchies, which not only can be used to operate with multigranular linguistic distribution assessments but also can provide interpretable linguistic results to decision makers. Based on this new linguistic computational model, an approach to linguistic large-scale multiattribute group decision making is proposed and applied to a talent selection process in universities
DOI: 10.1109/TSMC.2016.2560521
Quartile:
Q1