Managing experts behavior in large-scale consensus reaching processes with uninorm aggregation operators
Tipo de publicación: International Journal
Año de publicación: 2015
Autores: Francisco José Quesada
Director: Iván Palomares, Luis Martínez
Tipo: Applied Soft Computing
Volumen: 35
Paginación: 873-887
Numero ISSN: 1568-4946
Palabras clave: Computing with Words
Resumen: Abstract In many real-life large scale group decision making problems, it can be necessary and convenient a consensus reaching process, which is an iterative procedure aimed at seeking a high degree of agreement amongst experts preferences before making a group decision. Although a wide variety of models and approaches have been proposed and developed to support consensus reaching processes, in large groups there are some important aspects that still require further study, such as the treatment of experts behaviors that could hamper reaching the wanted agreement. More specifically, it would be necessary an approach to deal with experts properly, based on the overall behavior they present during the discussion process, as well as reinforcing repeated patterns of cooperative (or uncooperative) behavior adopted by experts. This paper presents an expert weighting methodology for consensus reaching processes in large-scale group decision making, that incorporates the use of uninorm aggregation operators. Such operators, which are characterized by their property of full reinforcement, are used in the proposed methodology to allow the experts weighting based on their overall behavior during the consensus process and the behavior evolution across the time. This proposal is integrated in a consensus model for large-scale group decision making problems under uncertainty, and it is put in practice to show an illustrative example of its effectiveness and improvements with respect to other approaches.